
 
Note that this is a longer version of the paper submitted to ICDM 2005. The extra material consists of additional
experiments, additional important references and more detailed and intuitive explanations of some of the algorithms.    

HOT SAX: Finding the Most Unusual Time Series 
Subsequence: Algorithms and Applications 

  
Eamonn Keogh                            Jessica Lin 

Computer Science & Engineering Department 
University of California, Riverside 

Riverside, CA 92521 
{eamonn, jessica}@cs.ucr.edu 

Ada Fu 
Department of Computer Science and Engineering 

The Chinese University of Hong Kong 
 

adafu@cse.cuhk.edu.hk 

 
ABSTRACT 
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In this work, we introduce the new problem of finding time 
series discords. Time series discords are subsequences of a 
longer time series that are maximally different to all the rest of 
the time series subsequences. They thus capture the sense of the 
most unusual subsequence within a time series. Time series 
discords have many uses for data mining, including improving 
the quality of clustering, data cleaning, summarization, and 
anomaly detection. As we will show, discords are particularly 
attractive as anomaly detectors because they only require one 
intuitive parameter (the length of the subsequence) unlike most 
anomaly detection algorithms that typically require many 
parameters. While the brute force algorithm to discover time 
series discords is quadratic in the length of the time series, we 
show a simple algorithm that is 3 to 4 orders of magnitude faster 
than brute force, while guaranteed to produce identical results. 
We evaluate our work with a comprehensive set of experiments. 
In particular, we demonstrate the utility of discords with 
objective experiments on domains as diverse as Space Shuttle 
telemetry monitoring, medicine, surveillance, and industry, and 
we demonstrate the effectiveness of our discord discovery 
algorithm with more than one million experiments, on 82 
different datasets from diverse domains. 
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1. INTRODUCTION 
The previous decade has seen hundreds of papers on time series 
similarity search, which is the task of finding a time series that 
is most similar to a particular query sequence [7]. In this work, 
we pose the new problem of finding the sequence that is least 
similar to all other sequences. We call such sequences time 
series discords. Figure 1 gives a visual intuition of a time series 
discord found in a human electrocardiogram. 
The fact that the discord in Figure 1 coincides with the location 
annotated by a cardiologist as containing an anomalous 
heartbeat hints at one possible use of discords. 

 

Figure 1: The time series discord found in an excerpt of 
electrocardiogram qtdb/sel102 (marked in bold line). 
The location of the discord exactly coincides with a 
premature ventricular contraction 

As we shall show, time series discords are superlative anomaly 
detectors, able to detect anomalies in domains as diverse as 
Space Shuttle telemetry, industry, and medicine. One reason 
why discords are particularly suited for the increasingly 
important problem of anomaly detection is that they only 
require a single intuitive parameter, the length of the 
subsequences to consider. In contrast, many other anomaly 
detection algorithms require 3 to 7 unintuitive parameters [8]. 
With so many parameters to set, we need access to huge 
amounts of training data, even then, avoiding overfitting 
remains a challenge. 
Time series discords have other uses. Clustering algorithms can 
often benefit from removing a handful of tricky cases, which 
can be summarized separately [3]. We could attempt to define 
these “tricky cases” as ones that do not belong to any cluster; 
however, this opens the possibility of a chicken and egg 
paradox. This effect has been noted in clustering points in k-
dimensional space, but it is also true for time series, and the 
removal of discords offers a solution. 
This paper makes two fundamental contributions in discovering 
unusual time series subsequences. First, while the idea of the 
“most unusual subsequence” is intuitive, great care must be 
taken in creating a workable definition, otherwise, we will be 
plagued with uninteresting pathological solutions. We introduce 
such a definition here and validate it in domains as diverse as 
medicine, surveillance, and space telemetry. Second, the brute-
force algorithm to discover the most unusual subsequence 
requires a quadratic “all to all” comparison, which is untenable 
for large real-world datasets. We introduce a simple algorithm 
that can achieve 3 to 4 orders of magnitude speedup on real 
problems.  
The rest of the paper is organized as follows. In Section 2, we 
review related work and discuss some background material 
before introducing our formal definition of time series discords. 
In Section 3, we consider the brute-force algorithm for finding 
discords, and introduce a general framework for speeding up the 



search based on admissible pruning and reordering the order in 
which the search examines the subsequences. Section 4 
introduces a particular reordering strategy based on examining a 
symbolic version of the data.  We perform an extensive 
empirical evaluation in Section 5 to demonstrate both the utility 
of discords and our ability to find them quickly. Finally, Section 
6 offers some conclusions and suggestions for future work. 

2. RELATED WORK AND BACKGROUND  
Our review of related work is exceptionally brief because we are 
considering a new problem. Most real valued time series 
problems such as motif discovery [1][4][9], longest common 
subsequence matching, sequence averaging, segmentation, 
indexing [7], etc. have approximate or exact analogues in the 
discrete world, and have been addressed by the text processing 
or bioinformatics communities. However, time series discords 
do not appear to have a discrete version. Note that the 
superficially similar sounding Furthest (Sub)String Problem 
requires us to build a string, not to find one in the data [12]. 

2.1 Notation  
For concreteness, we begin with a definition of our data type of 
interest, time series: 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

For data mining purposes, we are typically not interested in any 
of the global properties of a time series; rather, we are interested 
in local subsections of the time series, which are called 
subsequences.   

Definition 2. Subsequence: Given a time series T of length 
m, a subsequence C of T is a sampling of length n ≤ m of 
contiguous position from T, that is, C = tp,…,tp+n-1 for  1 ≤  p 
≤ m – n + 1. 

Since all subsequences may potentially be discords, any 
algorithm will eventually have to extract all of them; this can be 
achieved by use of a sliding window. 

