
Matrix Profile XV: Exploiting Time Series Consensus

Motifs to Find Structure in Time Series Sets

Kaveh Kamgar, Shaghayegh Gharghabi, Eamonn Keogh
Department of Computer Science and Engineering

University of California, Riverside, CA, US
kkamg003@ucr.edu, sghar003@ucr.edu, eamonn@cs.ucr.edu

Abstract—In recent years the data mining community has

largely coalesced around the idea that many problems in time

series analytics essentially reduce to finding and then reasoning

about repeated structure in time series. Existing tools can find

conserved structure within a single time series (motifs) and

between pairs of time series (joins). However, to date there are no

tools to find repeated structure in sets of time series, an idea we

call time series consensus motifs in recognition of their similarity

to their discrete analogs in DNA strings. In this work we introduce

a definition of time series consensus motifs and a scalable

algorithm to discover them in large data collections. We further

show that given this new primitive, we can solve multiple higher-

level problems in time series data mining. We demonstrate the

utility of our ideas with case studies in domains as diverse as

animal motion studies, human behavior, medicine and energy

disaggregation.

Keywords—time series, motif discovery, conserved

patterns

I. INTRODUCTION

There is a growing consensus that many problems in time

series analytics essentially reduce to finding and reasoning

about repeated structure in time series. For example,

segmentation [8], summarization [20], and anomaly detection,

can all be framed as algorithms that exploit repeated structure.

There are existing tools to find repeated structure within a

single time series (motifs) and between a pair of time series

(joins) [19][21]. However, to the best of our knowledge, there

are no tools to find repeated structure among sets of time series.

The analog of this task in discrete strings such as DNA is called

consensus or conserved motifs. These approximately repeated

strings are at the heart of much of molecular genetics and are

an active area of research [15]. We call repeated structure in

sets of time series data, time series consensus motifs,

acknowledging their similarity to their discrete analogs in DNA

strings [2][18]. We can best illustrate the task at hand by

considering the analog problem in text strings, using Hamming

distance as a proxy for the Euclidean Distance. Consider the

following strings:

 ooogmisxeturingjkeatanankgokeyomtegoooooolotyshemfgsa

 lotoogmishejrecytygorcheturingxpoutporstyim

 eloterdocegtpogindauryheblaiteturingyoorloungmekeqpbd

 itxpeeturingyougrinatecrsthedinarupoooougwcuing

Is there any conserved pattern of length six, that appears in

each string? Even in this tiny dataset, the answer, turing, is

not immediately apparent. If we restrict ourselves to exact

matches, this problem can be solved in linear time with a suffix

tree. However, if we wish to be invariant to even a single

character mismatch, say one occurrence of turing is

misspelled as tuning, then the problem explodes in

complexity.

Fig. 1 shows an example of the real-valued version of this

problem in a dataset of electrooculograph (eye movement) data,

created by a volunteer modeling communication by a disabled

individual with Locked In Syndrome [7].

Fig. 1: Nine time series corresponding to different sentences (in Japanese)
spelled out by the eye movements of an individual modeling Locked In
Syndrome. Just the vertical axis is shown. Is there a well conserved one second
long pattern in all nine traces?

We now ask the corresponding question, is there any
conserved pattern, covering a one second interval, which
appears in each time series? The optimal answer, under the
definition we propose in this work, is shown in Fig. 2.

Fig. 2: The one second long consensus motif in the set of time series is shown
in Fig. 1 (colors are preserved between plots). One time series is shown with a
thicker and bolder line because it is the most central or seed time series, as will
be explained in detail later.

7 Seconds7 Seconds

1 Sec

1 Second

Dear Reader: This is an expanded version of the six-page paper that appears in ICDM 2019.

The pattern is unexpectedly well conserved and suggests an
underlying mechanism that created faithful conservation. In
fact, if we examine the annotation that accompanies this data,
we find that the pattern shown in Fig. 2 corresponds to the

Japanese Katakana character ア . Moreover, ア is the only

character that is common to all nine sentences.

In some cases, finding the most conserved pattern might be
an end in itself. However, in other cases, it might just be the
beginning of further analytics. Consider the similar experiment
conducted with a different individual shown in Fig. 3.

Fig. 3: (left) The consensus motif from an individual (different than the person
in Fig. 1) modeling Locked In Syndrome. While there is clearly high
conservation, our subjective color coding, and the hierarchical clustering (right)
suggest that there is evidence of hierarchical structure here.

Once again there is a well conserved pattern, and once again

we find that it corresponds to a single Katakana character, this

time ガ. However, this time there is a strong suggestion that

there are two distinct ways in which this individual produced

this word. Perhaps this is an example of orthography for eye

movement communication, just as the written word “read” can

be pronounced either reed or red, depending on whether it

refers to the present or the past tense. Or perhaps it simply

reflects two sessions, one in which the participant is

communicating more rapidly and fluidly, the other in which she

was tired or distracted. In either case, this example shows that

finding such patterns can hint at unexpected regularities.

In this work we introduce time series consensus motifs as a

novel primitive for time series data mining. The rest of this

paper is organized as follows. In Section II we introduce all

necessary definitions and notation. We introduce a brute force

algorithm to find consensus motifs in Section III, and then in

Section IV we address its poor scalability with our novel

algorithm, Ostinato. We conduct an extensive empirical

analysis of our ideas in Section V. We review and contrast with

related work in Section VI. Conclusions and directions for

future work are presented in Section VII.

II. DEFINITIONS AND NOTATION

We begin by outlining the necessary definitions and

notation. The data type of interest is time series:

Definition 1: A time series T is a sequence of real-valued

numbers T = t1, t2, ..., tn where n is the length of the time series.

