

Note that this is a longer version of the paper submitted to ICDM 2005. The extra material consists of additional
experiments, additional important references and more detailed and intuitive explanations of some of the algorithms.

HOT SAX: Finding the Most Unusual Time Series
Subsequence: Algorithms and Applications

Eamonn Keogh Jessica Lin

Computer Science & Engineering Department
University of California, Riverside

Riverside, CA 92521
{eamonn, jessica}@cs.ucr.edu

Ada Fu
Department of Computer Science and Engineering

The Chinese University of Hong Kong

adafu@cse.cuhk.edu.hk

ABSTRACT

0 200 400 600 800 1000 1200 1400

ECG qtdb/sel102 (excerpt)
0 200 400 600 800 1000 1200 1400

ECG qtdb/sel102 (excerpt)

In this work, we introduce the new problem of finding time
series discords. Time series discords are subsequences of a
longer time series that are maximally different to all the rest of
the time series subsequences. They thus capture the sense of the
most unusual subsequence within a time series. Time series
discords have many uses for data mining, including improving
the quality of clustering, data cleaning, summarization, and
anomaly detection. As we will show, discords are particularly
attractive as anomaly detectors because they only require one
intuitive parameter (the length of the subsequence) unlike most
anomaly detection algorithms that typically require many
parameters. While the brute force algorithm to discover time
series discords is quadratic in the length of the time series, we
show a simple algorithm that is 3 to 4 orders of magnitude faster
than brute force, while guaranteed to produce identical results.
We evaluate our work with a comprehensive set of experiments.
In particular, we demonstrate the utility of discords with
objective experiments on domains as diverse as Space Shuttle
telemetry monitoring, medicine, surveillance, and industry, and
we demonstrate the effectiveness of our discord discovery
algorithm with more than one million experiments, on 82
different datasets from diverse domains.

Keywords
Time Series Data Mining, Anomaly Detection, Clustering.

1. INTRODUCTION
The previous decade has seen hundreds of papers on time series
similarity search, which is the task of finding a time series that
is most similar to a particular query sequence [7]. In this work,
we pose the new problem of finding the sequence that is least
similar to all other sequences. We call such sequences time
series discords. Figure 1 gives a visual intuition of a time series
discord found in a human electrocardiogram.
The fact that the discord in Figure 1 coincides with the location
annotated by a cardiologist as containing an anomalous
heartbeat hints at one possible use of discords.

Figure 1: The time series discord found in an excerpt of
electrocardiogram qtdb/sel102 (marked in bold line).
The location of the discord exactly coincides with a
premature ventricular contraction

As we shall show, time series discords are superlative anomaly
detectors, able to detect anomalies in domains as diverse as
Space Shuttle telemetry, industry, and medicine. One reason
why discords are particularly suited for the increasingly
important problem of anomaly detection is that they only
require a single intuitive parameter, the length of the
subsequences to consider. In contrast, many other anomaly
detection algorithms require 3 to 7 unintuitive parameters [8].
With so many parameters to set, we need access to huge
amounts of training data, even then, avoiding overfitting
remains a challenge.
Time series discords have other uses. Clustering algorithms can
often benefit from removing a handful of tricky cases, which
can be summarized separately [3]. We could attempt to define
these “tricky cases” as ones that do not belong to any cluster;
however, this opens the possibility of a chicken and egg
paradox. This effect has been noted in clustering points in k-
dimensional space, but it is also true for time series, and the
removal of discords offers a solution.
This paper makes two fundamental contributions in discovering
unusual time series subsequences. First, while the idea of the
“most unusual subsequence” is intuitive, great care must be
taken in creating a workable definition, otherwise, we will be
plagued with uninteresting pathological solutions. We introduce
such a definition here and validate it in domains as diverse as
medicine, surveillance, and space telemetry. Second, the brute-
force algorithm to discover the most unusual subsequence
requires a quadratic “all to all” comparison, which is untenable
for large real-world datasets. We introduce a simple algorithm
that can achieve 3 to 4 orders of magnitude speedup on real
problems.
The rest of the paper is organized as follows. In Section 2, we
review related work and discuss some background material
before introducing our formal definition of time series discords.
In Section 3, we consider the brute-force algorithm for finding
discords, and introduce a general framework for speeding up the

search based on admissible pruning and reordering the order in
which the search examines the subsequences. Section 4
introduces a particular reordering strategy based on examining a
symbolic version of the data. We perform an extensive
empirical evaluation in Section 5 to demonstrate both the utility
of discords and our ability to find them quickly. Finally, Section
6 offers some conclusions and suggestions for future work.

2. RELATED WORK AND BACKGROUND
Our review of related work is exceptionally brief because we are
considering a new problem. Most real valued time series
problems such as motif discovery [1][4][9], longest common
subsequence matching, sequence averaging, segmentation,
indexing [7], etc. have approximate or exact analogues in the
discrete world, and have been addressed by the text processing
or bioinformatics communities. However, time series discords
do not appear to have a discrete version. Note that the
superficially similar sounding Furthest (Sub)String Problem
requires us to build a string, not to find one in the data [12].

2.1 Notation
For concreteness, we begin with a definition of our data type of
interest, time series:

Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

For data mining purposes, we are typically not interested in any
of the global properties of a time series; rather, we are interested
in local subsections of the time series, which are called
subsequences.

Definition 2. Subsequence: Given a time series T of length
m, a subsequence C of T is a sampling of length n ≤ m of
contiguous position from T, that is, C = tp,…,tp+n-1 for 1 ≤ p
≤ m – n + 1.

Since all subsequences may potentially be discords, any
algorithm will eventually have to extract all of them; this can be
achieved by use of a sliding window.

Definition 3. Sliding Window: Given a time series T of
length m, and a user-defined subsequence length of n, all
possible subsequences can be extracted by sliding a window
of size n across T and considering each subsequence Cp .

Since our task is to find the most distant subsequence under
some distance measure Dist(C,M), we will take the time to
define distance.

Definition 4. Distance: Dist is a function that has C and M
as inputs and returns a nonnegative value R, which is said to
be the distance from M to C. For subsequent definitions to
work we require that the function D be symmetric, that is,
Dist(C,M) = Dist(M,C).

While the definition of a distance is obvious and intuitive, we
need it to exclude trivial matches. In general, the best matches
to a subsequence (apart from itself) tend to be located one or
two points to the left or the right of the subsequence in question.
Such matches have previously been called trivial matches
[1][4][9]. As we shall see, it is critical when finding discords to
exclude trivial matches; otherwise, almost all real datasets have
degenerate and unintuitive solutions. We will therefore take the
time to formally define a non-self match.