Definition 3. Sliding Window: Given a time series T of 
length m, and a user-defined subsequence length of n, all 
possible subsequences can be extracted by sliding a window 
of size n across T and considering each subsequence Cp . 

Since our task is to find the most distant subsequence under 
some distance measure Dist(C,M), we will take the time to 
define distance. 

Definition 4. Distance: Dist is a function that has C and M 
as inputs and returns a nonnegative value R, which is said to 
be the distance from M to C. For subsequent definitions to 
work we require that the function D be symmetric, that is, 
Dist(C,M) = Dist(M,C). 

While the definition of a distance is obvious and intuitive, we 
need it to exclude trivial matches. In general, the best matches 
to a subsequence (apart from itself) tend to be located one or 
two points to the left or the right of the subsequence in question. 
Such matches have previously been called trivial matches 
[1][4][9]. As we shall see, it is critical when finding discords to 
exclude trivial matches; otherwise, almost all real datasets have 
degenerate and unintuitive solutions. We will therefore take the 
time to formally define a non-self match. 

Definition 5. Non-Self Match: Given a time series T, 
containing a subsequence C of length n beginning at position 
p and a matching subsequence M beginning at q, we say that 

M is a non-self match to C at distance of Dist(M,C) if | p – q| 
≥ n. 

We can most easily see the importance of non-self matches for 
the problem at hand if we consider the analogy of the problem 
in the discrete world. Consider the following string: 

a b c a b c a b c a b c X X X a b c a b c a b a c a b c  
The eye is immediately drawn to the subsequence of “X”, which 
surely forms the discord here. However, if we assume a sliding 
window length of 3, and that our distance measure is the 
hamming distance, then the subsequence that is farthest from its 
nearest neighbor subsequence is “bac”. Below, the string is 
annotated by subscripts that give the distance to the nearest 
neighbor for each subsequence of length 3: 

a0b0c0a0b0c0a0b0c0a0b1c1X1X1X1a0b0c0a0b0c0a1b2a1c0a b c  
This unexpected and unintuitive result is caused by allowing 
trivial matches. While the subsequence XXX may appear 
unusual, it is only 1 unit distance from the subsequence XXa, 
which shares two elements simply shifted by one place. We can 
see the difference this makes by annotating the string with the 
non-self match distance to its nearest neighbor subsequence.    

a0b0c0a0b0c0a0b0c0a0b1c2X3X2X1a0b0c0a0b0c0a1b2a1c0a b c 
Here the results are much more intuitive. While it is a simple 
and contrived example on discrete data, as we shall see, 
identical remarks apply to real world, real valued data. Note that 
the idea that one must exclude “partial self” comparisons in 
order to create meaningful definitions is well known in the 
bioinformatics community [19] and increasingly understood in 
the time series data mining community [1][4][9][17][18]. We 
will therefore use the definition of non-self matches to define 
time series discords:    

Definition 6. Time Series Discord: Given a time series T, the 
subsequence D of length n beginning at position l is said to 
be the discord of T if D has the largest distance to its nearest 
non-self match. That is, ∀ subsequence C of T, non-self 
match MD of D, and non-self match MC of C,  min(Dist(D, 
MD)) > min(Dist(C, MC) 

We will denote the location of the discord as D.l and the 
distance to the nearest non-self matching neighbor as D.dist. 
The length of the discord we denote as Dn. 
We may be interested in examining the top K discords, which 
we define as:  

Definition 7. Kth Time Series Discord: Given a time series T, 
the subsequence D of length n beginning at position p is the 
Kth-discord of T if D has the Kth largest distance to its nearest 
non-self match, with no overlapping region to the ith discord 
beginning at position pi, for all 1 ≤ i < K. That is, | p – pi | ≥ n. 

We have deliberately omitted naming a distance function up to 
this point for generality. For concreteness, we will use the 
ubiquitous Euclidean distance measure throughout the rest of 
this paper [4][7]. 

Definition 8. Euclidean Distance: Given two time series Q 
and C of length n, the Euclidean distance between them is 
defined as:           

       ( ) ( )∑ −≡
=
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Each time series subsequence is normalized to have mean zero 
and a standard deviation of one before calling the distance 
function, because it is well understood that in virtually all 



settings, it is meaningless to compare time series with different 
offsets and amplitudes [7]. 

2.2 Some Properties of Time Series Discords  
Here, we discuss some properties of time series discords to 
enhance the readers’ understanding of them and to discount 
some possible research directions for finding algorithms for 
quickly locating them.   

2.2.1 Discords are not necessary found in sparse space  
The idea of considering time series subsequences as points in 
space has long been exploited by dozens of indexing techniques 
[7], so one might imagine that such a representation would be 
useful for the task at hand. We could simply project our time 
series into n-dimensional space and use existing outlier 
detection methods [10][3]. The problem with this idea is the 
unintuitive fact that discords do not necessarily live in sparse 
areas of n-dimensional space (Conversely, repeated patterns do 
not necessarily live in dense parts of the n-dimensional space 
[1][4][9]). The full explanation has consequences for other 
problems and is perhaps deserving of a separate paper; however, 
here, we content ourselves with a visual example and a brief 
explanation. In Figure 2, we consider a simple time series 
consisting of a slightly noisy sine wave. We introduce an 
“anomaly” of length 50 by shifting the entire second half of the 
time series. 
 