In a sequence of k time series, the ith time series will be referred

to as Ti.

In shape-based time series analysis [8][19], we are typically

only interested in local similarity between small sections of the

data known as subsequences:

Definition 2: A subsequence of length m is a sequence of m
contiguous elements in a time series T. A subsequence in time
series T which starts from position i and ends at position i + m
– 1 is referred to as Ti,m.

If we envision all subsequences in the set of k time series as
points in m-dimensional space, then there exists an m-ball with
minimum distance surrounding each subsequence in each of the
k time series which encompasses at least one subsequence from
each of the remaining k – 1 time series. We call this distance
the radius:

Definition 3: The radius r of a subsequence Ti
j,m of time

series Ti with respect to a sequence of time series T1…Tk is the
maximum distance between Ti

j,m and its nearest neighbor in
each of T1…Tk.

Fig. 4 offers a visual intuition of this notation.

Fig. 4: The subsequences of three time series, A ⚫, B  and C ◼ exist as points
in a m-dimensional space. A hypersphere can be centered at each of the
subsequences and have its radius r expanded until it includes at least one of
each of the time series. The subsequence that has the smallest such r is the
consensus motif.

In any set of time series, we expect to see highly varying
degrees of conservation across different subsequences as
demonstrated by their induced radii. We refer to the time series
subsequence with the smallest such radius as the time series
consensus motif:

Definition 4: The time series consensus motif is the
subsequence taken from one of a sequence of k time series
T1…Tk, which possesses the smallest radius of any
subsequence appearing in any of time series T1…Tk.

As Fig. 2 and Fig. 3 suggest, this definition assumes that
some highly conserved structure is present in all k time series
considered, but this assumption may not always hold true. This
is especially the case for our initial forays into a data collection
when doing exploratory data mining. For clarity, suppose that

1 Second

0 0.5 1

0

0.5

1

r

we augmented the four discrete strings shown in the
introduction with a fifth outlier string:

atgcatgcatgcatgcatgcatgcatgcatgcatgcatgcatgcatgc

Clearly this string does not contain the otherwise conserved
string turing, however we may still wish to find this pattern,

which appears in most of the strings. Returning to the same
problem in time series, up until this point, we have assumed that
the number of time series in our set is equal to the number that
must be considered to compute a radius. Definition 5
generalizes Definition 4 to allow the case where the k time
series, which determine a subsequence radius, may be chosen
as any subset of a set of P time series. This notion allows us to
omit consideration of P - k potential outlier time series.

Definition 5: The k of P consensus motif is the consensus
motif with the smallest radius that can be found using any
subset of k time series from a sequence of P time series.

Choosing k time series from P allows us to simultaneously
exclude P – k outlier time series.

As we will show, when computing the radius of each
subsequence, we can prune the search space by computing a
lower bound. We accomplish this using an A-to-B join or
ABJoin.

Definition 6: An ABJoin is a meta time series annotating
each overlapping subsequence Ai,m in A, with the distance to its
nearest neighbor in B.

ABjoins were introduced in [19], using the notation JAB.
Below we will detail the algorithms for time series consensus
motifs. The extension to the discovery of the k of P case is
obvious. We provide code for the k of P version on the website
[22].

III.BRUTE FORCE CONSENSUS MOTIF DISCOVERY

In order to find a consensus motif as defined in Definition
4, we need to find which subsequence from the k time series
induces the smallest radius. To help explain our proposed
solution, we begin by considering a simple brute force solution.

We begin by concatenating all k time series into a single

time series T, with null markers in between them to mark the

transitions from one time series to the next. Let us denote the

length of this long time series as N. We can use this long time

series to compute a distance matrix D containing every pairwise

distance between all z-normalized subsequences of length m in

T. Here each candidate subsequence represents a possible

consensus motif.

We can then search for the consensus motif by keeping track

of a best-so-far candidate motif for O(N) steps. At step j, we

find the minimum row value of D in column j and compare that

to our best-so-far. We require O(N2) distance calculations to

populate D, followed by O(N2) comparison step. Naively, each

distance calculation requires O(m) operations, and the distance

matrix as shown in Fig. 5 requires O(N2) space.

Fig. 5 depicts this for a toy example with k = 3, the time

series T1, T2 and T3. Note that the constituent time series can be

of different lengths, so long as each has a length greater or equal

to the length m, which is the user’s choice of motif length.

We can use the methods of computing ABJoins developed

in [19][21] to make our first improvement to time complexity.

We note that given a particular choice of j, we can find the

radius of all subsequences in time series Tj by finding the

elementwise maximum of ABJoin(Tj, T1)…ABJoin(Tj,Tk) [19].

This reduces our time and space requirements to O(N2)

operations and O(N) memory.

Fig. 5: We can search for the consensus motif by sweeping across all columns

of the pairwise distance matrix (visualized by the red line) and finding the

minimum value in each of the k (here, k = 3) regions. The maximum of these k

values is the radius of the corresponding subsequence, and the smallest such radius
is found at the consensus motif.

Referring back to Fig. 4, the brute force algorithm can be

seen as visiting each point in the m-dimensional space, and

finding its nearest neighbor in each of the other “colors”,

recording the maximum such distance as the radius r. Each

ABJoin represents a reduction over the columns spanning a

single tile in Fig. 5. For completeness, and because we will use

it later as a starting point to explain our new algorithm, we take

the time to outline the brute force algorithm in TABLE 1.

The description of our brute force algorithm uses a distance
matrix representation to describe our search space, as visualized
in Fig. 5. We interpret T as a time series formed by
concatenation of time series T1…Tn. Here D is a distance matrix
containing the distance between every pair of subsequences of
length m in time series T.