Definition 5. Non-Self Match: Given a time series T,
containing a subsequence C of length n beginning at position
p and a matching subsequence M beginning at q, we say that

M is a non-self match to C at distance of Dist(M,C) if | p – q|
≥ n.

We can most easily see the importance of non-self matches for
the problem at hand if we consider the analogy of the problem
in the discrete world. Consider the following string:

a b c a b c a b c a b c X X X a b c a b c a b a c a b c
The eye is immediately drawn to the subsequence of “X”, which
surely forms the discord here. However, if we assume a sliding
window length of 3, and that our distance measure is the
hamming distance, then the subsequence that is farthest from its
nearest neighbor subsequence is “bac”. Below, the string is
annotated by subscripts that give the distance to the nearest
neighbor for each subsequence of length 3:

a0b0c0a0b0c0a0b0c0a0b1c1X1X1X1a0b0c0a0b0c0a1b2a1c0a b c
This unexpected and unintuitive result is caused by allowing
trivial matches. While the subsequence XXX may appear
unusual, it is only 1 unit distance from the subsequence XXa,
which shares two elements simply shifted by one place. We can
see the difference this makes by annotating the string with the
non-self match distance to its nearest neighbor subsequence.

a0b0c0a0b0c0a0b0c0a0b1c2X3X2X1a0b0c0a0b0c0a1b2a1c0a b c
Here the results are much more intuitive. While it is a simple
and contrived example on discrete data, as we shall see,
identical remarks apply to real world, real valued data. Note that
the idea that one must exclude “partial self” comparisons in
order to create meaningful definitions is well known in the
bioinformatics community [19] and increasingly understood in
the time series data mining community [1][4][9][17][18]. We
will therefore use the definition of non-self matches to define
time series discords:

Definition 6. Time Series Discord: Given a time series T, the
subsequence D of length n beginning at position l is said to
be the discord of T if D has the largest distance to its nearest
non-self match. That is, ∀ subsequence C of T, non-self
match MD of D, and non-self match MC of C, min(Dist(D,
MD)) > min(Dist(C, MC)

We will denote the location of the discord as D.l and the
distance to the nearest non-self matching neighbor as D.dist.
The length of the discord we denote as Dn.
We may be interested in examining the top K discords, which
we define as:

Definition 7. Kth Time Series Discord: Given a time series T,
the subsequence D of length n beginning at position p is the
Kth-discord of T if D has the Kth largest distance to its nearest
non-self match, with no overlapping region to the ith discord
beginning at position pi, for all 1 ≤ i < K. That is, | p – pi | ≥ n.

We have deliberately omitted naming a distance function up to
this point for generality. For concreteness, we will use the
ubiquitous Euclidean distance measure throughout the rest of
this paper [4][7].

Definition 8. Euclidean Distance: Given two time series Q
and C of length n, the Euclidean distance between them is
defined as:

 () ()∑ −≡
=

n

i
ii cqCQDist

1

2,

Each time series subsequence is normalized to have mean zero
and a standard deviation of one before calling the distance
function, because it is well understood that in virtually all

settings, it is meaningless to compare time series with different
offsets and amplitudes [7].

2.2 Some Properties of Time Series Discords
Here, we discuss some properties of time series discords to
enhance the readers’ understanding of them and to discount
some possible research directions for finding algorithms for
quickly locating them.

2.2.1 Discords are not necessary found in sparse space
The idea of considering time series subsequences as points in
space has long been exploited by dozens of indexing techniques
[7], so one might imagine that such a representation would be
useful for the task at hand. We could simply project our time
series into n-dimensional space and use existing outlier
detection methods [10][3]. The problem with this idea is the
unintuitive fact that discords do not necessarily live in sparse
areas of n-dimensional space (Conversely, repeated patterns do
not necessarily live in dense parts of the n-dimensional space
[1][4][9]). The full explanation has consequences for other
problems and is perhaps deserving of a separate paper; however,
here, we content ourselves with a visual example and a brief
explanation. In Figure 2, we consider a simple time series
consisting of a slightly noisy sine wave. We introduce an
“anomaly” of length 50 by shifting the entire second half of the
time series.

Figure 2: (Top) A synthetic time series with an obvious
anomaly. (Middle) The local density of subsequences of
length 50, measured by calculating the number of
matching subsequences within a range of 2. (Bottom).
The non-self match to the nearest neighbor for all
subsequences of length 50

We can now extract all subsequences of length 50, project them
into 50-dimensional space and measure the local density around
each subsequence. Surprisingly, the anomaly is not in the
sparsest (or in any other way remarkable) region of space.
However, note that the definition of non-self match that is at the
heart of time series discords clearly identifies the anomalous
region.
The explanation of this unintuitive finding harkens back to the
idea of trivial matches. Consider a subsequence C located at tp
that is “simple”, that is to say it has only one or two features
such as peaks or valleys. This simple subsequence is very close
in n-dimensional space to the subsequences beginning at tp+1, tp-

1, tp+2, etc. In contrast, consider a subsequence M located at tq
that is “complex”, that is to say it has many features such as

peaks or valleys. This complex subsequence is relatively far
from subsequences beginning at tq+1, tq-1, tq+2, etc. In other
words, simple (and smooth) shapes appear to be in dense
neighborhoods because we over-count shifted versions of them.
This problem prevents us for using existing density based
algorithms to find time series discords. Note that even if current
density based algorithms could be adapted to consider non-self
distance, most of them degrade to quadratic time complexity for
high dimensionality data.

2.2.2 Discords results are non combinable
Several generic paradigms for solving problems rely on the
ability to decompose a problem into smaller sub-problems,
which can be solved and admissibly recombined. Depending on
the exact definitions, such techniques are variously called
dynamic programming, divide and conquer, bottom-up, etc [5].
Unfortunately, as we show below, such ideas are unlikely to
help us efficiently find discords.
Imagine that we break a time series T into two sections, A and B,
and that we find the discords for both sections, recording their
locations as A.l, B.l and values as A.dist and B.dist, respectively.
Furthermore, imagine that we now concatenate A and B to
reproduce the original time series T (for simplicity, let us
assume that when the discord for T is discovered, it will not
span the end of A and the beginning of B). What can we now
say about the discord for T? Surprisingly, the answer is very
little. We cannot assume that it will be either in location A.l or
in location |A| + B.l, because both of the two previously
discovered discords may have good matches in the other
section. All we can do is give weak bounds. The value of T.dist
is at most max(A.dist, B.dist). The lower bound of T.dist is a
trivial zero (To see this, imagine A = B). As to the location of
T.l, we can say nothing.