Figure 2: (Top) A synthetic time series with an obvious 
anomaly. (Middle)  The local density of subsequences of 
length 50, measured by calculating the number of 
matching subsequences within a range of 2. (Bottom). 
The non-self match to the nearest neighbor for all 
subsequences of length 50 

We can now extract all subsequences of length 50, project them 
into 50-dimensional space and measure the local density around 
each subsequence. Surprisingly, the anomaly is not in the 
sparsest (or in any other way remarkable) region of space. 
However, note that the definition of non-self match that is at the 
heart of time series discords clearly identifies the anomalous 
region.  
The explanation of this unintuitive finding harkens back to the 
idea of trivial matches. Consider a subsequence C located at tp 
that is “simple”, that is to say it has only one or two features 
such as peaks or valleys. This simple subsequence is very close 
in n-dimensional space to the subsequences beginning at tp+1, tp-

1, tp+2, etc. In contrast, consider a subsequence M located at tq 
that is “complex”, that is to say it has many features such as 

peaks or valleys. This complex subsequence is relatively far 
from subsequences beginning at tq+1, tq-1, tq+2, etc.  In other 
words, simple (and smooth) shapes appear to be in dense 
neighborhoods because we over-count shifted versions of them. 
This problem prevents us for using existing density based 
algorithms to find time series discords. Note that even if current 
density based algorithms could be adapted to consider non-self 
distance, most of them degrade to quadratic time complexity for 
high dimensionality data. 

2.2.2 Discords results are non combinable 
Several generic paradigms for solving problems rely on the 
ability to decompose a problem into smaller sub-problems, 
which can be solved and admissibly recombined. Depending on 
the exact definitions, such techniques are variously called 
dynamic programming, divide and conquer, bottom-up, etc [5]. 
Unfortunately, as we show below, such ideas are unlikely to 
help us efficiently find discords. 
Imagine that we break a time series T into two sections, A and B, 
and that we find the discords for both sections, recording their 
locations as A.l, B.l and values as A.dist and B.dist, respectively. 
Furthermore, imagine that we now concatenate A and B to 
reproduce the original time series T (for simplicity, let us 
assume that when the discord for T is discovered, it will not 
span the end of A and the beginning of B). What can we now 
say about the discord for T? Surprisingly, the answer is very 
little. We cannot assume that it will be either in location A.l or 
in location |A| + B.l, because both of the two previously 
discovered discords may have good matches in the other 
section. All we can do is give weak bounds. The value of T.dist 
is at most max(A.dist, B.dist). The lower bound of T.dist is a 
trivial zero (To see this, imagine A = B). As to the location of 
T.l, we can say nothing.  
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If we consider the complementary situation, where we know the 
discord information T.l and T.dist for T, and we split into two 
new time series A and B, we are similarly frustrated. Assume 
that the discord from T happened to fall into A. We can lower 
bound A.dist as being greater than or equal to T.dist, but we 
cannot provide an upper bound. In addition, we can say nothing 
about the location of A.l. As for B.dist and B.l, we can say 
nothing. 
A combination of these two results also frustrates any thought of 
exploiting a sliding window algorithm, since ingesting and 
egressing a single point can change the location and value of the 
discords.  
The above results suggest that existing algorithms/paradigms are 
of little utility for finding discords. This motivates the 
introduction of an original algorithm in the next section.  

3. FINDING TIME SERIES DISCORDS 
The brute force algorithm for finding discords is simple and 
obvious. We simply take each possible subsequence and find the 
distance to the nearest non-self match. The subsequence that has 
the greatest such value is the discord. This is achieved with 
nested loops, where the outer loop considers each possible 
candidate subsequence, and the inner loop is a linear scan to 
identify the candidate’s nearest non-self match. For clarity, the 
pseudo code is shown in Table 1. 



Table 1: Brute Force Discord Discovery. 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Function  [dist, loc ]= Brute_Force(T, n) 

 best_so_far_dist = 0 

 best_so_far_loc = NaN 

 

For p = 1 to |T | - n   + 1                                        // Begin Outer Loop           

   nearest_neighbor_dist = infinity 

   For q = 1 to |T | - n   + 1                                    // Begin Inner Loop 

      IF | p – q | ≥ n                                                  // non-self match? 

         IF  Dist (tp,…,tp+n-1,  tq,…,tq+n-1)  < nearest_neighbor_dist 

           nearest_neighbor_dist = Dist (tp,…,tp+n-1,  tq,…,tq+n-1) 

        End 

     End                                                              // End non-self match test 

  End                                                                 // End Inner Loop 

   IF nearest_neighbor_dist > best_so_far_dist 

       best_so_far_dist = nearest_neighbor_dist 

       best_so_far_loc  = p 

   End 

End                                                                   // End Outer Loop 

Return[ best_so_far_dist, best_so_far_loc ] 

Note that the algorithm requires exactly one parameter, the 
length of subsequences to consider. The algorithm is easy to 
implement and produces exact results. However, it has one fatal 
flaw for data mining. It has O(m2) time complexity which is 
simply untenable for even moderately large datasets.  
The following two observations offer hope to improve the 
algorithm’s running time. 

• Observation 1:  In the inner loop, we don’t actually need 
to find the true nearest neighbor to the current candidate. 
As soon as we find any subsequence that is closer to the 
current candidate than the best_so_far_dist, we can abandon 
that instance of the inner loop, safe in the knowledge that 
the current candidate could not be the time series discord. 

• Observation 2:  The utility of the above optimization 
depends on the order which the outer loop considers the 
candidates for the discord, and the order which the inner 
loop visits the other subsequences in its attempt to find a 
sequence that will allow an early abandon of the inner loop. 

While these are simple ideas and only minor modifications of 
the original algorithm, for concreteness, we will make them 
clear. The pseudo code is shown in Table 2.  
Note that the input has been augmented by two heuristics, one to 
determine the order in which the outer loop visits the 
subsequences, and one to determine the order in which the inner 
loop visits the subsequences. Note that the heuristic for the outer 
loop is used once, but the heuristic for the inner loop takes the 
current candidate into account, and is thus invoked to produce a 
new ordering for every iteration of the outer loop. 
We have now reduced the discord discovery problem into a 
generic framework where all one needs to do is to specify the 
heuristics. Note that we should not attempt to “cheat” the 
algorithm. We could provide very good heuristic orderings if we 
are allowed to completely solve the brute force problem each 
time the heuristic functions are invoked! However this is simply 
hiding the time complexly in a different part of the 
implementation. We must therefore insist that the Outer 
heuristic (invoked only once) takes at most O(m) to calculate 
and the Inner heuristic (invoked m-n times) takes O(1). Note 
that this requirement precludes the possibility of using R-trees, 
K-d trees or other classic indexing algorithms [7][15]. 
 