In TABLE 1, line 1 initializes the best-so-far radius, time

series index, and subsequence index. The time series and

subsequence indices indicate the location of the subsequence

with minimum known radius. In line 2, we loop over each time

series T1…Tk. Line 3 initializes an array for the radius of each

T 1 T 2 T 3

T

subsequence in time series Tj. Line 4 begins a loop over T1…Tk

excluding Tj. Line 5 updates the radius calculations for Tj using

an ABJoin algorithm. In Line 6, we find the subsequence with

the minimum radius in Tj. Lines 7 and 8 compare the minimum

radius found in any subsequence in Tj to the minimum radius

found overall and updates our best-so-far candidate. In line 9,

we return the radius, time series index, and subsequence index

of the subsequence with the smallest radius in T1…Tk.

TABLE 1: THE BRUTE FORCE CONSENSUS MOTIF ALGORITHM

Function: BruteForceConsensusSearch(T1…Tk, D, m)

Input: T1…Tk - Sequence of Time series

 m - Subsequence Length

Output:

 bsfRad – best so far radius which is found

 tsIndex – index of time series with best so far radius

 ssIndex – index of subsequence with best so far radius

1

2

3

4

5

6

7

8

9

{bsfRad, tsIndex, ssIndex} ← {inf, 0, 0}

for j ← 1 to k

 Radii ← zeros(length(Tj) — m + 1)

 for i ← 1 to k except j

 Radii ← elementwise_max(Radii, ABJoin(Tj, Ti))

 {minRadius, minRadIndex} ← {min, argmin} (Radii)

 if minRadius < bsfRad

 {bsfRad, tsIndex, ssIndex} ← minRadius, i, minRadIndex}

 return {bsfRad, tsIndex, ssIndex}

IV.OSTINATO: CONSENSUS MOTIF DISCOVERY

Having shown the brute force algorithm for consensus motif

discovery, we are now in a position to show how to speed it up.

A. An Exploitable Observation

Consider Fig. 6, which shows the same toy dataset shown

in Fig. 4, but before the consensus motif was discovered. Recall

that in TABLE 1 line 1, the value of best-so-far-r is initialized

to inf. In line 2, we begin to process each subsequence. In Fig.

6.top we show that B1 is the first candidate subsequence to be

completely evaluated, and thus updated for best-so-far-r from

infinity to a finite number.

In Fig. 6.center we show that B2 is the next point to be

evaluated. We begin by computing the distance from the

subsequence B to its nearest neighbor in A (red dashed circle),

which happens to be A17. Naively we would then compute the

distance from the subsequence B to its nearest neighbor in C.

However, we can easily see here that this will be fruitless.

Because B1.r is less than the distance between B2 and its nearest

neighbor in A, the distance to C is now inconsequential. Even

if it was zero, we know we still have B1.r < B2.r. Thus we can

admissibly prune B1.r from further consideration.

B. Ostinato: Fast Consensus Motif Search

We call our consensus motif search algorithm Ostinato.

Ostinato first computes a lower bound for each candidate

subsequence considered by the brute force method. This

sequence of lower bounds is used to both order our search, and

to admissibly prune unpromising candidates.

Ostinato begins by computing a lower bound on the radius

of each subsequence in each time series in the form of an

ABJoin. This covers all comparisons over a single block

diagonal section as displayed in Fig. 5. Using a fast ABJoin

method [19], this requires O(N2/k) operations to cover the k time

series.

Fig. 6: (cf. Fig. 5) A visual intuition of the time series consensus motif discovery

process. Key: A ⚫, B , C ◼.

This first step is followed by k searches corresponding to

the k time series. In each search, candidate subsequences from

a single time series are ordered by increasing the lower bound

on their radii. We find the best possible candidate from within

that time series by evaluating candidates until the known lower

bound on the radius of the next candidate exceeds bsfRad, our

best current candidate. At that point we admissibly prune the

remaining candidates in that time series from our search space.

The algorithm is outlined in TABLE 2 below.

TABLE 2: THE OSTINATO ALGORITHM

Function: Ostinato(T1…Tk,m)

Input: T1…Tk - Sequence of Time series

 m - Subsequence Length

Output: bsfRad – best so far radius which is found

 tsIndex – index of time series with best so far radius

 ssIndex – index of subsequence with best so far radius

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

{bsfRad, tsIndex, ssIndex} ← {inf, 0, 0}

for j ← 1 to k

 h ← (j + 1) if (j < k), else 1

 MP ← ABJoin(Tj,Th)

 SI ← sortAndIndex(MP)

 for each value q in SI

 radius ← MPq

 if radius ≥ bsfRad

 break loop

 for i ← 1 to k except j and h

 radius ← max(radius, min(EuclideanDist(Ti, Tjq,m)))

 if radius ≥ bsfRad

 break loop

 if radius < bsfRad

 {bsfRad, tsIndex, ssIndex} ← {radius, j, q}

return {bsfRad, tsIndex, ssIndex}

In line 1, we initialize the radius, time series index, and

subsequence index of our consensus motif using sentinel

values. Line 4 computes a lower bound on the radius of every

subsequence in time series Tj using an ABJoin, and line 5

0 0.5 1

0

0.5

1

best-so-far-r

Dist(B2,A17)

B1

B2

produces an index map of Tj in order to increase radius lower

bound. We initialize the radius of each subsequence to its

greatest known lower bound in line 7. If the lower bound on the

radius of any subsequence exceeds that of any already

computed radius, we admissibly abandon the search over

remaining candidates in Tj in line 9. Line 10 loops over each

time series, excluding the one which contains our current

candidate. In lines 12 and 13, we abandon our current candidate

if its maximum known lower bound exceeds the radius of any

other previously evaluated candidate. Line 11 updates the

radius of our current candidate subsequence using the distance

between it and its nearest neighbor in the next time series, with

the last wrapping around to the first.