0 100 200 300 400 500 600 700 800 900 1000

synthetic data

0

50

100

150

density

100 200 300 400 500 600 700 800 9000

1

2
non-self distance

10000

n = 50

0 100 200 300 400 500 600 700 800 900 1000

synthetic data

0

50

100

150

density

100 200 300 400 500 600 700 800 9000

1

2
non-self distance

10000

n = 50

If we consider the complementary situation, where we know the
discord information T.l and T.dist for T, and we split into two
new time series A and B, we are similarly frustrated. Assume
that the discord from T happened to fall into A. We can lower
bound A.dist as being greater than or equal to T.dist, but we
cannot provide an upper bound. In addition, we can say nothing
about the location of A.l. As for B.dist and B.l, we can say
nothing.
A combination of these two results also frustrates any thought of
exploiting a sliding window algorithm, since ingesting and
egressing a single point can change the location and value of the
discords.
The above results suggest that existing algorithms/paradigms are
of little utility for finding discords. This motivates the
introduction of an original algorithm in the next section.

3. FINDING TIME SERIES DISCORDS
The brute force algorithm for finding discords is simple and
obvious. We simply take each possible subsequence and find the
distance to the nearest non-self match. The subsequence that has
the greatest such value is the discord. This is achieved with
nested loops, where the outer loop considers each possible
candidate subsequence, and the inner loop is a linear scan to
identify the candidate’s nearest non-self match. For clarity, the
pseudo code is shown in Table 1.

Table 1: Brute Force Discord Discovery.
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Function [dist, loc]= Brute_Force(T, n)

 best_so_far_dist = 0

 best_so_far_loc = NaN

For p = 1 to |T | - n + 1 // Begin Outer Loop

 nearest_neighbor_dist = infinity

 For q = 1 to |T | - n + 1 // Begin Inner Loop

 IF | p – q | ≥ n // non-self match?

 IF Dist (tp,…,tp+n-1, tq,…,tq+n-1) < nearest_neighbor_dist

 nearest_neighbor_dist = Dist (tp,…,tp+n-1, tq,…,tq+n-1)

 End

 End // End non-self match test

 End // End Inner Loop

 IF nearest_neighbor_dist > best_so_far_dist

 best_so_far_dist = nearest_neighbor_dist

 best_so_far_loc = p

 End

End // End Outer Loop

Return[best_so_far_dist, best_so_far_loc]

Note that the algorithm requires exactly one parameter, the
length of subsequences to consider. The algorithm is easy to
implement and produces exact results. However, it has one fatal
flaw for data mining. It has O(m2) time complexity which is
simply untenable for even moderately large datasets.
The following two observations offer hope to improve the
algorithm’s running time.

• Observation 1: In the inner loop, we don’t actually need
to find the true nearest neighbor to the current candidate.
As soon as we find any subsequence that is closer to the
current candidate than the best_so_far_dist, we can abandon
that instance of the inner loop, safe in the knowledge that
the current candidate could not be the time series discord.

• Observation 2: The utility of the above optimization
depends on the order which the outer loop considers the
candidates for the discord, and the order which the inner
loop visits the other subsequences in its attempt to find a
sequence that will allow an early abandon of the inner loop.

While these are simple ideas and only minor modifications of
the original algorithm, for concreteness, we will make them
clear. The pseudo code is shown in Table 2.
Note that the input has been augmented by two heuristics, one to
determine the order in which the outer loop visits the
subsequences, and one to determine the order in which the inner
loop visits the subsequences. Note that the heuristic for the outer
loop is used once, but the heuristic for the inner loop takes the
current candidate into account, and is thus invoked to produce a
new ordering for every iteration of the outer loop.
We have now reduced the discord discovery problem into a
generic framework where all one needs to do is to specify the
heuristics. Note that we should not attempt to “cheat” the
algorithm. We could provide very good heuristic orderings if we
are allowed to completely solve the brute force problem each
time the heuristic functions are invoked! However this is simply
hiding the time complexly in a different part of the
implementation. We must therefore insist that the Outer
heuristic (invoked only once) takes at most O(m) to calculate
and the Inner heuristic (invoked m-n times) takes O(1). Note
that this requirement precludes the possibility of using R-trees,
K-d trees or other classic indexing algorithms [7][15].

Table 2: Heuristic Discord Discovery.
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Function [dist, loc]= Heuristic_Search(T, n, Outer, Inner)

 best_so_far_dist = 0

 best_so_far_loc = NaN

For Each p in T ordered by heuristic Outer // Begin Outer Loop

 nearest_neighbor_dist = infinity

 For Each q in T ordered by heuristic Inner // Begin Inner Loop

 IF | p – q | ≥ n // non-self match?

 IF Dist (tp,…,tp+n-1, tq,…,tq+n-1) < best_so_far_dist

 Break // Break out of Inner Loop

 End

 IF Dist (tp,…,tp+n-1, tq,…,tq+n-1) < nearest_neighbor_dist

 nearest_neighbor_dist = Dist (tp,…,tp+n-1, tq,…,tq+n-1)

 End

 End // End non-self match test

 End // End Inner Loop

 IF nearest_neighbor_dist > best_so_far_dist

 best_so_far_dist = nearest_neighbor_dist

 best_so_far_loc = p

 End

End // End Outer Loop

Return[best_so_far_dist, best_so_far_loc]

To gain some intuition into our new algorithm, and to hint at our
eventual solution to this problem, let us consider 3 possible
heuristic strategies:

• Random: We could simply have both the Outer and Inner
heuristics randomly order the subsequences to consider. It
is difficult to analyze this strategy since its performance is
bounded from below by O(m) and from above by O(m2)
(see below for explanation) and depends on the data.
However, empirically it works reasonably well. The
conditional test on line 9 of Table 2 is often true and the
inner loop can be abandoned early, considerably speeding
up the algorithm.

• Magic: In this hypothetical situation, we imagine that a
friendly oracle gives us the best possible orderings. These
are as follows: For Outer, the subsequences are sorted by
descending order of the non-self distance to their nearest
neighbor, so that the true discord is the first object
examined. For Inner, the subsequences are sorted in
ascending order of distance to the current candidate. For
the Magic heuristics, the first invocation of the inner loop
will run to completion. Thereafter, all subsequent
invocations of the inner loop will be abandoned during the
very first iteration. The time complexity is thus one
occurrence of m-n+1 steps for the first inner loop, and m-n
occurrences of the O(1) step of each subsequent invocation
of the inner loop, giving a total time complexity of O(m) +
O(m) or just O(m). Note that we have m ≫n.