Table 2: Heuristic Discord Discovery. 
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2 
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4 
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10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Function  [dist, loc ]= Heuristic_Search(T, n, Outer, Inner ) 

 best_so_far_dist = 0 

 best_so_far_loc = NaN 

 

For Each p  in T ordered by heuristic Outer      // Begin Outer Loop            

     nearest_neighbor_dist = infinity    

     For Each q  in T ordered by heuristic Inner  // Begin Inner Loop 

          IF | p – q | ≥ n                                              // non-self match? 

              IF  Dist (tp,…,tp+n-1,  tq,…,tq+n-1)  < best_so_far_dist 

                  Break                                              // Break out of Inner Loop 

              End 

              IF  Dist (tp,…,tp+n-1,  tq,…,tq+n-1)  < nearest_neighbor_dist 

                  nearest_neighbor_dist = Dist (tp,…,tp+n-1,  tq,…,tq+n-1) 

              End 

         End                                                          // End non-self match test 

     End                                                              // End Inner Loop 

      IF nearest_neighbor_dist > best_so_far_dist 

          best_so_far_dist = nearest_neighbor_dist 

          best_so_far_loc  = p 

      End 

End                                                                   // End Outer Loop 

Return[ best_so_far_dist, best_so_far_loc ] 

To gain some intuition into our new algorithm, and to hint at our 
eventual solution to this problem, let us consider 3 possible 
heuristic strategies: 

• Random: We could simply have both the Outer and Inner 
heuristics randomly order the subsequences to consider. It 
is difficult to analyze this strategy since its performance is 
bounded from below by O(m) and from above by O(m2)  
(see below for explanation) and depends on the data. 
However, empirically it works reasonably well. The 
conditional test on line 9 of Table 2 is often true and the 
inner loop can be abandoned early, considerably speeding 
up the algorithm. 

• Magic:  In this hypothetical situation, we imagine that a 
friendly oracle gives us the best possible orderings. These 
are as follows: For Outer, the subsequences are sorted by 
descending order of the non-self distance to their nearest 
neighbor, so that the true discord is the first object 
examined. For Inner, the subsequences are sorted in 
ascending order of distance to the current candidate. For 
the Magic heuristics, the first invocation of the inner loop 
will run to completion. Thereafter, all subsequent 
invocations of the inner loop will be abandoned during the 
very first iteration. The time complexity is thus one 
occurrence of m-n+1 steps for the first inner loop, and m-n 
occurrences of the O(1) step of each subsequent invocation 
of the inner loop, giving a total time complexity of O(m) + 
O(m) or just O(m). Note that we have m ≫n.  

• Perverse: In this hypothetical situation, we imagine that a 
less than friendly oracle gives us the worst possible 
orderings. These are identical to the Magic orderings with 
ascending/descending orderings reversed. In this case, we 
are back to the original O(m2) time complexity, and we 
waste some time in the conditional tests on line 9 of Table 2. 

These results are something of a mixed bag for us. They suggest 
that a linear time algorithm is possible, but only with the aid of 
some very wishful thinking. The Magic heuristic requires a 
perfect ordering of subsequences in the inner loop, and any 
perfect ordering (i.e., sorting) requires at least O(mlogm). 
Furthermore, the only known way to produce the perfect 
ordering of subsequences in the outer loop requires O(m2) work, 



but we are only allowed O(m) time. The following two 
observations, however, offer us some hope for a fast algorithm: 

• Observation 3:  In the outer loop, we do not actually need to 
achieve a perfect ordering to achieve dramatic speedup. All 
we really require is that among the first few subsequences 
being examined, we have at least one that has a large distance 
to its nearest neighbor. This will give the best_so_far_dist 
variable a large value early on, which will make the 
conditional test on line 9 of Table 2 be true more often, thus 
allowing more early terminations of the inner loop. 

• Observation 4:  In the inner loop, we also do not actually need 
to achieve a perfect ordering to achieve dramatic speedup. All 
we really require is that among the first few subsequences 
being examined we have at least one that has a distance to the 
candidate sequence being considered that is less than the 
current value of the best_so_far_dist variable. This is a 
sufficient condition to allow early termination of the inner loop. 

We can imagine a full spectrum of algorithms, which only differ 
by how well they order subsequences relative to the Magic 
ordering. This spectrum spans {Perverse…Random…Magic}. 
Our goal then is to find the best possible approximation to the 
Magic ordering, which is the topic of the next section. 
At the risk of redundancy, we again emphasize that this search 
problem requires a specialized solution, and we cannot leverage 
off the huge literature on time series similarity search [7]. Kd-
Trees, R-trees and their many variants require O(log(m)) time 
per lookup, but we can spare only O(1) time. In any case, these 
search algorithms support nearest neighbor search, whereas all 
we require here is “near-enough” neighbor search, as noted in 
observation 4. 

4. APPROXIMATIONS TO MAGIC 
Before we introduce our techniques for approximating the 
perfect ordering returned by the hypothetical Magic hueristics, 
we must briefly review the Symbolic Aggregate ApproXimation 
(SAX) representation of time series introduced in [13]. While 
there are at least 200 different symbolic approximation of time 
series in the literature, SAX is unique in that it is the only one 
that allows both dimensionality reduction and lower bounding 
of Lp norms. Since its relatively recent introduction, SAX has 
become an important tool in the time series data mining toolbox. 
It has been used to find time series motifs [4][18], to mine rules 
in health data [1], for anomaly detection [8], to extract features 
from a hepatitis database [9], for visualization [11][14], and a 
host of other data mining tasks. 

