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Abstract Shape matching and indexing is important topic in its
own right, and is a fundamental subroutine in most shape data
mining algorithms. Given the ubiquity of shape, shape matching is
an important problem with applications in domains as diverse as
biometrics, industry, medicine, zoology and anthropology. The
distance/similarity measure for used for shape matching must be
invariant to many distortions, including scale, offset, noise,
articulation, partial occlusion, etc. Most of these distortions are
relatively easy to handle, either in the representation of the data or
in the similarity measure used. However rotation invariance is
noted in the literature as being an especially difficult challenge.
Current approaches typically try to achieve rotation invariance in
the representation of the data, at the expense of discrimination
ability, or in the distance measure, at the expense of efficiency. In
this work we show that we can take the slow but accurate
approaches and dramatically speed them up. On real world
problems our technique can take current approaches and make
them four orders of magnitude faster, without false dismissals.
Moreover, our technique can be used with any of the dozens of
existing shape representations and with all the most popular
distance measures including Euclidean distance, Dynamic Time
Warping and Longest Common Subsequence. We further show
that our indexing technique can be used to index star light curves,
an important type of astronomical data, without modification.
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1. INTRODUCTION
Shape matching and indexing is important topic in its own right,
and is a fundamental subroutine in most shape data mining
algorithms. Given the ubiquity of shape, shape matching is an
important problem with applications in domains as diverse as
biometrics, industry, medicine, zoology and anthropology. The

distance/similarity measure for used for shape matching must be
invariant to many distortions, including scale, offset, noise,
articulation, partial occlusion, etc.. Figure 1 gives a visual
intuition of these problems in a familiar domain, butterflies and
moths. Most of these distortions are relatively easy to handle,
particularly if we use the well-known technique of converting the
shapes into time series as in Figure 2. However, no matter what
representation is used, rotation invariance seems to be uniquely
difficult to handle. For example [20] notes “rotation is always
something hard to handle compared with translation and
scaling”.

Figure 1: Examples of the distortions we may be interested in being
invariant to when matching shapes. The left column shows drawings of
insects dating back to 1734 [32]. The right column shows real insects. The
flexible wingtips of Actias maenas require articulation invariance. One of
the Papilio antimachus must be resized before matching. The Agrias
sardanapalus need their offsets corrected in order to match. The real
Papilio rutulus has a broken wing which appears as an occlusion to shape
matching algorithms. The real Sphinx Ligustri needs to be rotated to match
the drawing, achieving this invariance is the focus of this work

Many current approaches try to achieve rotation invariance in the
representation of the data, at the expense of discrimination ability
[28], or in the distance measure, at the expense of efficiency
[1][2][3][9].
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Figure 2: Shapes can be converted to time series. A) A bitmap of a
human skull. B) The distance from every point on the profile to the center
is measured and treated as the Y-axis of a time series of length n (C)

As an example of the former, the very efficient rotation invariant
technique of [28] cannot differentiate between the shapes of the
lowercase letters “d”and “b”. As an example of the latter, the
work of Adamek and Connor [1], which is state of the art in terms
of accuracy or precision/recall takes an untenable O(n3) for each
shape comparison.
In this work we show that we can take the slow but accurate
approaches and dramatically speed them up. For example we can
take the O(n3) approach of [1] and on real world problems bring
the average complexity down to O(n1.06). This dramatic
improvement in efficiency does not come at the expense of
accuracy; we prove that we will always return the same answer set
as the slower methods.
We achieve speedup over the existing methods in two ways,
dramatically decreasing the CPU requirements, and allowing
indexing. Our technique works by grouping together similar
rotations, and defining an admissible lower bound to that group.
Given such a lower bound, we can utilize the many search and
indexing techniques known in the database community.
Our technique has the following advantages:
 There are dozens of techniques in the literature for

converting shapes to time series [1][3][7][38][39][44],
including some that are domain specific [5][31]. Our
approach works for any of these representations.

 While there are many distance measures for shapes in the
literature, Euclidean distance, Dynamic Time Warping [2][5]
[30][31] and Longest Common Subsequence [37] accounts
for the majority of the literature. Our approach works for any
of these distance measures.