• Perverse: In this hypothetical situation, we imagine that a
less than friendly oracle gives us the worst possible
orderings. These are identical to the Magic orderings with
ascending/descending orderings reversed. In this case, we
are back to the original O(m2) time complexity, and we
waste some time in the conditional tests on line 9 of Table 2.

These results are something of a mixed bag for us. They suggest
that a linear time algorithm is possible, but only with the aid of
some very wishful thinking. The Magic heuristic requires a
perfect ordering of subsequences in the inner loop, and any
perfect ordering (i.e., sorting) requires at least O(mlogm).
Furthermore, the only known way to produce the perfect
ordering of subsequences in the outer loop requires O(m2) work,

but we are only allowed O(m) time. The following two
observations, however, offer us some hope for a fast algorithm:

• Observation 3: In the outer loop, we do not actually need to
achieve a perfect ordering to achieve dramatic speedup. All
we really require is that among the first few subsequences
being examined, we have at least one that has a large distance
to its nearest neighbor. This will give the best_so_far_dist
variable a large value early on, which will make the
conditional test on line 9 of Table 2 be true more often, thus
allowing more early terminations of the inner loop.

• Observation 4: In the inner loop, we also do not actually need
to achieve a perfect ordering to achieve dramatic speedup. All
we really require is that among the first few subsequences
being examined we have at least one that has a distance to the
candidate sequence being considered that is less than the
current value of the best_so_far_dist variable. This is a
sufficient condition to allow early termination of the inner loop.

We can imagine a full spectrum of algorithms, which only differ
by how well they order subsequences relative to the Magic
ordering. This spectrum spans {Perverse…Random…Magic}.
Our goal then is to find the best possible approximation to the
Magic ordering, which is the topic of the next section.
At the risk of redundancy, we again emphasize that this search
problem requires a specialized solution, and we cannot leverage
off the huge literature on time series similarity search [7]. Kd-
Trees, R-trees and their many variants require O(log(m)) time
per lookup, but we can spare only O(1) time. In any case, these
search algorithms support nearest neighbor search, whereas all
we require here is “near-enough” neighbor search, as noted in
observation 4.

4. APPROXIMATIONS TO MAGIC
Before we introduce our techniques for approximating the
perfect ordering returned by the hypothetical Magic hueristics,
we must briefly review the Symbolic Aggregate ApproXimation
(SAX) representation of time series introduced in [13]. While
there are at least 200 different symbolic approximation of time
series in the literature, SAX is unique in that it is the only one
that allows both dimensionality reduction and lower bounding
of Lp norms. Since its relatively recent introduction, SAX has
become an important tool in the time series data mining toolbox.
It has been used to find time series motifs [4][18], to mine rules
in health data [1], for anomaly detection [8], to extract features
from a hepatitis database [9], for visualization [11][14], and a
host of other data mining tasks.

4.1 A Brief Review of SAX
A time series C of length n can be represented in a w-
dimensional space by a vector wccC ,,1 . The iK= th element of
C is calculated by the following equation:

∑

+−=

=
i

ij
jn

w
i

w
n

w
n

cc
1)1(

In other words, to transform the time series from n dimensions
to w dimensions, the data is divided into w equal sized “frames.”
The mean value of the data falling within a frame is calculated
and a vector of these values becomes the dimensionality-
reduced representation. This simple representation is known as
Piecewise Aggregate Approximation (PAA).

Having transformed a time series into the PAA representation,
we can apply a further transformation to obtain a discrete
representation. It is desirable to have a discretization technique
that will produce symbols with equiprobability [4][8]. In
empirical tests on more than 50 datasets, we noted that
normalized subsequences have highly Gaussian distribution
[13], so we can simply determine the “breakpoints” that will
produce equal-sized areas under Gaussian curve.

Definition 9. Breakpoints: Breakpoints are a sorted list of
numbers Β = β1,…,βa-1 such that the area under a N(0,1)
Gaussian curve from βi to βi+1 = 1/a (β0 and βa are defined
as -∞ and ∞, respectively).

These breakpoints may be determined by looking them up in a
statistical table. For example, Table 3 gives the breakpoints for
values of a from 3 to 5.

Table 3: A lookup table that contains the breakpoints
that divides a Gaussian distribution in an arbitrary
number (from 3 to 5) of equiprobable regions

βi a 3 4 5

β1 -0.43 -0.67 -0.84

β2 0.43 0 -0.25

β3 0.67 0.25

β4 0.84

Once the breakpoints have been obtained we can discretize a
time series in the following manner. We first obtain a PAA of
the time series. All PAA coefficients that are below the smallest
breakpoint are mapped to the symbol “a”, all coefficients
greater than or equal to the smallest breakpoint and less than the
second smallest breakpoint are mapped to the symbol “b”, etc.
Figure 3 illustrates the idea.

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b
a

a

b
c c

b

c

Figure 3: A time series (thin black line) is discretized by
first obtaining a PAA approximation (heavy gray line)
and then using predetermined breakpoints to map the
PAA coefficients into symbols (bold letters). In the
example above, with n = 128, w = 8 and a = 3, the time
series is mapped to the word cbccbaab

Note that in this example, the 3 symbols, “a”, “b” and “c” are
approximately equiprobable as we desired. We call the
concatenation of symbols that represent a subsequence a word.

Definition 10. Word: A subsequence C of length n can be
represented as a word as follows. Let αwccC ˆ,,ˆˆ

1 K= i denote

the ith element of the alphabet, i.e., α1 = a and α2 = b. Then
the mapping from a PAA approximation C to a word C is
obtained as follows:

ˆ

1ˆ iff i i j i jc cα β β−= ≤ <

We have now completely defined SAX representation. Note that
our observation that normalized subsequences have highly
Gaussian distribution [13], is not critical to correctness of any of
the algorithms that use SAX, including the ones in this work. A
pathological dataset that violates this assumption will only
affect the efficiency of the algorithms.

4.2 Approximating the Magic Outer Loop
We begin by creating two data structures to support our
heuristics. We are given n, the length of the discords in advance,
and we must choose two parameters, the cardinality of the SAX
alphabet size a, and the SAX word size w. We defer a
discussion of how to set these parameters until later in this
section, but note that the values of α and w only affect the
efficiency of our algorithm, not the final result, which depends
only on the user supplied length of the discord.
We begin by creating a SAX representation of the entire time
series, by sliding a window of length n across time series T,
extracting subsequences, converting them to SAX words, and
placing them in an array where the index refers back to the
original sequence. Figure 4 gives a visual intuition of this,
where both a and w are set to 3.