4.1 A Brief Review of SAX 
A time series C of length n can be represented in a w-
dimensional space by a vector wccC ,,1 . The iK= th element of 
C is calculated by the following equation: 
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In other words, to transform the time series from n dimensions 
to w dimensions, the data is divided into w equal sized “frames.” 
The mean value of the data falling within a frame is calculated 
and a vector of these values becomes the dimensionality-
reduced representation. This simple representation is known as 
Piecewise Aggregate Approximation (PAA). 

Having transformed a time series into the PAA representation, 
we can apply a further transformation to obtain a discrete 
representation. It is desirable to have a discretization technique 
that will produce symbols with equiprobability [4][8]. In 
empirical tests on more than 50 datasets, we noted that 
normalized subsequences have highly Gaussian distribution 
[13], so we can simply determine the “breakpoints” that will 
produce equal-sized areas under Gaussian curve. 

Definition 9. Breakpoints: Breakpoints are a sorted list of 
numbers Β = β1,…,βa-1 such that the area under a N(0,1) 
Gaussian curve from βi  to βi+1 = 1/a (β0  and βa  are defined 
as -∞ and ∞, respectively). 

These breakpoints may be determined by looking them up in a 
statistical table. For example, Table 3 gives the breakpoints for 
values of a from 3 to 5.  

Table 3: A lookup table that contains the breakpoints 
that divides a Gaussian distribution in an arbitrary 
number (from 3 to 5) of equiprobable regions 

βi       a 3 4 5 

β1 -0.43 -0.67 -0.84 

β2  0.43  0 -0.25 

β3   0.67  0.25 

β4    0.84 

Once the breakpoints have been obtained we can discretize a 
time series in the following manner. We first obtain a PAA of 
the time series. All PAA coefficients that are below the smallest 
breakpoint are mapped to the symbol “a”, all coefficients 
greater than or equal to the smallest breakpoint and less than the 
second smallest breakpoint are mapped to the symbol “b”, etc. 
Figure 3 illustrates the idea. 
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Figure 3: A time series (thin black line) is discretized by 
first obtaining a PAA approximation (heavy gray line) 
and then using predetermined breakpoints to map the 
PAA coefficients into symbols (bold letters). In the 
example above, with n = 128, w = 8 and a = 3, the time 
series is mapped to the word cbccbaab 

Note that in this example, the 3 symbols, “a”, “b” and “c” are 
approximately equiprobable as we desired. We call the 
concatenation of symbols that represent a subsequence a word. 

Definition 10. Word: A subsequence C of length n can be 
represented as a word as follows. Let αwccC ˆ,,ˆˆ

1 K= i denote 

the ith element of the alphabet, i.e., α1 = a and α2 = b. Then 
the mapping from a PAA approximation C  to a word C  is 
obtained as follows:  

ˆ

1ˆ     iff    i i j i jc cα β β−= ≤ <  

We have now completely defined SAX representation. Note that 
our observation that normalized subsequences have highly 
Gaussian distribution [13], is not critical to correctness of any of 
the algorithms that use SAX, including the ones in this work. A 
pathological dataset that violates this assumption will only 
affect the efficiency of the algorithms.  



4.2 Approximating the Magic Outer Loop 
We begin by creating two data structures to support our 
heuristics. We are given n, the length of the discords in advance, 
and we must choose two parameters, the cardinality of the SAX 
alphabet size a, and the SAX word size w. We defer a 
discussion of how to set these parameters until later in this 
section, but note that the values of α and w only affect the 
efficiency of our algorithm, not the final result, which depends 
only on the user supplied length of the discord.  
We begin by creating a SAX representation of the entire time 
series, by sliding a window of length n across time series T, 
extracting subsequences, converting them to SAX words, and 
placing them in an array where the index refers back to the 
original sequence. Figure 4 gives a visual intuition of this, 
where both a and w are set to 3. 
 

Figure 4: The two data structures used to support the 
Inner and Outer heuristics.  (left) An array of SAX 
words, where the last column contains a count of how 
often each word occurs in the array. (right) An excerpt 
of an trie with leaves that contain a list of all array 
indices that map to that terminal node 

Note that the index goes from 1 to (m – n) + 1, because the right 
edge of n-length sliding window “bumps” against end of the m-
length time series.  
Once we have this ordered list of SAX words, we can imbed 
them into an augmented trie where the leaf nodes contain a 
linked list index of all word occurrences that map there. The 
count of the number of occurrences of each word can be mapped 
back to the rightmost column of the array. For example, in 
Figure 4, if we are interested in the word caa, we visit the trie to 
discover that it occurs in locations 1, 3, and 731. If we are 
interested in the word that occurs at a particular location, let’s 
say (m – n) - 1, we can visit that index in the array and discover 
that the word cbb is mapped there. Furthermore, we can see by 
examining the rightmost column that there are a total of 2 
occurrences of that particular word (including the one we are 
currently visiting). However, if we want to know the location of 
the other occurrence, we must visit the trie. 
Surprisingly, both data structures can be created in time and 
space linear in the length of T [1][16]. In fact, if we take 
advantage of the fact that we only need ⎡log2(a)⎤ bits for each 

SAX symbol, then both data structures are significantly smaller 
than the raw time series data they were derived from. 
We can now state our Outer heuristic; we scan the rightmost 
column of the array to find the smallest count mincount (its 
value is virtually always 1). The indices of all SAX words that 
occur mincount times are recorded, and are given to the outer 
loop to search over first. After the outer loop has exhausted this 
set of candidates, the rest of the candidates are visited in random 
order. 
The intuition behind our Outer heuristic is simple. Unusual 
subsequences are very likely to map to unique or rare SAX 
words. By considering the candidate sequences that map to 
unique or rare SAX words early in the outer loop, we have an 
excellent chance of giving a large value to the best_so_far_dist 
variable early on, which (as noted in observation 3) will make 
the conditional test on line 9 of Table 2 be true more often, thus 
allowing more early terminations of the inner loop. 