 Our approach uses the idea of LB_Keogh lower bounding as
its cornerstone. Since the introduction of this idea a few
years ago [16], dozens of researchers world wide have
adopted and extended this framework for applications as
diverse as motion capture indexing [18], P2P searching [13],
handwriting retrieval [31], dance indexing, and query by
humming and monitoring streams [40]. This widespread
adoption of LB_Keogh lower bounding has insured that it
has become a mature and widely supported technology, and
suggests that any contributions made here can be rapidly
adopted and expanded.

 In some domains it may be useful to express rotation-limited
queries. For example, in order to robustly retrieve examples

of the number “8”, without retrieving infinity symbols “”,

we can issue a query such as: “Find the best match to this
shape allowing a maximum rotation of  15 degrees”. Our
framework supports such rotation-limited queries.

The rest of this paper is organized as follows. In Section 2 we
discuss background material and related work. In Section 3 we
formally introduce the problem and in Section 4 we offer our
solution. Section 5 offers a comprehensive empirical evaluation of
both the effectiveness and efficiency of our technique. Finally
Section 6 offers some conclusions and directions for future work.

2. BACKGROUND AND RELATED WORK
The literature on shape matching is vast; we refer the interested
reader to [7][36] and [44] for excellent surveys. While not all
work on shape matching uses a 1D representation of the 2D
shapes, an increasingly large majority of the literature does. We
therefore only consider such approaches here. Note that we lose
little by this omission. The two most popular measures that
operate directly in the image space, the Chamfer [6] and
Hausdorff [27] distance measures, require O(n2logn) time1 and
recent experiments (including some in this work) suggest that 1D
representations can achieve comparable or superior accuracy.
In essence there are three major techniques for dealing with
rotation invariance, landmarking, rotation invariant features and
brute force rotation alignment. We consider each below.

2.1 Landmarking
The idea of “landmarking”is to find the one “true”rotation and
only use that particular alignment as the input to the distance
measure. The idea comes in two flavors, domain dependent and
domain independent.
In domain dependent landmarking, we attempt to find a single (or
very few) fixed feature to use as a starting point for conversion of
the shape to a time series. For example, in face profile recognition
the most commonly used landmarks (fiducial points) are the chin
or nose [5]. In limited domains this may be useful, but it requires
building special purpose feature extractors. For example, even in a
domain as intuitively well understood as human profiles,
accurately locating the nose is a non-trivial problem, even if we
discount the possibility of mustaches and glasses. Probably the
only reason any progress has been made in this area is that most
work reasonably assumes that faces presented in an image are
likely to be upright. For shape matching in skulls, the canonical
landmark is called the Frankfurt Horizontal [41], which is defined
by the right and left porion (the highest point on the margin of the
external auditory meatus) and the left orbitale (the lowest point on
the orbital margin). However, a skull can be missing the relevant
bones to determine this orientation and still have enough global
information to match its shape to similar examples. Indeed the
famous Skhul V skull shown in Figure 14 is such an example.
Other examples of domain dependent landmarking include [39]
who use the “sharpest corner”of leafs as landmarks. This idea
appears meaningful in the subset of leaf shapes they considered,
but in orbicular (circular) leafs the “sharpest corner”is not well
defined.
In domain independent landmarking, we align all the shapes to
some cardinal orientation, typically the major axis. This approach
may be useful for the limited domains in which there is a well-
defined major axis, perhaps the indexing of hand tools. However

1 More precisely the time complexity is O(Rplogp), where p is the number
of pixels in the perimeter and R is the number of rotations that need to
be executed. Here p = n, and while R is a user defined parameter, it
should be approximately equal n to guarantee all rotations (up to the
limit of rasterization) are considered.
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there is increasing recognition that the “… major axis is sensitive
to noise and unreliable”[44]. For example a recent paper shows
that under some circumstances, a single extra pixel can change the
rotation by  90 degrees [45].
To show how brittle landmarking can be we performed a simple
clustering experiment where we clustered three primate skulls
using Euclidean distance with both the major axis technique, and
the minimum distance of all possible rotations (as found by brute
force). Figure 3 shows the result. It is clear that the major axes do
not have any biological meaning: the points connecting each axis
for each specimen are not homologous (of shared evolutionary
origin). Therefore, the resulting cluster is meaningless in terms of
biology and morphology [41].