Figure 4: The two data structures used to support the
Inner and Outer heuristics. (left) An array of SAX
words, where the last column contains a count of how
often each word occurs in the array. (right) An excerpt
of an trie with leaves that contain a list of all array
indices that map to that terminal node

Note that the index goes from 1 to (m – n) + 1, because the right
edge of n-length sliding window “bumps” against end of the m-
length time series.
Once we have this ordered list of SAX words, we can imbed
them into an augmented trie where the leaf nodes contain a
linked list index of all word occurrences that map there. The
count of the number of occurrences of each word can be mapped
back to the rightmost column of the array. For example, in
Figure 4, if we are interested in the word caa, we visit the trie to
discover that it occurs in locations 1, 3, and 731. If we are
interested in the word that occurs at a particular location, let’s
say (m – n) - 1, we can visit that index in the array and discover
that the word cbb is mapped there. Furthermore, we can see by
examining the rightmost column that there are a total of 2
occurrences of that particular word (including the one we are
currently visiting). However, if we want to know the location of
the other occurrence, we must visit the trie.
Surprisingly, both data structures can be created in time and
space linear in the length of T [1][16]. In fact, if we take
advantage of the fact that we only need ⎡log2(a)⎤ bits for each

SAX symbol, then both data structures are significantly smaller
than the raw time series data they were derived from.
We can now state our Outer heuristic; we scan the rightmost
column of the array to find the smallest count mincount (its
value is virtually always 1). The indices of all SAX words that
occur mincount times are recorded, and are given to the outer
loop to search over first. After the outer loop has exhausted this
set of candidates, the rest of the candidates are visited in random
order.
The intuition behind our Outer heuristic is simple. Unusual
subsequences are very likely to map to unique or rare SAX
words. By considering the candidate sequences that map to
unique or rare SAX words early in the outer loop, we have an
excellent chance of giving a large value to the best_so_far_dist
variable early on, which (as noted in observation 3) will make
the conditional test on line 9 of Table 2 be true more often, thus
allowing more early terminations of the inner loop.

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1
^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1
^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

c
b

a

c
b

a
c

b
a

c
b

a
c

b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1Ĉ1
^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b() +1

a(–

c(–) -1

::::

::::

c3

c2

c1

4.3 Approximating the Magic Inner Loop
Our Inner heuristic also leverages off the two data structures
shown in Figure 4. When candidate i is first considered in the
outer loop, we look up the SAX word that it maps to, by
examining the ith word in the array. We then visit the trie and
order the first items in the inner loop in the order of the elements
in the linked list index found at the terminal nodes. For example,
imagine we are working on the problem shown in Figure 4. If
we were examining the candidate C731 in the outer loop, we
would visit the array at location 731. Here we would find the
SAX word caa. We could use the SAX values to traverse the
trie to discover that subsequences 1, 3, 731 map here. These 3
subsequences are visited first in the inner loop (note that line 8
of Table 1 prevents 731 from being compared to itself). After
this step, the rest of the subsequences are visited in random
order.
The intuition behind our Inner heuristic is also simple.
Subsequences that have the same SAX encoding as the
candidate subsequence are very likely to be highly similar (this
fact is at the heart of more than 20 research efforts
[1][4][8][9][14][17]). As noted in observation 4, we just need to
find one such subsequence that is similar enough (has a distance
to the candidate than the current value of the best_so_far_dist
variable) in order to terminate the inner loop.

4.4 Minor Optimizations and Parameter Setting
There are several minor optimizations we can apply to the
heuristic search algorithm. For example, imagine we are
considering candidate Ci in the outer loop, and as we traverse
through the inner loop, we find that subsequence Cj is close
enough to it to allow early abandonment. In addition to saving
time with the early termination, we can also delete Cj from the
list of candidates in outer loop (if it has not already been
visited). The key observation is that since we are assuming a
symmetric distance measure, if nearness to Cj disqualifies
candidate Ci from being the discord, then the same nearness to
Ci would also disqualify candidate Cj from being the discord.
Empirically, this simple optimization gives a speed-up factor of
approximately 2. In addition, there are several well-known
optimizations to the Euclidean distance that we can use [7].
As noted above, we must choose two parameters, the cardinality
of the SAX alphabet size a, and the SAX word size w. Recall
what it is we want to optimize. We would like the distribution of
the SAX words to be highly skewed, so that the discord will

map to a SAX word that is unique or rare, and all the other
subsequences will map to SAX words that are very frequent.
This is the best situation for both our heuristics. If we choose
very large values of a and/or w, almost all subsequences will
map to unique words; if we choose very small values of a and/or
w, all subsequences will map to just a small handful of words.
Either of these situations is bad for our heuristics.
The good news is that there is little freedom for the a parameter;
extensive experiments carried out by the current authors
[4][8][11][13][14] and dozens of other researchers worldwide
[1][9][17][18] suggest that a value of either 3 or 4 is best for
virtually any task on any dataset. After empirically confirming
this on the current problem with experiments on more than 50
datasets, we will simply hardcode a = 3 for the rest of this work.
Having fixed a, we performed an exhaustive empirical
examination of the role of the w parameter. The best value for
this parameter depends on the data. In general, relatively smooth
and slowly changing datasets favor a smaller value of w,
whereas more complex time series favor a larger value of w.
The following observations mitigate the problem of parameter
setting:

• The speedup does not critically depend on w parameter.
After empirically finding the best value on a particular data
we found we could vary the value of w in the range of 60%
to 150% with less than a 12% decrease in speedup.

• Once we learn a good setting on a particular data type, say
ECGs, that setting will also work well on other datasets of
the same type (assuming the sampling rate is the same).

5. EMPIRICAL EVAUALTION
We begin by showing the utility of time series discords for a
host of domains, then go on to show that our algorithm is able to
find discords very efficiently.

5.1 The Utility of Time Series Discords
In this paper, we will only demonstrate the utility of discords as
anomaly detectors. We have done extensive successful
experiments in other tasks, such as improving the quality of
clustering and summarization; however, anomaly detection is
unique in that it allows immediate and intuitive visual
confirmation. The additional experiments for other tasks,
together with many extra anomaly detection experiments can be
found here [6]. We encourage the interested reader to consult
this site for additional examples and larger and more detailed
figures of the experiments show below.
After much reflection, we have decided not to include
comparisons to other approaches here1. There are two reasons
for this. Firstly, we simply could not make the other approaches
work well, and we do not wish to seem to be badgering fellow
researchers. To be fair to the other approaches, it is very
difficult to make meaningful comparisons between our method,
which requires only one intuitive parameter, and some of the
rival methods that require 3 to 7 parameters [8], including some
parameters for which we may have poor intuition, such as
Embedding dimension, Kernel function, SOM topology or
number of Parzen windows.
The second reason we do not compare to other anomaly
detectors is that most algorithms require a separate training
dataset, whereas our approach finds anomalies while only

1 We have conducted such experiments and we have made them

available here [6].

examining the test dataset. One could easily imagine
generalizing the discord discovery algorithm to examine only
the test data in the outer loop and only training data in the inner
loop. However we wish to concentrate on first proving our
simple intuitive definitions before creating generalizations.