Lines 14 and 15 update the current best-so-far. Finally, line

16 returns the candidate with the smallest radius as a triple

consisting of its radius, the index of the time series where it was

found, and its subsequence index within the time series.

For simplicity, we have shown just the top-1 algorithm. The

algorithm can be generalized to compute the top-k motifs by

creating a top-k best-so-far list in Line 1, adjusting the

comparison and update methods in lines 8, 12, 14, and 15, and

returning the full list in line 17.

V. EXPERIMENTAL EVALUATION

To ensure that our experiments are reproducible, we provide
a website containing all data, code, and spreadsheets for the
results [22]. This commitment to reproducibility extends to all
the examples in the prior sections.

Before showing formal experimental evaluations of the
scalability and robustness of our ideas, we will introduce three
examples of consensus motifs in very diverse domains to show
the generality of our ideas.

A. Demonstrations of Generality

V.A.1 Electrical Power Demand

Data mining of household electrical energy demand is an

active research area [14]. The fundamental problem is that the

meters measure the aggregate energy consumption of the entire

building. However, appliance-by-appliance consumption

information is much more valuable than aggregate data for a

variety of tasks, including reducing energy demand and

improving load forecasting for the electrical grid. Thus, much

of the research in this area focuses on the task of

disaggregation, teasing out the demand patterns of individual

devices. In Fig. 7 we show a random two-day trace from this

data type. The reader will appreciate that it is noisy and

complex domain.

Fig. 7: Two days of electrical power demand from the REFIT Electrical Load

Measurements dataset, H-1 [14].

To demonstrate that we can find semantically meaningful
consensus motifs even in the face of such noisy data, we
conducted the following experiment. We extracted seven
sample time series with the length of 20,000 data points. The
slightly variable sampling rate of this dataset is roughly eight to
ten seconds. Thus, 20,000 data points is about two days. We
searched for the consensus motif with a length of 800, or
approximately two hours. In Fig. 8 we show the consensus
motif discovered.

Fig. 8: left) The consensus motif discovered in the power demand data set. The

overall shape is conserved, in spite of noise and spikes caused by short-lived
high-power demands (hair dryer, kettle). right) A clustering of the patterns

makes their similarity more evident.

Could we do something similar with classic motif
discovery? Classic motif discovery asks, what pattern is
conserved anywhere in this data[19]? In contrast, our query
asks, what pattern happens at least once every two days? This
latter query maps better to most disaggregation algorithms, as
it finds quotidian behaviors rather than well-conserved but
possibly rare behaviors, such as putting a dishwasher into its
self-cleaning cycle every week.

V.A.2 Mitochondrial DNA

It is well understood that we can often produce better
clusters by only clustering the subset of the data that is most
amenable to clustering. There are several ways that we can
attempt to resolve this chicken-and-egg paradox, and here we
show that consensus motifs offer such a possibility.

To see this, let us consider a domain for which we can obtain
unambiguous ground truth. DNA is normally processed using
string comparisons. However, it can sometimes be fruitful to
convert it into a real-valued time series. Here we use the simple
conversion algorithm outlined in Appendix A to convert the
Mitochondrial DNA (mtDNA) of four randomly chosen
animals to time series. The mtDNA of all species are just over
16,000 data points. We truncate them to exactly 16,000 to allow
the clustering under Euclidean distance in Fig. 9.left.

Two Days of Household

Electrical Power Demand
log(Watts)

5

6

7

(probable)

hair dryer
(probable)

electric

kettle

Fig. 9: The clustering of the mtDNA of Python bivittatus, Hippopotamus

amphibius, Pteropus scapulatus, Lama pacos. left) using all the mtDNA gives
incorrect results. However, using just the consensus motif of length 1,000 (right)

gives the correct taxonomic relationship.

This clustering is clearly incorrect. For example, it suggests

that the hippo is more closely related to the python than to the

alpaca, which is a fellow even-toed ungulate (Artiodactyla). To

address this problem, we can simply compute the consensus

motifs of a short subset of the data. Here we arbitrarily choose

a subsequence length of 1,000 and use only the discovered

subsequences to cluster the data. As Fig. 9.right shows, this

produces reasonable results.

V.A.3 Insect EPG Telemetry

The Asian citrus psyllid (Diaphorina citri) is an insect

vector of the pathogen that causes citrus greening disease,

causing billions of dollars of loss to the citrus industry in the

last decade. To understand the behavior of this insect,

entomologists use a device called an electrical penetration

graph (EPG) to collect data reflecting the insect’s interaction

with plants [11][12]. As shown in Fig. 10.left such data is

typically complex and noisy.

Fig. 10: left) Four time series of insect telemetry. right) The top eight-second-long

consensus motif is well conserved and corresponds to “phloem salivation”

behavior.

One basic question entomologists are interested in is, what

insect behaviors are conserved when something in the

environment has been changed [12]? For example, it was

recently discovered, by manual inspection of EPGs, that the

feeding behavior of the white-backed planthopper (Sogatella

furcifera) could be changed by infecting rice plants with a

special virus [11]. Such findings are useful because they

sometimes suggest a control mechanism [12]. As shown in Fig.

10.right, our algorithm can recover conserved behaviors in this

data in spite of how noisy and large it is.