Figure 3: Top) Three primate skulls, two of them from the same
genus, are clustered using both the landmark rotation beginning at the
major axis, and the best rotation. Bottom) The landmark-based
alignment of A and B explains why the landmark-based clustering is
incorrect: a small amount of rotation error results in a large difference
in the distance measure

Note that testing all rotations does not guarantee homology.
However by considering all possible alignments, we would expect
(under the principle of parsimony) to achieve an approximately
homologous alignment. However, we note that what we are
making claims here about subjective similarity, not
morphogenesis [41].
The most important lesson we learned from this experiment (and
dozens of other similar experiments on diverse domains [14]) is
that rotation (mis)alignment is the most important invariance for
shape matching, unless we have the best rotation then nothing else
matters.

2.2 Rotation Invariant Features
A large number of papers achieve fast rotation invariant matching
by extracting only rotation invariant features and indexing them
with a feature vector [7]. This feature vector is often called the
shapes “signature”. There are literally dozens of rotation invariant
features including ratio of perimeter to area, fractal measures,
elongatedness, circularity, min/max/mean curvature, entropy,
perimeter of convex hull etc. In addition many researchers have
attempted to frame the shape-matching problem as a more familiar
histogram-matching problem. For example in [28] the authors
build a histogram containing the distances between two randomly
chosen points on the perimeter of the shapes in question. The

approach seems to be attractive, for example it can trivially also
handle 3D shapes, however it suffers from extremely poor
precision. For example, it cannot differentiate between the shapes
of the lowercase letters “d”and “b”, or “p”and “q”, since these
pairs of shapes have identical histograms. In general, all these
methods suffer from very poor discrimination ability [7]. In
retrospect this is hardly surprising. In order to achieve rotation
invariance, all information that contains rotation information must
be discarded; inevitably, some useful information may also be
discarded in this process. Our experience with these methods
suggests that they can be useful for making quick coarse
discriminations, for example differentiating between skulls and
vertebrae. However we could not get these methods to distinguish
between the skulls of humans and orangutan, a trivial problem for
human or the brute force algorithm discussed in the next section.

2.3 Brute Force Rotation Alignment
There are a handful of papers that recognize that the above
attempts at approximating rotation invariance are unsatisfactory
for most domains, and they achieve true rotation invariance by
exhaustive brute force search over all possible rotations, but only
at the expense of computational efficiency and indexability
[1][2][3][9][23][39]. For example, paper [1] uses DTW to handle
nonrigid shapes in the time series domain, while they note that
most invariances are trivial to handle in this representation, they
state “rotation invariance can (only) be obtained by checking all
possible circular shifts for the optimal diagonal path.”This step
makes the comparison of two shapes O(n3) and forces them to
abandon hope of indexing. Similarly paper [39] notes “In order to
find the best matching result, we have to shift one curve n times,
where n is the number of possible start points.”
In [23] the authors discretize the shapes into chain codes, and
introduce a fast dynamic programming method to test all
rotations. They note “The algorithm runs in O(nnlgn) time, where
n is the length of the compared strings.”. Of course this is an
exact bound, but we achieve an empirical O(n1.06) on large
datasets (cf. Section 5). Given that most boundaries have about
1,000 datapoints long, this suggests that we are thousands of times
faster while also able to avoid discretization errors and avoiding
the need to set several parameters.
Dozens of papers have suggested that shape matching can be
made faster by sampling the contours. For example, in [19] the
authors note: “it is first necessary to reduce the number of data
points on the contour to a reasonable number that can be
evaluated using shape similarity measurement.”These authors are
interested in classifying fish. The fish shapes are reduced down to
mere forty data points because they “… found that a reduced data
set of 40 points was sufficient to retain the important shape
features for comparison”[19]. This dramatic data reduction did
make the similarity measure more tractable, but we wondered if
the assumption that it “retain(s) the important shape features”
was true. We compared their results, which after considerable
parameter tuning claimed “the highest recognition accuracy of
64%”, with rotation invariant Euclidean distance on the raw data.
Surprisingly this simple, parameter-free method achieves 88.57%
accuracy (cf Section 5), which is much greater than the sampling
approach.