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1
^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b(m – n) +1

a(m – n)

c(m – n) -1

::::

::::

c3

c2

c1

a

b

b

::

::

a

b

a

2

1

2

::

::

3

1

3

c

c

b

::

::

a

a

a

b( ) +1

a( –

c( – ) -1

::::

::::

c3

c2

c1

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1
^

Subsequence extracted

Converted to SAX

Inserted into array

Raw time series

Augmented Trie

0 500 1000 1500 2000 2500

C1

c a a

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

c

c

b

a

c

c
b

a
c

b
a
c

b

a

c
b

a

c
b

a

c
b

a
c

b
a

c
b

a
c

b

a

c
b

a

c
b

a

c
b

a

1 3

2

(m – n) -1

(m – n)+1

77

9

23

731

c

C1Ĉ1
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4.3 Approximating the Magic Inner Loop 
Our Inner heuristic also leverages off the two data structures 
shown in Figure 4. When candidate i is first considered in the 
outer loop, we look up the SAX word that it maps to, by 
examining the ith word in the array. We then visit the trie and 
order the first items in the inner loop in the order of the elements 
in the linked list index found at the terminal nodes. For example, 
imagine we are working on the problem shown in Figure 4. If 
we were examining the candidate C731 in the outer loop, we 
would visit the array at location 731. Here we would find the 
SAX word caa. We could use the SAX values to traverse the 
trie to discover that subsequences 1, 3, 731 map here. These 3 
subsequences are visited first in the inner loop (note that line 8 
of Table 1 prevents 731 from being compared to itself). After 
this step, the rest of the subsequences are visited in random 
order.  
The intuition behind our Inner heuristic is also simple. 
Subsequences that have the same SAX encoding as the 
candidate subsequence are very likely to be highly similar (this 
fact is at the heart of more than 20 research efforts 
[1][4][8][9][14][17]). As noted in observation 4, we just need to 
find one such subsequence that is similar enough (has a distance 
to the candidate than the current value of the best_so_far_dist 
variable) in order to terminate the inner loop. 

4.4 Minor Optimizations and Parameter Setting 
There are several minor optimizations we can apply to the 
heuristic search algorithm. For example, imagine we are 
considering candidate Ci in the outer loop, and as we traverse 
through the inner loop, we find that subsequence Cj is close 
enough to it to allow early abandonment. In addition to saving 
time with the early termination, we can also delete Cj from the 
list of candidates in outer loop (if it has not already been 
visited). The key observation is that since we are assuming a 
symmetric distance measure, if nearness to Cj disqualifies 
candidate Ci from being the discord, then the same nearness to 
Ci would also disqualify candidate Cj from being the discord. 
Empirically, this simple optimization gives a speed-up factor of 
approximately 2. In addition, there are several well-known 
optimizations to the Euclidean distance that we can use [7]. 
As noted above, we must choose two parameters, the cardinality 
of the SAX alphabet size a, and the SAX word size w. Recall 
what it is we want to optimize. We would like the distribution of 
the SAX words to be highly skewed, so that the discord will 



map to a SAX word that is unique or rare, and all the other 
subsequences will map to SAX words that are very frequent. 
This is the best situation for both our heuristics. If we choose 
very large values of a and/or w, almost all subsequences will 
map to unique words; if we choose very small values of a and/or 
w, all subsequences will map to just a small handful of words. 
Either of these situations is bad for our heuristics.  
The good news is that there is little freedom for the a parameter; 
extensive experiments carried out by the current authors 
[4][8][11][13][14] and dozens of other researchers worldwide 
[1][9][17][18] suggest that a value of either 3 or 4 is best for 
virtually any task on any dataset. After empirically confirming 
this on the current problem with experiments on more than 50 
datasets, we will simply hardcode a = 3 for the rest of this work. 
Having fixed a, we performed an exhaustive empirical 
examination of the role of the w parameter. The best value for 
this parameter depends on the data. In general, relatively smooth 
and slowly changing datasets favor a smaller value of w, 
whereas more complex time series favor a larger value of w. 
The following observations mitigate the problem of parameter 
setting: 

• The speedup does not critically depend on w parameter. 
After empirically finding the best value on a particular data 
we found we could vary the value of w in the range of 60% 
to 150% with less than a 12% decrease in speedup. 

• Once we learn a good setting on a particular data type, say 
ECGs, that setting will also work well on other datasets of 
the same type (assuming the sampling rate is the same). 

5. EMPIRICAL EVAUALTION 
We begin by showing the utility of time series discords for a 
host of domains, then go on to show that our algorithm is able to 
find discords very efficiently. 

5.1 The Utility of Time Series Discords  
In this paper, we will only demonstrate the utility of discords as 
anomaly detectors. We have done extensive successful 
experiments in other tasks, such as improving the quality of 
clustering and summarization; however, anomaly detection is 
unique in that it allows immediate and intuitive visual 
confirmation. The additional experiments for other tasks, 
together with many extra anomaly detection experiments can be 
found here [6]. We encourage the interested reader to consult 
this site for additional examples and larger and more detailed 
figures of the experiments show below. 
After much reflection, we have decided not to include 
comparisons to other approaches here1. There are two reasons 
for this.  Firstly, we simply could not make the other approaches 
work well, and we do not wish to seem to be badgering fellow 
researchers. To be fair to the other approaches, it is very 
difficult to make meaningful comparisons between our method, 
which requires only one intuitive parameter, and some of the 
rival methods that require 3 to 7 parameters [8], including some 
parameters for which we may have poor intuition, such as 
Embedding dimension, Kernel function, SOM topology or 
number of Parzen windows.  
The second reason we do not compare to other anomaly 
detectors is that most algorithms require a separate training 
dataset, whereas our approach finds anomalies while only 
                                                                 
1 We have conducted such experiments and we have made them 

available here [6]. 

examining the test dataset.  One could easily imagine 
generalizing the discord discovery algorithm to examine only 
the test data in the outer loop and only training data in the inner 
loop. However we wish to concentrate on first proving our 
simple intuitive definitions before creating generalizations. 