To demonstrate a scenario in which consensus motif

discovery could be useful to a research entomologist, let us

consider EPG from a different insect, a silverleaf whitefly

(Bemisia tabaci). As Fig. 11 shows, this is a tiny insect, about

the size of the period at the end of this sentence. In spite of its

small size, this insect is an important agricultural pest. While

the silverleaf whitefly had been known in the United States

since 1896, in the mid-1980s a virulent strain (strain B)

appeared in poinsettia crops in Florida. Less than a year after

its initial identification, strain B was found in tomatoes and

other fruit and vegetable crops. The silverleaf whitefly caused

over one hundred million dollars in damage to Texas and

California agricultural industries within five years [6]. More

recent estimates suggest that this insect may cause over a billion

dollars of crop damage annually.

Fig. 11: right) A life-sized image of a silverleaf whitefly shows how incredibly

small it is. In spite of its size, skilled entomologists are still able to attach it to an

EPG apparatus (using a solid gold wire just 12.5 μm in diameter), and record time

series data under various conditions (left).

There is an active worldwide community attempting to

understand and ultimately control this insect. As part of this

effort, they often record data under two or more conditions, e.g.

light and dark, hot and cold, and humid and dry environments.

One question that remains the subject of some controversy

is whether the behavior of the insects is changed by the presence

of oils mixed with citronellal, the chemical that gives citronella

oil its distinctive lemon scent. To test this, we obtained seven

recordings of the insect interact with a plant coated with a thin

film of citronellal-infused oil and ten control recordings of the

insect on untreated plants. We found the one-second consensus

motif of each group independently. Fig. 12 shows the results.

Fig. 12: The consensus motif (bold) and one additional sample from the motif set

for the two classes.

The results are highly suggestive. For the control, the

consensus motif seems to be classic passive phloem

ingestion. In contrast, the treatment data produced a

consensus motif that does not seem to have been observed in

the literature [13]. It is important to disclaim that we are not

making any biological claims here. Our datasets are too small

to support statistical significance testing. Our point is simply to

alpacahippopython flying fox

0 120,000 0 400 800

Actual size

Zoom-in

Bemisia tabaci

(Whitefly)

Two minutes

Treatment

Control

One Second

show how our tools may be used to investigate important

problems and produce potentially actionable information.

B. Robustness of Consensus Motifs

The experiments above (especially Fig. 8 and Fig. 10)

suggest that consensus motifs can be discovered in noisy and

complex datasets. However, here we stress test the definition to

see how much noise our approach can handle.

We took random instances from class one of the Mallat

dataset [5], each of which is of length 1,024, and embedded

each of them within a random walk of length 65,536. Fig. 13

shows an example. Given ten such time series, can we recover

the embedded pattern? We count any extracted pattern that

overlaps with an embedded Mallat pattern by at least fifty

percent as a true positive. The possibility of this happening by

chance, i.e. the default rate, is only 3.1 percent.

Fig. 13: A random walk of length 216 with a single instance from the UCR archive

Mallat dataset embedded. (inset) A zoom-in of the embedded pattern.

We find that Ostinato can easily recover the embedded
pattern. In order to stress test it, we repeated the experiment,
adding increasing amounts of Gaussian noise, until we failed to
recover the embedded pattern. Fig. 14 shows the results.

Fig. 14: The recovered most central or seed subsequence as we iteratively add

increasing amounts of Gaussian noise to the data. The rightmost blue pattern

shows the most amount of noise our definition can tolerate.

This result suggests that our definition is robust to
significant amounts of noise.

It is also natural to ask how sensitive the definition is to its
only parameter, the length of the subsequences, m. We repeated
the basic experiment described above, attempting to recover the
embedded pattern from ten randomly generated instances of the
time series shown in Fig. 13. Instead of just testing with the
correct pattern length of m = 1,024, we searched with
increasingly shorter and longer lengths. We discovered that we
can recover the embedded pattern for any value of m from 74
to 1,076, suggesting that the definition is not too sensitive to its

1 The original STAMP algorithm is only directly comparable to Ostinato in the
special case of k = 2. We both optimized STAMP and generalized it to arbitrary

k.

only parameter. Note that this flexibility is asymmetric. If our
domain knowledge or experience suggests that there might be
conserved structure of length L, we can be very conservative
and choose a much shorter length, say m = L/2 or even m = L/4,
and still expect to find the conserved structure. However, if we
are too liberal and choose a longer length, we may have a
fruitless search. As we shall show in the next section, Ostinato
is so fast that we can quickly search over multiple lengths and
choose the best motifs by eyeballing an objective score
function.

C. Scalability of Consensus Motif Discovery

To measure the scalability of our proposed algorithm, we

performed the following experiments. We created ten time

series like the one shown in Fig. 13, but with varying lengths,

and we then measured how long it takes to find the top-1

consensus motif of length 1,024. We compared three

approaches:

• Brute Force Consensus Search: As described in

TABLE 1. While just a strawman, we made significant effort

to produce a highly optimized implementation.

• STAMP: We adapted this algorithm from [19] to

solve the task at hand. STAMP makes the algorithm’s

performance independent of the length to the motifs. We

created an optimized version of STAMP for this task to match

the implementation details of Ostinato wherever possible.

Thus our version of STAMP is significantly faster than the

original code1.

• Ostinato: Our proposed algorithm.

Fig. 15 shows the results.

Fig. 15: A comparison of three algorithms for consensus motif discovery. left) The

time taken to find the top-1 motif in increasing longer datasets. right) The

differences in performance can be better appreciated in a loglog plot. bottom) Only
Ostinato can realistically consider datasets with millions of data points (STAMP

experiments that required more than 24 hours are carefully extrapolated).

We deliberately chose the best possible case for STAMP, with
the length of each time series (n) being a power of two.