Other techniques introduced mitigate the untenable computational
complexity of testing “all” rotations do so at the expense of
introducing false dismissals. Typically they offer some implicit or
explicit trick to find a one (or a small number of) of starting
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point(s) [2][3][9]. For example paper [2] suggests “In order to
avoid evaluation of the dissimilarity measure for every possible
pair of starting contour points …we propose to extract a small set
of the most likely starting points for each shape.”Furthermore,
both the heuristic used and the number of starting points must “be
adjusted to a given application”, and it is not obvious how to best
achieve this.
In forceful experiments on publicly available datasets it has been
demonstrated that brute force rotation alignment produces the best
precision/recall and accuracy in diverse domains [1][2]. In
retrospect this is not too surprising. The rival techniques with
rotation invariant features are all using some lossy transformation
of the data. In contrast the brute force rotation alignment
techniques are using a (potentially) lossless transformation of the
data. With more high quality information to use, any distance
measures will have an easer time reflecting the true similarity of
the original images.
The contribution of this work is to speed up these accurate but
slow methods by many orders of magnitude while producing
identical results.

2.4 Indexing Star Light Curves
While this paper is focused on the indexing of shapes, it has come
to our attention that our techniques are ideally suited to the
indexing of an important type of astronomical data known as star
light curves. We would be remiss not to make this connection
clear, so we briefly discuss the application and provide some
experimental results below.
Globally there are myriads of telescopes covering the entire sky
and constantly recording massive amounts of valuable
astronomical data. Having humans to supervise all observations is
practically impossible; hence the increasing interest in computer
aided astronomy. A star light curve is a time series of brightness
of a celestial object as a function of time. The study of light
curves in astronomy is associated with the study of variability of
sources. That led to the discoveries of pulsars, extra solar planets,
supernovae, the rate of expansion of the universe just to name
few. At the Time Series Center at Harvard University Initiative in
Innovative Computing there are more than a 100 million such
curves (with billions more expected by 2009) however none of
this data is currently searchable (other than by brute force search).

Figure 4: An examples of two similar star light curves.

There is a need to compare the similarity of light curves for basic
astronomical research, for example in [29] researchers discover
unusual light curves worthy of further examination by finding the
examples with the least similarity to other objects. There are two
things which make this difficult. First is the enormous volume of
data, the second is the fact that while is it possible to extract a
single period of a light curve, there is no natural starting point. In
order the find the similarity of two light curves it is therefore
necessary to compare every possible circular shift of the data [29],
which as we show below corresponds exactly to the rotation
invariance matching problem for shapes in the one-dimensional
representation. The astronomical community [29] has mitigated
some of the CPU effort for circular-shift matching by
rediscovering the convolution “trick” long known to the shape

matching community [38]. However this technique does not help
reduce disk accesses for data which does not fit in main memory,
and only allows matching under the Euclidean metric.

3. ROTATION INVARIANT MATCHING
We begin by formally defining the rotation invariant matching
problem. We begin by assuming the Euclidean distance, and
generalize to other distance measures later. For clarity of
presentation we will generally refer to “time series”, which the
reader will note can be mapped back to the original shapes.
Suppose we have two time series, Q and C of length n, which
were extracted from shapes by an arbitrary method.

Q = q1,q2,… ,qi,… ,qn

C = c1,c2,… ,cj,… ,cn

As we are interested in large data collections we denote a database
of m such time series as Q .

Q = {Q1, Q2, ...Qm}

If we wish to compare two time series, and therefore shapes, we
can use the ubiquitous Euclidean distance:
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,

When using Euclidean distance as a subroutine in a classification
or indexing algorithm, we may be interested in knowing the exact
distance only when it is eventually going to be less than some
threshold r. For example, this threshold can be the “range”in
range search or the “best-so-far”in nearest neighbor search. If this
is the case, we can potentially speed up the calculation by doing
early abandoning [17].

Definition 1. Early Abandon: During the computation of the
Euclidean distance, if we note that the current sum of the
squared differences between each pair of corresponding data
points exceeds r2, then we can stop the calculation, secure in
the knowledge that the exact Euclidean distance had we
calculated it, would exceed r.