5.1.1 Anomaly Detection in Space Telemetry
We consider the problem of finding anomalies in sensor time
series. In Figure 5, we see an example of a Space Shuttle
Marotta Valve time series that was annotated as normal by a
NASA engineer.

0 100 200 300 400 500 600 700 800 900 1000

Energizing
Phase

De-Energizing Phase

Space Shuttle Marotta
Valve: Normal cycle

0 100 200 300 400 500 600 700 800 900 1000

Energizing
Phase

De-Energizing Phase

Space Shuttle Marotta
Valve: Normal cycle

Figure 5: An example of a Space Shuttle Marotta Valve
time series that was annotated as normal

The engineer further annotated several other traces of the same
sensor that have several kinds of faults. We first consider an
easy problem; in Figure 6, the expert annotated the last in a
series of 5 energize/deenergize cycles as “Poppet pulled
significantly out of the solenoid before energizing”. The
problem is immediately obvious to even the untrained eye, and
the discord128 completely spans the offending section.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Poppet pulled significantly out of
the solenoid before energizing The De-

Energizing
phase is
normal

Marotta Valve Series I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Poppet pulled significantly out of
the solenoid before energizing The De-

Energizing
phase is
normal

Marotta Valve Series I

Figure 6: An example of an annotated Marotta Valve
time series. The discord discovered (highlighted in bold)
exactly corresponds with the expert’s annotation of a
premature Poppet withdrawal

In Figure 7, we consider a much more subtle problem; once
again we find the discord128, and once again its location exactly
coincides with the expert’s annotation.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P oppet pulled out of the solenoid before energiz ingM arotta V alve Series II

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P oppet pulled out of the solenoid before energiz ingM arotta V alve Series II

Figure 7: Another example of an annotated Marotta
Valve time series. While the discord discovered
(highlighted in bold) exactly corresponds with the
expert’s annotation, it is difficult to see why at this scale

At the scale shown, it is impossible to see what the expert saw
to justify her decision; however, in Figure 8, we can see that the
discord has a “double hump”, whereas the corresponding section
of the other four cycles have a single hump.

0 50 1001500 2000 2500

Poppet pulled out of the
solenoid before

energizing

Discord

Corresponding
section of
other cycles

Discord

0 50 1001500 2000 2500

Poppet pulled out of the
solenoid before

energizing

Discord

Corresponding
section of
other cycles

Discord

Figure 8: (Left) A subsection of Figure 7 showing the
discord found. (Right) A Zoom-in of the discord, and the
four corresponding sections form the normal cycles
explains the fault. The engineer noticed the unusual
“double hump” which flagged the problem

While we address the efficiency of our algorithm in detail in
Section 5.2, we note in passing that in both cases above, our
approach was more than 1,600 times faster than brute force
search.

5.1.2 Change Detection in Patient Monitoring
The problem of change detection is fundamentally different
from anomaly detection. In anomaly detection, the task is to find
one or more “different” subsequences that exist in the
background of a normal data. In the problem of change
detection, we assume that the underlying model that produces
the signal changes in some (possibly very subtle) way at various
points. The task is to identify the locations of these change
points.
Time series discords do not appear to be likely candidates for
change detection, since they look at local patterns, whereas most
change detection algorithms consider global (or at least much
larger “local”) information. However, we believe that in some
situations, the change in underlying global model may produce
some unusual local shapes because the local pattern must
straddle two different models.
To test this idea, we investigated a time series showing a
patient’s respiration (measured by thorax extension), as they
wake up. A medical expert, Dr. J. Rittweger of the Institute for
Physiology, Free University of Berlin, manually segmented the
data. We choose a discord length corresponding to 32 seconds
because we want to span several breaths. In Figure 9, we see the
outcome of the first experiment.

Figure 9: The first 2 discords found in a time series of a
patient’s respiration as they wake up. The annotations
show in the boxes at the bottom of the screen are
provided by a medical expert

The 1st discord is a very obvious deep breath taken as the patient
opened their eyes. In contrast, the 2nd discord is much more
subtle and difficult to see at this scale. A zoom-in suggests that
Dr. Rittweger noticed a few shallow breaths that indicated the
transition of sleeping states. In both cases. the discords straddle
the change in sleeping cycle. We tested many such datasets with
equally positive results. Figure 10 shows another representative
example.

Figure 10: The first 2 discords found in a time series of a
patient’s respiration

5.1.3 Anomaly Detection in Electrocardiograms
Electrocardiograms (ECGs) are a time series of the electrical
potential between two points on the surface of the body caused
by a beating heart. They are arguably the important time series,
and as such, there are many annotated test datasets we can
consider. We have already considered the utility of discords in
one ECG in Figure 1. That was a very simple and “clean”
example for clarity; however, it is remarkable how varied and
complex normal healthy ECGs can be. For example, Figure 11
shows a very complicated signal with remarkable variability
Surprisingly, this ECG contains only one small anomaly, which
is easily discovered by a discord.

0 5000 10000 15000

BIDMC Congestive Heart Failure Database: Record 15

r
0 5000 10000 15000

BIDMC Congestive Heart Failure Database: Record 15

r

Figure 11: An ECG that has been annotated by a
cardiologist (bottom bar) as containing one premature
ventricular contraction. The discord256 (bold line)
exactly coincides with the heart anomaly

In Figure 12, we consider an ECG that has several different
types of anomalies. Here, the first 3 discords exactly line up
with the cardiologist’s annotations. In this figure we could
perhaps spot the anomalies by eye; however, the full time series
is much longer, and impossible to scrutinize without a scrollbar
and much patience.