0 32,768 65,536

Zoom-In

Mallat

Successful recovery of

embedded pattern

Increasing amounts of noise added to the embedded patterns

0 1000 0 1000 0 10000 1000

Successful recovery of

embedded pattern

Successful recovery of

embedded pattern

Failure to recover the

imbedded pattern

12 13 14 15 16 17 18 19 20
0

5

10

15

20

lo
g

2
(s

e
c
o

n
d

s
)

log2(n)

13 14 15 16
log2(n)

0

2

4

6

8

10

12

14
lo

g
2
(s

e
c
o
n
d
s
)

n

0

14000

s
e

c
o

n
d

s

length vs time

Ostinato

Nevertheless, by the time we consider n = 65,036 we are more
than sixty-three times faster, and the gap continues to grow as
we see larger and larger datasets.

We demonstrate the scalability of Ostinato with a variable
number of time series and with variable subsequence length in
Fig. 16.

Fig. 16: left) Scalability with the cardinality of the set of time series, k. Beyond k

= 10, the time for STAMP was extrapolated, right) Scalability with the motif

length, m.

In Fig. 16.left, with n fixed at 65,036 and m at 1,024, we
measure how the algorithms scale as k increases from 2 to 20.
In Fig. 16.right, with n fixed at 65,036 and k = 10, we measure
how the algorithm scales as m goes from 128 to 2,048.

Note that Fig. 16.right reaffirms that the time taken is
independent of the length of the motifs, a highly desirable
property, which we inherit from our use of a STOMP-like
algorithm as a core subroutine [21].

D. The Utility of k of P Consensus Motifs

To test the utility of the k of P variant of consensus motifs,
we performed the following experiment. We created a dataset
with exemplars like the one shown in Fig. 13. For both the k of
P variant of consensus motifs and the regular (i.e. P of P)
version, we tested if it could recover the embedded motif from
these five time series. We then added an increasing number of
random walks without embedded patterns, to test how the
presence of spurious data affects the algorithms. For the k of P
variant, P grows from five to ten, and k remains fixed at five.
We repeated the process twenty times, reporting the results in
TABLE 3, which are averaged over twenty runs.

TABLE 3: SENSITIVITY TO SPURIOUS DATA

P = 5 6 7 8 9 10

(k hardcoded to 5)

k of P

19/20 19/20 18/20 16/20 16/20 16/20

P of P 19/20 0/20 0/20 0/20 0/20 0/20

In fairness, we could improve the results for the P of P
algorithm in several ways. Smoothing the data may help, as
would choosing a smaller value for m. Nevertheless, the results
support the utility of the k of P variant of consensus motifs.

The experiment above shows that the k of P variant can be
more robust, but it assumes we know the correct value for k.
What if we do not? To consider this issue, we revisit the data
type considered in Fig. 1 and Fig. 2. For another volunteer’s
session, she created seven time series with a maximum length
of 350. We created an additional twenty random walk time
series of that length, for a total P of 27. We then fixed P to 27,

and computed k of P for every k from 2 to 27, recording the
radius at each step Fig. 17 shows the result.

The inflection point in Fig. 17 strongly suggests that the
correct value for k is at seven. Moreover, we confirmed that the
seven subsequences all come from the real electrooculographs,

and that they correspond to the Katakana characterモ.

Fig. 17: left) The radius of the k of P consensus motif for every k from 2 to 27.
The plot suggests the best k is seven. right) The suggested k = 7 motif corresponds

to the syllable モ, the only syllable that appears in all seven traces.

 Case Study: Quantifying Parkinson’s Disease

Parkinson’s Disease (PD) is a neurodegenerative disease
which affects gait and mobility. As hinted at in Fig. 18, one tool
that clinicians use to assess the severity of the disease is
telemetry from a vertical ground reaction force device [10].

Fig. 18: Time series snippets from vertical ground reaction force device

recordings, left foot only. top) An individual with moderate Parkinson’s exhibits

some variability in her signal. bottom) A healthy individual has a more regular

gait, except at the highlighted location.

Clinicians can visually inspect the data and use the degree
of variability to quantify the progression of the disease. The
severity is typically qualified with the Hoehn and Yahr (HY)
scale [1], with 0 indicating “no functional disability” and 3
indicating “mild to moderate disability”.

Objectively quantifying the gait can be difficult. One can
envision many ways to score variability, however as shown in
Fig. 18.bottom, when we examine the full traces of the healthy
individuals, we typically find some irregular regions. The
explanation for such regions is prosaic: the device used to
measure the ground force is limited in length, and the patient
must turn around when she reaches the end of the apparatus.
The attending physician can annotate and ignore such regions,
but large-scale retroactive studies typically do not have access
to these annotations.

Thus, we should measure the variability of only the least
variable regions. The reader will appreciate that consensus
motifs offer a direct way to do this. Our idea is to divide the
time series into equal sized chunks of length L and measure the
radius of the top-1 consensus motif of length m. Because we
will set m ≪ L, our measure ignores the spurious irregularities
caused by the patient turning around at end of the apparatus.

2 20
k

s
e

c
o

n
d

s

128 2048
m

Ostinato

STAMP

Ostinato
0 40 80

The consensus motif found

for k = 7 and P = 30, for a k

of P motif search.