While the idea of early abandoning is fairly obvious and intuitive,
it is so important to our work we illustrate it in Figure 5 and
provide pseudocode in Table 1.

Figure 5: A visual intuition of early abandoning. Once the squared
sum of the accumulated gray hatch lines exceeds r2, we can be sure
the full Euclidean distance exceeds r

Note that the “num_steps” value returned by the optimized
Euclidean distance in Table 1 is used only to tell us how useful
the optimization was. If its value is significantly less than n this
suggests dramatic speedup.

Table 1: Euclidean distance optimized with early
abandonment

algorithm [dist, num_steps] = EA_Euclidean_Dist(Q, C, r )

accumulator = 0

for i = 1 to length(Q ) // Loop over time series

accumulator += (qi - ci)
2

// Accumulate error contribution

If accumulator > r 2
// Can we abandon?
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disp(‘doing an early abandon’)

num_steps = i

return [ infinity, num_steps ] // Terminate and return an

end // infinite error to signal the

end // early abandonment.

return [ sqrt(accumulator), length(Q ) ] // Terminate with true dist

While the Euclidean distance is a simple distance measure it
produces surprisingly good results for clustering, classification
and query by content of shapes, if the time series in question
happen to be rotation aligned. For example, in an experiment in
[30] we manually performed rotation alignment of the time series
extracted from face profiles by explicitly showing the algorithm
the beginning and endpoint of a face (the nape and Adams apple
respectively).
However if the shapes are not rotation aligned, this method can
produce extremely poor results. Recall the results in Figure 1,
where a few degrees of misalignment give objectively and
subjectively incorrect clusterings. To overcome this problem we
need to hold one shape fixed, rotate the other, and record the
minimum distance of all possible rotations.
For reasons that will become apparent later, we achieve this by
expanding one time series into a matrix C of size n by n.
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Note that each row of the matrix is simply a time series, shifted
(rotated) by one from its neighbors. It will be useful below to
address the time series in each row individually, so we will denote
the ith row as Ci, which allows us to denote the matrix above in the
more compact form of C = {C1, C2,… , Cn}.
We can now define the Rotation invariant Euclidean Distance
(RED) as:

RED(Q, C) =    
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Table 2 shows the pseudocode to calculate this.

Table 2: An algorithm to find the rotated match between two
time series

algorithm: [bestSoFar] = Test_All_Rotations(Q,C,r)

bestSoFar = r

for j = 1 to n

distance = EA_Euclidean_Dist(Q, Cj, bestSoFar) // As in Table 1

if distance < bestSoFar

bestSoFar = distance;

end;

end;

return[bestSoFar]

Note that the algorithm tries to take advantage of early
abandoning by passing EA_Euclidean_Dist the value of r, the best
rotation alignment discovered thus far.
If we are simply measuring the distance between two time series
then the algorithm is invoked with r set to infinity, however, as we
shall see below, if the algorithm is being used as a subroutine in a
linear scan of a large dataset Q , the calling routine can set the

value of r to achieve speedup. In particular the calling function
sets r to the value of the best match (under any rotation)
discovered thus far. Table 3 shows the pseudocode. Note that the

time complexity for this algorithm is O(mn2). This is simply
untenable for large datasets.

Table 3: An algorithm to find the best rotated match to
query from a database of possible matches

algorithm: [best_match_loc,bestSoFar]=Search_Database_for_Rotated_Match(C, Q )

best_match_loc = null

bestSoFar = inf

for i = 1 to number_of_time_series_in_database( Q )

distance = Test_All_Rotations(
iQ ,C, bestSoFar); // As in Table 2

if distance < bestSoFar

best_match_loc = i

bestSoFar = distance

end;

end;

return[best_match_loc, bestSoFar]

We will review the notation introduced thus far in Table 4.
Table 4: Notation Table

C A time series c1,c2,… ,cj,… ,cn

C A n by n matrix containing every rotation of C

Ci The ith row of the above
Q Another time series q1,q2,… ,qi,… ,qn

Q A database containing many time series Q = {Q1,..,Qm}

Note that our notation seems somewhat space inefficient in that it
expands time series C, of length n, to a matrix of size n by n.
However the rest of the database uses the original (arbitrary
rotation) time series, and since the size of the database is assumed
to be large, this overhead is asymptotically irrelevant.
There are two simple and useful generalizations of definitions
thus far.
Mirror Image Invariance: Depending on the application we may

wish to retrieve shapes that are enantiomorphic (mirror images)
to the query. For example, in matching skulls, the best match
may simply be facing the opposite direction. In contrast when
matching letters we don’t want to match a “d” to a “b”. If
enantiomorphic invariance is required we can trivially achieve
this by augmenting matrix C to contain Ci and reverse(Ci ) for 1
 i  n.