5.1.1 Anomaly Detection in Space Telemetry 
We consider the problem of finding anomalies in sensor time 
series. In Figure 5, we see an example of a Space Shuttle 
Marotta Valve time series that was annotated as normal by a 
NASA engineer.  
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Figure 5: An example of a Space Shuttle Marotta Valve 
time series that was annotated as normal 

The engineer further annotated several other traces of the same 
sensor that have several kinds of faults. We first consider an 
easy problem; in Figure 6, the expert annotated the last in a 
series of 5 energize/deenergize cycles as “Poppet pulled 
significantly out of the solenoid before energizing”.  The 
problem is immediately obvious to even the untrained eye, and 
the discord128 completely spans the offending section. 
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Figure 6: An example of an annotated Marotta Valve 
time series. The discord discovered (highlighted in bold) 
exactly corresponds with the expert’s annotation of a 
premature Poppet withdrawal 

In Figure 7, we consider a much more subtle problem; once 
again we find the discord128, and once again its location exactly 
coincides with the expert’s annotation.  
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Figure 7: Another example of an annotated Marotta 
Valve time series.  While the discord discovered 
(highlighted in bold) exactly corresponds with the 
expert’s annotation, it is difficult to see why at this scale 

At the scale shown, it is impossible to see what the expert saw 
to justify her decision; however, in Figure 8, we can see that the 
discord has a “double hump”, whereas the corresponding section 
of the other four cycles have a single hump.  
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Figure 8: (Left) A subsection of Figure 7 showing the 
discord found. (Right) A Zoom-in of the discord, and the 
four corresponding sections form the normal cycles 
explains the fault. The engineer noticed the unusual 
“double hump” which flagged the problem 



While we address the efficiency of our algorithm in detail in 
Section 5.2, we note in passing that in both cases above, our 
approach was more than 1,600 times faster than brute force 
search. 

5.1.2 Change Detection in Patient Monitoring 
The problem of change detection is fundamentally different 
from anomaly detection. In anomaly detection, the task is to find 
one or more “different” subsequences that exist in the 
background of a normal data. In the problem of change 
detection, we assume that the underlying model that produces 
the signal changes in some (possibly very subtle) way at various 
points. The task is to identify the locations of these change 
points. 
Time series discords do not appear to be likely candidates for 
change detection, since they look at local patterns, whereas most 
change detection algorithms consider global (or at least much 
larger “local”) information. However, we believe that in some 
situations, the change in underlying global model may produce 
some unusual local shapes because the local pattern must 
straddle two different models. 
To test this idea, we investigated a time series showing a 
patient’s respiration (measured by thorax extension), as they 
wake up. A medical expert, Dr. J. Rittweger of the Institute for 
Physiology, Free University of Berlin, manually segmented the 
data. We choose a discord length corresponding to 32 seconds 
because we want to span several breaths. In Figure 9, we see the 
outcome of the first experiment.  

 

Figure 9: The first 2 discords found in a time series of a 
patient’s respiration as they wake up.  The annotations 
show in the boxes at the bottom of the screen are 
provided by a medical expert 

The 1st discord is a very obvious deep breath taken as the patient 
opened their eyes. In contrast, the 2nd discord is much more 
subtle and difficult to see at this scale. A zoom-in suggests that 
Dr. Rittweger noticed a few shallow breaths that indicated the 
transition of sleeping states. In both cases. the discords straddle 
the change in sleeping cycle. We tested many such datasets with 
equally positive results. Figure 10 shows another representative 
example.  

 

Figure 10: The first 2 discords found in a time series of a 
patient’s respiration   

5.1.3 Anomaly Detection in Electrocardiograms 
Electrocardiograms (ECGs) are a time series of the electrical 
potential between two points on the surface of the body caused 
by a beating heart. They are arguably the important time series, 
and as such, there are many annotated test datasets we can 
consider.  We have already considered the utility of discords in 
one ECG in Figure 1. That was a very simple and “clean” 
example for clarity; however, it is remarkable how varied and 
complex normal healthy ECGs can be.  For example, Figure 11 
shows a very complicated signal with remarkable variability 
Surprisingly, this ECG contains only one small anomaly, which 
is easily discovered by a discord. 
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Figure 11: An ECG that has been annotated by a 
cardiologist (bottom bar) as containing one premature 
ventricular contraction. The discord256 (bold line) 
exactly coincides with the heart anomaly 

In Figure 12, we consider an ECG that has several different 
types of anomalies. Here, the first 3 discords exactly line up 
with the cardiologist’s annotations. In this figure we could 
perhaps spot the anomalies by eye; however, the full time series 
is much longer, and impossible to scrutinize without a scrollbar 
and much patience. 
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Figure 12: An excerpt of an ECG that has been 
annotated by a cardiologist (bottom bar) as containing 3 
various anomalies.  The first 3 discord600 (bold lines) 
exactly coincides with the anomalies 