The motif corresponds to the syllable

The sharp inflection point at k = 7

strongly suggests that it is a natural

value for k

5 10 15 20 25 30

Increasing values for k

1

10

10
seconds

24

To test our intuition, we consider the Parkinson Disease
dataset provided by Hausdorff group [10], which is publicly
available in PhysioBank [9]. This dataset consists of gait force
profiles of 23 patients with idiopathic PD (HY 3 scale) and 92
healthy controls. The data was recorded at a sampling rate of
100 Hz. Because the shortest length of subject walking is 3,000,
we truncate all the other subject’s data to that length. We
concatenate the left and right foot force profiles, then we divide
them into six parts, each with L = 1,000. We find the radius of
the consensus motif with length m = 300 in these partitions.
Note that we choose 300, because it is round number, which
approximately matches the length of an average step Fig. 19
summarizes the results.

Fig. 19: Quiver plots that summarize the distribution of radii of consensus motifs

of the gait from both healthy (HY-0) and sick (HY-3) individuals.

The mean for patients with a HR score of 3 is slightly
greater than the upper quartile for the patients with a HY score
of 0. While we made no attempt to tune L or m here, some
domain knowledge could potentially further improve our
results. We must disclaim that we are making no medical claims
here. This example just serves as an illustration of the type of
higher-level problems that consensus motifs can be applied to.

E. Case Study: Ostinato for Segmentation

We conclude the experimental section with an additional
example of a higher-level algorithm that exploits the consensus
motifs as a subroutine. As before, our goal is not to exhaustively
tackle a new problem, but to show the potential utility of
considering the consensus motifs as a primitive. The task we
address is segmentation [8]. Suppose that we have a long time
series that at some point reflects a change in the dynamics of a
system being measured. Can we detect when the change
happened? We propose the simple algorithm sketched out
below. Full code is available at [22].

Divide the time series into R equal-size regions, S1, S2,…,SR.
For example, in Fig. 20.top the time series T is of length 40,000,
and we can divide it into R = 40 subsequences, each of length
1,000. Let us consider a value for m that is much less than the
region of 1,000, say 200.

Fig. 20: top) A time series showing the APB of a patient. At time 25,000, a
clinician changed the patient orientation. bottom) By examining the change in

radius as we consider increasingly large subsets of all the regions, working both

left-to-right and right-to-left, we can get clues as to the location of the change of
system behavior.

Suppose that we measure the radius produced by every
growing set of subsequences in {S1 to Si}, for i from 2 to R.

What would we expect to see? We should expect that this curve
grows slowly as each newly added subsequence includes data
from the same behavior. However, the curve will grow rapidly,
producing an inflection point as we encounter the first
subsequence that includes data from the new and different
behavior. As the red curve in Fig. 20 shows, this is exactly what
we see.

In this example, the sum of this red curve with its “mirror
image” (blue) curve correctly minimizes at the location where
the system changes. In [22] we show that this simple algorithm
is effective on dozens of datasets from diverse domains.

VI. RELATED WORK

We have relegated the discussion of related work to the end
of this paper, so the reader has a better appreciation of the issues
involved.

The bioinformatics literature offers several definitions for
consensus sequences/motifs [15][18], as a nucleotide sequence
of DNA/RNA, or an amino acid sequence of proteins. However,
these definitions do not generalize to real-valued data. For
example, the discrete definitions have the property that the error
the analog to our radius, cannot decrease as the length
increases. In contrast, in the real-valued case, because of z-
normalization, a longer motif could have a smaller radius than
a shorter motif length. Apart from anything else, consensus
sequences are typically only 6 to 8 base-pairs long, whereas we
have shown the need to find time series consensus motifs at
least two orders of magnitude longer.

In [15] the authors use the term “Consensus Sequence
Motifs” in a time series context. However, they are working
with a domain-dependent transformation of the time series, a
high-level abstraction of the data (i.e. low/medium/high), and
their method discovers motifs of intervals. The work is
completely orthogonal to our domain independent motifs
discovered in the raw data.

There is significant work on finding or creating
representative patterns in sets of time series, using averaging
[16]. However, these works attempt to explain all the data, not
discover just the conserved data.

Thus, to the best of our knowledge, there is no work on
finding conserved structure in arbitrary sets of more than two
real-valued time series.

VII. CONCLUSIONS

We motivated the need for, and then introduced, the first
known algorithm for finding repeated structure within sets of
time series. With multiple case studies and experiments on real
datasets from diverse domains, we demonstrated that our
definitions and algorithms are robust enough to recover
conserved data, even in the presence of significant amounts of
noise or spurious data.

Moreover, we have shown that our algorithm is surprisingly
tractable, and we can find conserved data in datasets with tens
of millions of datapoints in reasonable time. In particular, for
all our experiments with electrooculography, power demand,

0 1 2 3 4 5

Hoehn and Yahr 3

Hoehn and Yahr 0

0 20000 40,000

Radius of every set of subsequences in Si, for i from 2 to R. Infection point
Radius of every set of subsequences
in Si, for i from R to R-i-1.
Infection point

Sum of the two above curves: Minimum point

Arterial Blood Pressure (ABP)

Intervention begins

S1 S2 Si

insect EPG, gait and ABP, our experiments ran much faster than
real-time. That is to say, if the data represents X seconds,
Ostinato took less than X seconds to find the motifs.

There are several directions for future work. Ostinato is
currently a batch algorithm, but [19] has shown that it can be
fruitful to produce anytime algorithms for motif discovery
problems. In addition, Ostinato always produces some motif,
even in random data. It would be useful to have an objective
score or significance test that reflects the quality or significance
of the motifs [17].

Finally, as our examples Case Study: Quantifying
Parkinson’s Disease and Case Study: Ostinato for Segmentation
hint, we believe that there are many possibilities for novel
higher-level algorithms that use consensus motifs as a
primitive. The fact that there are hundreds of algorithms that
exploit consensus motifs/consensus sequences for discrete
strings such as nucleotides or amino acids [2][3][15][18],
suggest that our real-valued version may find many unexpected
uses in the time series data mining community.