Rotation-Limited Invariance: In some domains it may be useful
to express rotation-limited queries. For example, in order to
robustly retrieve examples of the number “6”, without retrieving
examples of the number “9”, we can issue a query such as:
“Find the best match to this shape allowing a maximum rotation
of  15 degrees”. Our framework trivially supports such
rotation-limited queries, by removing from the matrix C all time
series that correspond to the unwanted rotations.

Thus far we have shown a brute force search algorithm that can
support rotation invariance, rotation-limited invariance and/or
mirror image invariance. We simply put the appropriate time
series into matrix C and invoke the algorithm in Table 3. This
algorithm, even though speeded up by the early abandoning
optimization, is too slow for large datasets. In the next section we
introduce our novel search mechanism.

4. WEDGE BASED ROTATION MATCHING
We will begin by showing how we can efficiently search for the
best match in main memory. Since large datasets may not fit on
disk we will further show how we can index the data.



4.1 Fast and Exact Main Memory Search
We begin by defining time series wedges. Imagine that we take
several time series, C1,..,Ck , from our matrix C. We can use these
sequences to form two new sequences U and L:

Ui = max(C1i,..,Cki )
Li = min(C1i,..,Cki )

U and L stand for Upper and Lower respectively. We can see why
in Figure 6. They form the smallest possible bounding envelope
that encloses all members of the set C1,..,Ck from above and
below. More formally:

i Ui  C1i,..,Cki  Li

For notational convenience, we will call the combination of U and
L a wedge, and denote a wedge as W:

W = {U, L}

Figure 6: Top) Two time series C1 and C2. Middle) A time series wedge
W, created from C1 and C2. Bottom) An illustration of LB_Keogh

We can now define a lower bounding measure between an
arbitrary time series Q and the entire set of candidate sequences
contained in a wedge W:
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Below we show a proof of this lower bounding property. A
similar proof appears in [14] and also in [21], where the authors
use this representation for different problem.
Proposition 1: For any sequence Q of length n and a wedge W
containing a set of time series C1,..,Ck of the same length n, the
following inequality holds:

),(),(_ sCQEDWQKeoghLB 
, where s = 1, 2, ..., k.

Proof:
Suppose we know that among the k time series C1,..,Ck , Cs has
the minimal Euclidean distance to query Q. And we wish to prove
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Since the terms under radicals are positive, we can square both
sides:
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Below we will show that every term in the left summation can be
matched with some greater or equal term in the right summation.

There are three cases to consider, for the moment we will just
consider the case when ii Uq  . We want to show:
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By definition Ui =
max(C1i,..,Cki )

This is obviously true.

The case ii Lq 
yields to a similar argument. The final case is

simple to show, since clearly
2)(0 sii Cq 

because
2)( sii Cq 

must be nonnegative.
Thus we have shown that each term on the left side is matched
with an equal or larger term on the right side. Our inequality
holds. ■

Note that the LB_Keogh function has been used before to support
DTW [16][30][31][37], uniform scaling [18], and query filtering
[40]. For these tasks the lower bounding distance function is the
same, but the definition of U and L are different.
There are two important observations about LB_Keogh. First, in
the special case where W is created from a single candidate
sequence, it degenerates to the Euclidean distance. Second, not
only does LB_ Keogh lower bound all the candidate sequences
C1,..,Ck, but we can also do early abandon with LB_Keogh.
While the latter fact might be obvious, for clarity we make it
explicit in Table 5.