In the above cases, we simply set the length of the discords to be 
approximately one full heartbeat (note that the two datasets have 
different sampling rates). Although we found that we could 
double or half the parameters without affecting the quality of 
results, on just a handful of the dozens of ECG datasets we 
examined, the discords had a harder time finding the anomalous 
heartbeats. We conferred with cardiologist, Dr. Helga Van Herle 
M.D., who informed us that heart irregularities can sometimes 
manifest themselves at scales significantly shorter than a single 
heartbeat. Armed with this knowledge, we searched for discords 
at approximately ¼ the length of a single heartbeat.  In Figure 
13, we show the results of a search with the shorter length 
discords.  
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Figure 13: An ECG that has been annotated by a 
cardiologist (bottom bar) as containing one premature 
ventricular contraction. The discord40 (bold line) exactly 
coincides with the heart anomaly 

While the result is satisfying in that it immediately locates the 
anomaly, it is not obvious from the figure that the discord is 
actually different for the other heartbeats. In Figure 14 (left) we 
see a zoom-in of the subsequence surrounding the discord, and 
we can see that the discord falls over the ST wave. In Figure 14 
(right), we manually extracted 4 ST waves from the 
subsequence in Figure 13 and clustered them together with the 
discord. This makes the source of the anomaly apparent. Note 
that in the four normal ST waves, after the brief descending 
section, the signal rises monotonically. However, the anomalous 
ST wave has an additional local peak caused by a premature 
beat, thus justifying the cardiologist’s diagnosis of premature 
ventricular contraction. 
 

Figure 14: (left) A zoom-in of a section of Figure 13.  The 
first heartbeat has been annotated with the classic 
notation.  (right) Five ST waves from Figure 13 
(including the discord) hierarchically clustered 

5.1.4 Power Demand data exploration with discords   
The experiments above were performed in domains where 
objective answers are readily available. In this section, we 
perform an experiment where the only evaluation is the 
intuitiveness of the discords discovered. 
We queried a dataset that measured the power consumption for 
a Dutch research facility for the entire year of 1997. We wanted 
to find the 3 most usual weeks. Note that we did not specify that 
week should begin at certain day or time. We initially guessed 
that a length of 750 would cover an entire week; this turns out to 
be a little long, but we show this experiment to avoid 
“polishing” the results. Figure 1 shows the top 3 discords and a 
typical pattern for reference.  

 

Figure 15: (left) A typical week from the Dutch power 
demand dataset shows the classic 9am to 5pm, Monday 
to Friday pattern of power demands.  (right) The top 3 
discord750 shows unusual weeks in that they all contain 
two holidays 

5.2 The Utility of Heuristic Ordered Search  
It is increasingly recognized that comparing algorithms 
performance by examining wall clock or CPU time invites the 
possibility of implementation bias [7], which in turn invites the 
possibility of irreproducible “improvements.” Instead, we 
measure here the number of times that the distance function is 

called on line 9 in Table 1 and Table 2. A simple analysis of the 
pseudocode (confirmed with a profiler) tells us that this single 
line of code accounts for more than 99% of the running time for 
both algorithms. In addition to fairness and reproducibility, 
there is another pragmatic reason for this metric. For brute force 
search, this number depends only on n and m and can simply be 
computed. If we had to actually measure the wall clock time for 
brute force search for all the experiments in this work, it would 
take several years.  
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The above metric does not include the time it takes to build the 
data structures discussed in Section 4.2; however, we note that 
this is a O(m), one time cost. For datasets of a reasonable size 
(i.e., the datasets shown in Figures 11 or 12), this overhead takes 
much less than 0.1% of the total time. Furthermore, as the 
datasets get larger, it takes an even smaller percentage of time. 
In Figure 16, we compare the brute force algorithm to the 
heuristic search algorithm in terms of the number of times the 
Euclidean distance function on line 9 is called. For the heuristic 
search we averaged the results for each setting of dataset/length 
over 100 runs on different subsets of the data.  
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Figure 16: The number of calls to the distance function 
required by brute force and heuristic search for discord128 
over a range of data sizes for 5 representative datasets   

Note that as the data sizes increase, the differences get larger. 
For a time series of length 64,000, the heuristic algorithm is 
almost three thousand times faster than brute force for all 
datasets. This experiment is actually pessimistic in that we made 
sure that the test data did not have any obvious anomalies or 
unusual patterns. In general, if there are truly unusual patterns in 
the time series, the heuristic algorithm is even faster. 
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In general, these results strongly suggest that we can reasonably 
expect at least 3 orders of magnitude of a speedup for most 
problems. To concretely ground these numbers, consider the 
following. While our current implementation is in relatively 
lethargic Matlab, the experiments shown in Figures 10, 11, and 
12 take a few seconds using heuristic search, but several hours 
using brute force search. 
To make sure that the above results were not the result of a 
happy coincidence of “easy” datasets and the right setting of the 
single parameter, we repeated the experiment for every dataset 
in the UCR Time Series Data Mining Archive over a range of 
values for n. We tested all datasets that have a length of at least 
16,000; there are currently 82 such datasets from a diverse set of 
domains. Figure 17 shows the results.  



 

Figure 17: The speed obtained over brute force search 
for various discord lengths and database sizes, averaged 
over 82 diverse datasets 

This experiment produces pessimistic results in that many of the 
datasets we averaged over are exceptionally noisy. In addition, 
the maximum size of the data (16k) was relatively small to 
allow us to average over many datasets. Nevertheless the results 
support the contention that a minimum speedup of two orders of 
magnitude can be expected for any combination of dataset/n, 
and even greater speedup can be expected as the datasets get 
larger. 

6. CONCLUSIONS AND FUTURE WORK 
In this work, we have defined time series discords, a new 
primitive for time series data mining. We introduced a novel 
algorithm to efficiently find discords and demonstrated their 
utility of a host of domains. 
Many future directions suggest themselves; most obvious 
among them are extensions to multidimensional time series, to 
streaming data, and to other distance measures. In addition, for 
truly massive datasets, even the large speedups obtained may be 
insufficient for real time interaction. We therefore plan to 
investigate an anytime version of our algorithm. 
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