0 500 1000 1500 2000

Stage II sleep Eyes closed, awake/stage I sleep Eyes open, awake

Shallow breaths as waking cycle begins
1st Discord

2nd Discord

0 500 1000 1500 2000

Stage II sleep Eyes closed, awake/stage I sleep Eyes open, awakeStage II sleep Eyes closed, awake/stage I sleep Eyes open, awake

Shallow breaths as waking cycle begins
1st Discord

2nd Discord

0 5000 10000 15000

MIT-BIH Arrhythmia Database: Record 108

r S r

1st Discord
2nd Discord

3rd Discord

0 5000 10000 15000

MIT-BIH Arrhythmia Database: Record 108

r S r

1st Discord
2nd Discord

3rd Discord

Figure 12: An excerpt of an ECG that has been
annotated by a cardiologist (bottom bar) as containing 3
various anomalies. The first 3 discord600 (bold lines)
exactly coincides with the anomalies

In the above cases, we simply set the length of the discords to be
approximately one full heartbeat (note that the two datasets have
different sampling rates). Although we found that we could
double or half the parameters without affecting the quality of
results, on just a handful of the dozens of ECG datasets we
examined, the discords had a harder time finding the anomalous
heartbeats. We conferred with cardiologist, Dr. Helga Van Herle
M.D., who informed us that heart irregularities can sometimes
manifest themselves at scales significantly shorter than a single
heartbeat. Armed with this knowledge, we searched for discords
at approximately ¼ the length of a single heartbeat. In Figure
13, we show the results of a search with the shorter length
discords.

0 500 1000 1500 2000 2500 3000 3500 4000

Stage II sleep Stage I sleepAwake

1st Discord

2nd Discord

0 500 1000 1500 2000 2500 3000 3500 4000

Stage II sleep Stage I sleepAwake

1st Discord

2nd Discord

Figure 13: An ECG that has been annotated by a
cardiologist (bottom bar) as containing one premature
ventricular contraction. The discord40 (bold line) exactly
coincides with the heart anomaly

While the result is satisfying in that it immediately locates the
anomaly, it is not obvious from the figure that the discord is
actually different for the other heartbeats. In Figure 14 (left) we
see a zoom-in of the subsequence surrounding the discord, and
we can see that the discord falls over the ST wave. In Figure 14
(right), we manually extracted 4 ST waves from the
subsequence in Figure 13 and clustered them together with the
discord. This makes the source of the anomaly apparent. Note
that in the four normal ST waves, after the brief descending
section, the signal rises monotonically. However, the anomalous
ST wave has an additional local peak caused by a premature
beat, thus justifying the cardiologist’s diagnosis of premature
ventricular contraction.

Figure 14: (left) A zoom-in of a section of Figure 13. The
first heartbeat has been annotated with the classic
notation. (right) Five ST waves from Figure 13
(including the discord) hierarchically clustered

5.1.4 Power Demand data exploration with discords
The experiments above were performed in domains where
objective answers are readily available. In this section, we
perform an experiment where the only evaluation is the
intuitiveness of the discords discovered.
We queried a dataset that measured the power consumption for
a Dutch research facility for the entire year of 1997. We wanted
to find the 3 most usual weeks. Note that we did not specify that
week should begin at certain day or time. We initially guessed
that a length of 750 would cover an entire week; this turns out to
be a little long, but we show this experiment to avoid
“polishing” the results. Figure 1 shows the top 3 discords and a
typical pattern for reference.

Figure 15: (left) A typical week from the Dutch power
demand dataset shows the classic 9am to 5pm, Monday
to Friday pattern of power demands. (right) The top 3
discord750 shows unusual weeks in that they all contain
two holidays

5.2 The Utility of Heuristic Ordered Search
It is increasingly recognized that comparing algorithms
performance by examining wall clock or CPU time invites the
possibility of implementation bias [7], which in turn invites the
possibility of irreproducible “improvements.” Instead, we
measure here the number of times that the distance function is

called on line 9 in Table 1 and Table 2. A simple analysis of the
pseudocode (confirmed with a profiler) tells us that this single
line of code accounts for more than 99% of the running time for
both algorithms. In addition to fairness and reproducibility,
there is another pragmatic reason for this metric. For brute force
search, this number depends only on n and m and can simply be
computed. If we had to actually measure the wall clock time for
brute force search for all the experiments in this work, it would
take several years.

0 500 1000 1500
rQT Database: Record 0606

0 500 1000 1500
rQT Database: Record 0606

The above metric does not include the time it takes to build the
data structures discussed in Section 4.2; however, we note that
this is a O(m), one time cost. For datasets of a reasonable size
(i.e., the datasets shown in Figures 11 or 12), this overhead takes
much less than 0.1% of the total time. Furthermore, as the
datasets get larger, it takes an even smaller percentage of time.
In Figure 16, we compare the brute force algorithm to the
heuristic search algorithm in terms of the number of times the
Euclidean distance function on line 9 is called. For the heuristic
search we averaged the results for each setting of dataset/length
over 100 runs on different subsets of the data.

1k 2k 4k 8k 16k 32k 64k

0

2

4

6

8

10

lo
g(

nu
m

be
r o

f c
al

ls
to

 d
is

t)

m, the length of time series T

a factor of 2,902

Brute Force

(all datasets)

qtdbsel102ERP_dataTickwiseRandom walkkoski_ecg

1k 2k 4k 8k 16k 32k 64k

0

2

4

6

8

10

lo
g(

nu
m

be
r o

f c
al

ls
to

 d
is

t)

m, the length of time series T

a factor of 2,902

Brute Force

(all datasets)

qtdbsel102ERP_dataTickwiseRandom walkkoski_ecg

900 1000 1100 1200
r

P

Q

R

S

T

Discord

4

1

3

2

900 1000 1100 1200
r

P

Q

R

S

T

Discord

4

1

3

2

Figure 16: The number of calls to the distance function
required by brute force and heuristic search for discord128
over a range of data sizes for 5 representative datasets

Note that as the data sizes increase, the differences get larger.
For a time series of length 64,000, the heuristic algorithm is
almost three thousand times faster than brute force for all
datasets. This experiment is actually pessimistic in that we made
sure that the test data did not have any obvious anomalies or
unusual patterns. In general, if there are truly unusual patterns in
the time series, the heuristic algorithm is even faster.

0 100 200 300 400 500 600 700

Dec 25Sunday

Liberation Day Ascension Thursday

Good Friday
Easter Sunday

0 100 200 300 400 500 600 700

Mon
da

y
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
ida

y

Satu
rd

ay
Su

nd
ay

Typical Week from the Dutch
Power Demand Dataset

0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700

Dec 25Sunday

Liberation Day Ascension Thursday

Good Friday
Easter Sunday

0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700

Mon
da

y
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
ida

y

Satu
rd

ay
Su

nd
ay

Mon
da

y
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
ida

y

Satu
rd

ay
Su

nd
ay

Typical Week from the Dutch
Power Demand Dataset

In general, these results strongly suggest that we can reasonably
expect at least 3 orders of magnitude of a speedup for most
problems. To concretely ground these numbers, consider the
following. While our current implementation is in relatively
lethargic Matlab, the experiments shown in Figures 10, 11, and
12 take a few seconds using heuristic search, but several hours
using brute force search.
To make sure that the above results were not the result of a
happy coincidence of “easy” datasets and the right setting of the
single parameter, we repeated the experiment for every dataset
in the UCR Time Series Data Mining Archive over a range of
values for n. We tested all datasets that have a length of at least
16,000; there are currently 82 such datasets from a diverse set of
domains. Figure 17 shows the results.