Table 5: LB_Keogh optimized with early abandonment

algorithm [dist, num_steps] = EA_LB_Keogh(Q, W, r )

accumulator = 0

for i = 1 to length(Q ) // Loop over time series

if qi > W.Ui // Accumulate error contribution

accumulator += (ci - W.Ui )
2

elseif qi < W.Li

accumulator += (ci - W.Li )
2

end

if accumulator > r 2
// Can we abandon?

return [ infinity, i ] // Terminate and return an infinite error

end // to signal the early abandonment.

end

return [ sqrt(accumulator), length(Q ) ] // Terminate with true dist

Note once again that the value returned in “num_steps”is merely
a bookkeeping device to allow a post mortem evaluation of
efficiency.

Suppose we have just two time series C1 and C2 of length n, and
we know that in future we will be given a time series query Q and
asked if one (or both) of C1 and C2 are within r of the query. We
naturally wish to minimize the number of steps we must perform
(“steps”are measured by “num_steps”). We are now in a position
to outline two possible approaches to this problem.
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 We can simply compare the two sequences, C1 and C2 (in
either order) to the query using the early abandon algorithm
introduce in Table 1. We will call this algorithm, classic.

 We can combine the two candidate sequences into a wedge,
and compare Q to the wedge using LB_Keogh. If the
LB_Keogh function early abandons, we are done. We can
say with absolute certainty that neither of the two candidate
sequences is within r of the query. If we cannot early
abandon on the wedge, we need to individually compare the
two candidate sequences, C1 and C2 (in either order) to the
query. We will call this algorithm, Merge.

Let us consider the best and worst cases for each approach. For
classic the worst case is if both candidate sequences are within r
of the query, which will require 2n steps. In the best case, the first
point in the query may be radically different to the first point in
either of the candidates, allowing immediate early abandonment
and giving a total cost of 2 steps.

For Merge, the worst case is also if both candidate sequences are
within r of the query, because we will waste n steps in the lower
bounding test between the query and the wedge, and then n steps
for each individual candidate, for a total of 3n. However the best
case, also if the first point in the query is radically different,
would allow us to abandon with a total cost of 1 step.

Which of the two approaches is better depends on:

 The shapes of C1 and C2. If they are similar, this greatly
favors Merge.

 The shape of Q. If Q is truly similar to one (or both) of the
candidate sequences, this would greatly favor classic.

 The matching distance r. Here the effect is non monotonic
and dependent on the two factors above.

We can generalize the notion of wedges by hierarchically nesting
them. Let us begin by augmenting the notation of a wedge to
include information about the sequences used to form it. For
example, if a wedge is built from C1 and C2, we will denote it as
W(1,2). Note that a single sequence is a special case of a wedge, for
example the sequence C1 can also be denoted as W1. We can
combine W(1,2) and W3 into a single wedge by finding maximum
and minimum values for each ith location, from either wedge.
More concretely:

Ui = max(W(1,2)i, W3i )
Li = min(W(1,2)i, W3i )
W((1,2),3) = {U, L}

In Figure 7 we illustrate this notation. We call W(1,2) and W3

children of wedge W((1,2),3). Since individual sequences are special
cases of wedges, we can also call C1 and C2 children of W(1,2).

Figure 7: An illustration of hierarchically nested wedges

Given the generalization to hierarchal wedges, we can now also
generalize the Merge approach. Suppose we have a time series Q
and a wedge W((1,2),3). We can compare the query to the wedge
using LB_Keogh. If the LB_Keogh function early abandons, we
are done. We know with certainty that none of the three candidate
sequences is within r of Q. If we cannot early abandon on the
wedge, we need to compare the two child wedges, W(1,2) and W3 to
the query. Again, if we cannot early abandon on the wedge W(1,2),
we need to individually compare the two candidate sequences, C1

and C2 (in either order) to the query. We call this algorithm H-
Merge (Hierarchal Merge).

The utility of a wedge is strongly correlated to its area. We can get
some intuition as to why by visually comparing LB_Keogh(Q,
W(1,2)) with LB_Keogh(Q, W((1,2),3)) as shown in Figure 8. Note
that the area of W((1,2),3) is much greater than that of W(1,2), and that
this reduces the value returned by the lower bound function and
thus the possibility to early abandon.