ACKNOWLEDGEMENTS: We gratefully acknowledge NSF
awards DGE 1631776, CNS 1544969, in addition to Google,
Mitsubishi and NetApp.

REFERENCES

[1] O. Afsar, U. Tirnakli, and N. Marwan, “Recurrence

Quantification Analysis at work: Quasi-periodicity based

interpretation of gait force profiles for patients with Parkinson

disease”, Scientific Reports 8.1 (2018): 9102.

[2] A. Apostolico, “Monotony of Surprise and Large-Scale Quest for

Unusual Words”, Journal of Computational Biology V10, 3-4,

2003 pp. 283-311.

[3] V. Boeva. “Analysis of Genomic Sequence Motifs for

Deciphering Transcription Factor Binding and Transcriptional

Regulation in Eukaryotic Cells”. Frontiers in Genetics. Vol 7,

2016.

[4] A. Camerra, et al. “Beyond one billion time series: indexing and

mining very large time series collections with iSAX2+”. Knowl.

Inf. Syst. 39(1): 123-151 (2014)

[5] Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A.

and Batista, G., “The UCR time series classification archive”,

URL www.cs.ucr. edu/~eamonn/time_series_data.

[6] Y. F. Fan and F. Petitt, (1998). “Dispersal of the broad mite,

Polyphagotarsonemus latus (Acari: Tarsonemidae) on Bemisia

tabaci (Homoptera: Aleyrodidae)”. Experimental and Applied

Acarology. 22 (7): 411–415

[7] F. Fang and T. Shinozaki, “Electrooculography-based continuous

eye-writing recognition system for efficient assistive

communication systems”, PloS one, 13(2).

[8] S. Gharghabi, Y. Ding, C.C.M. Yeh, K. Kamgar, L. Ulanova, and

E. Keogh, “Matrix Profile VIII: Domain Agnostic Online

Semantic Segmentation at Superhuman Performance Levels”,

ICDM 2017 IEEE International Conference on Data Mining, pp.

117-126

[9] A.L. Goldberger, et al. “PhysioBank, PhysioToolkit, and

PhysioNet: components of a new research resource for complex

physiologic signals” Circulation 101.23 (2000): e215-e220

[10] J. Hausdorff, Z. Ladin, and J. Wei, “Footswitch system for

measurement of the temporal parameters of gait”, Journal of

biomechanics 28.3 (1995): pp. 347–51.

[11] W. Lei, P. Li, Y. Han, S. Gong, L. Yang, and M. Hou, “EPG

recordings reveal differential feeding behaviors”, S. furcifera in

response to plant virus infection and transmission

success. Scientific reports, 6, p.30240.

[12] B. Liu, et al., 2012, “Difference in feeding behaviors of two

invasive whiteflies on host plants with different suitability:

implication for competitive displacement”, Journal of Biological

Sciences, 8(5), p.697.

[13] M. Milenovic, E. Wosula, Carmelo, R. and J. P. Legg. “Impact of

Host Plant Species and Whitefly Species on Feeding Behavior of

Bemisia tabaci.” Frontiers in Plant Science, Vol 10, 2019.

[14] D. Murray, et al., “A data management platform for personalised

real-time energy feedback”, Proc. 8th Int. Conf. Energy

Efficiency Domestic Appl. Lighting (EEDAL), Horw,

Switzerland, Aug. 2015, pp. 1–15

[15] R. Pathinarupothi and E. Rangan, “Consensus motifs as adaptive

and efficient predictors for acute hypotensive episodes”, EMBC

2017: 1688-91.

[16] F. Petitjean and P. Gancarski, “Summarizing a set of time series

by averaging: From Steiner sequence to compact multiple

alignment”, Theoretical Computer Science, 414(1): pp. 76–91,

2012.

[17] J. Serrà, I. Serra, A. Corral and J. Lluís Arcos: Ranking and

significance of variable-length similarity-based time series

motifs. Expert Syst. Appl. 55: 452-460 (2016)

[18] G. Stormo, “DNA binding sites: representation and discovery”,

BIOINFORMATICS Vol. 16, no. 1 2000, pp. 16-23

[19] C.C.M. Yeh et. al., “Matrix Profile I: All Pairs Similarity Joins

for Time Series: A Unifying View that Includes Motifs, Discords

and Shapelets”, IEEE ICDM 2016, pp. 1317-1322

[20] C.C.M. Yeh, H. Van Herle, and E. Keogh, “Matrix Profile III:

The Matrix Profile Allows Visualization of Salient Subsequences

in Massive Time Series”, Data Mining (ICDM), 2016 IEEE 16th

International Conference, pp. 579-588

[21] Y. Zhu, et al, “Matrix Profile II: Exploiting a Novel Algorithm

and GPUs to Break the One Hundred Million Barrier for Time

Series Motifs and Joins”, IEEE ICDM 2016

[22] E. Keogh: sites.google.com/site/consensusmotifs/

VIII.APPENDIX A: ALGORTHM TO CONVERT DNA TO

TIME SERIES

This is the algorithm we used to convert DNA strings to
time series, it is slightly adapted from an algorithm appearing
in [4]. Echoing [4], we do not claim any biological significance
for our results on such data. We are merely exploit the
availability of ground truth available in evolutionary biology.

https://sites.google.com/site/consensusmotifs/

T1 = 0, for i = 1 to length(DNAstring)

if DNAstringi = A, then Ti+1 = Ti + 2

if DNAstringi = G, then Ti+1 = Ti + 1

if DNAstringi = C, then Ti+1 = Ti - 1

if DNAstringi = T, then Ti+1 = Ti – 2