Figure 17: The speed obtained over brute force search
for various discord lengths and database sizes, averaged
over 82 diverse datasets

This experiment produces pessimistic results in that many of the
datasets we averaged over are exceptionally noisy. In addition,
the maximum size of the data (16k) was relatively small to
allow us to average over many datasets. Nevertheless the results
support the contention that a minimum speedup of two orders of
magnitude can be expected for any combination of dataset/n,
and even greater speedup can be expected as the datasets get
larger.

6. CONCLUSIONS AND FUTURE WORK
In this work, we have defined time series discords, a new
primitive for time series data mining. We introduced a novel
algorithm to efficiently find discords and demonstrated their
utility of a host of domains.
Many future directions suggest themselves; most obvious
among them are extensions to multidimensional time series, to
streaming data, and to other distance measures. In addition, for
truly massive datasets, even the large speedups obtained may be
insufficient for real time interaction. We therefore plan to
investigate an anytime version of our algorithm.

7. ACKNOWLEDGMENTS
We gratefully acknowledge Philip Chan, Matt Mahoney (FIT)
and Bob Ferrell (NASA KSC) for arranging the donation of
Marotta Valve dataset, and all the other donors of datasets. We
also acknowledge assistance from domain experts Dr. Helga
Van Herle and Dr. J. Rittweger, and insightful comments from
Chotirat (Ann) Ratanamahatana.
Reproducible Results Statement: In the interests of competitive
scientific inquiry, all datasets used in this work are available at the
following URL [6]. This research was partly funded by the National
Science Foundation under grant IIS-0237918.

8. REFERENCES
[1] Bentley. J. L. & Sedgewick. R. (1997). Fast algorithms for

sorting and searching strings. In Proceedings of the 8th Annual
ACM-SIAM Symposium on Discrete Algorithms. pp. 360-369

[2] Duchene, F., Garbayl, C. & Rialle. V. (2004). Mining
Heterogeneous Multivariate Time-Series for Learning
Meaningful Patterns: Application to Home Health Telecare.
Laboratory TIMC-IMAG, Facult'e de m'edecine de Grenoble,
France.

[3] Chen, Z., Fu, A, & Tang J (2004). On Complementarity of
Cluster and Outlier Detection Schemes. DaWaK: pp 234-243

64
128

256
16k

8k
4k

2k

0

100

200

300

400

500

600

700

n, the discord length
m, the size of the database

Sp
ee

du
p

ov
er

 b
ru

te
 fo

rc
e

64
128

256
16k

8k
4k

2k

0

100

200

300

400

500

600

700

n, the discord length
m, the size of the database

Sp
ee

du
p

ov
er

 b
ru

te
 fo

rc
e

[4] Chiu, B., Keogh, E. & Lonardi, S. (2003). Probabilistic
Discovery of Time Series Motifs. In the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. pp 493-498.

[5] Coerman, T. H., Leiserson, C. E. &. Rivest R. L. (1990)
Introduction to Algorithms, McGraw-Hill Company.

[6] Keogh. E. (2005). www.cs.ucr.edu/~eamonn/discords/
[7] Keogh, E. & Kasetty, S. (2002). On the need for time series

data mining benchmarks: A survey and empirical
demonstration. In Proc. of SIGKDD. pp 102-111.

[8] Keogh, E., Lonardi, S. & Ratanamahatana, C. (2004).
Towards Parameter-Free Data Mining. In proceedings of the
10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp 206-215.

[9] Kitaguchi, S. (2004). Extracting Feature based on Motif from a
Chronic Hepatitis Dataset. In proceedings of the 18th Annual
Conference of the Japanese Society for Artificial Intelligence
(JSAI).

[10] Knorr, E., Ng, R. &. Tucakov V. (2000). Distance-Based
Outliers: Algorithms and Applications. VLDB J. 8(3-4): 237-
253.

[11] Kumar, N., Lolla N., Keogh, E., Lonardi, S., Ratanamahatana,
C., & Li, W. (2005). Time-series Bitmaps: A Practical
Visualization Tool for working with Large Time Series
Databases. SIAM Data Mining Conference.

[12] Lanctot, J. K., Li, M., Ma. B., Wang, S., &. Zhang, L (2003).
Distinguishing string selection problems, Information and
Computation 185: pp 41–55.

[13] Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A Symbolic
Representation of Time Series, with Implications for
Streaming Algorithms. In proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery.

[14] Lin, J., Keogh, E., Lonardi, S., Lankford, J. P. & Nystrom, D.
M. (2004). Visually Mining and Monitoring Massive Time
Series. In proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp
460-469.

[15] Ratanamahatana, C. & Keogh, E. (2004). Making Time-series
Classification More Accurate Using Learned Constraints. In
proceedings of the 4th SIAM International Conference on Data
Mining.

[16] Sadakane, K., (2000) Compressed text databases with efficient
query algorithms based on the compressed suffix array,
Proceedings of ISAAC’00, LNCS, pp 410–421.

[17] Tanaka, Y. & Uehara, K. (2004). Motif Discovery Algorithm
from Motion Data. In proceedings of the 18th Annual
Conference of the Japanese Society for Artificial Intelligence
(JSAI).

[18] Rombo, S. & Terracina, G. (2004). Discovering Representative
Models in Large Time Series Databases. In proceedings of the
6th International Conference On Flexible Query Answering
Systems. pp 84-97

[19] Ruzzo W.L, & Tompa M. (1999). A linear time algorithm for
finding all maximal scoring subsequences. In Proc Int Conf
Intell Syst Mol Biol.; pp 234-41.

	INTRODUCTION
	RELATED WORK AND BACKGROUND
	Notation
	Some Properties of Time Series Discords
	Discords are not necessary found in sparse space
	Discords results are non combinable

	FINDING TIME SERIES DISCORDS
	APPROXIMATIONS TO MAGIC
	A Brief Review of SAX
	Approximating the Magic Outer Loop
	Approximating the Magic Inner Loop
	Minor Optimizations and Parameter Setting

	EMPIRICAL EVAUALTION
	The Utility of Time Series Discords
	Anomaly Detection in Space Telemetry
	Change Detection in Patient Monitoring
	Anomaly Detection in Electrocardiograms
	Power Demand data exploration with discords

	The Utility of Heuristic Ordered Search

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