Figure 8: Top) An illustration of LB_Keogh(Q, W(1,2)). Bottom) An
illustration of LB_Keogh(Q, W((1,2),3)). Note that the tightness of the
lower bound is proportion to the number and length of vertical lines

For some problems, the H-Merge algorithm can give
exceptionally poor performance. If the wedge W(1,2), created from
C1 and C2 has an exceptional large area (i.e. C1 and C2 are very
dissimilar), it is very unlikely to be able to prune off any steps.

At this point we can see that the efficiency of H-Merge is
dependent on the candidate sequences and Q itself. In general,
merging similar sequences into a hierarchal wedge is a good idea,
but merging dissimilar sequences is a bad idea.

The observations above motivate a final generalization of H-Merge.
Recall that to achieve rotation invariance we expanded our time
series C into a matrix with n time series. Given these n sequences,
we can merge them into K hierarchal wedges, where 1  K  n.
This merging forms a partitioning of the data, with each sequence
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belonging to exactly one wedge. We will use W to denote a set of
hierarchal wedges:

W = {Wset(1) , Wset(2) ,.., Wset(K)} , 1  K  n

where Wset(i) is a (hierarchically nested) subset of the n candidate
sequences. Note that we have

Wset(i)  Wset(j) =  if i  j, and

| Wset(1) ∪Wset(2) ∪..∪ Wset(K) | = n

We will attempt to merge together only similar sequences. We can
then compare this set of wedges against our query. Table 6
formalizes the algorithm.

Table 6: Algorithm H-Merge

algorithm [dist] = H-Merge(Q, W,K, r )

S = {empty } // Initialize a stack.

for i = 1 to K // Place all the wedges into the stack.

enqueue(Wset(i) ,S )

end

while not empty(S )

T = dequeue(S )

dist = EA_LB_Keogh(Q,T,r ) // Note that is early abandon version.

if isfinite(dist) // We did not early abandon.

if cardinality(T ) = 1 // T was an individual sequence.

disp(‘The sequence ’,T, ‘is ’, dist, ‘ units from the query’)

return[dist]

else // T was a wedge, find its children

enqueue(children(T ) ,S ) // and push them onto the stack.

end

end

end

Note that this algorithm is designed to replace the
Test_All_Rotations algorithm that is invoked as a subroutine in the
Search_Database_for_Rotated_Match algorithm shown in Table 3.

As we shall see in our empirical evaluations, H-Merge can
produce very impressive speedup if we make judicious choices in
the set of hierarchal wedges that make up W. However, the
number of possible ways to arrange the hierarchal wedges is
greater than KK, and the vast majority of these arrangements will
be very poor, so specifying a good arrangement of W is critical.

A simple observation alleviates the need to invent a new
algorithm to find a good arrangement of W. Note that hierarchal
clustering algorithms have very similar goals to an ideal wedge-
producing algorithm. In particular, hierarchal clustering
algorithms can be seen as attempting to minimize the distances
between objects in each subtree. A wedge-producing algorithm
should attempt to minimize the area of each wedge. However the
area of a wedge is simply the maximum Euclidean distance
between any sequences contained therein (i.e Newton-Cotes rule
from elementary calculus). This motivates us to derive wedge sets
based on the result of a hierarchal clustering algorithm. Figure 10
shows wedge sets W, of every size from 1 to 5, derived from the
dendrogram shown in Figure 9.

Figure 9: A dendrogram of five sequences C1, C2,..., C5, clustered
using group average linkage

Given that the clustering algorithm produces the tentative wedge
sets, all we need to do is to choose the best one. We could attempt
to do this by eye, for example in Figure 10 it is clear that any
sequence that early abandons on W3, will almost certainly also
early abandon on both W2 and W5; similar remarks apply to W1

and W4. At the other extreme, the wedge at K = 1 is so “fat”that it
is likely have poor pruning power. The set W = {W((2,5),3), W(1,4)}
is probably the best compromise. However because the set of time
series might be very large, such visual inspection is not scalable.

Figure 10: Wedge sets W, of size 1 to 5, derived from the dendrogram
shown in Figure 9

The problem is actually even more complex, in that the best value
for K also depends on the current value of r (Recall r is the “best-
so-far”in nearest neighbor search.). If r is large then very little
early abandoning is possible and this favors a large value for K. In
contrast, if r is small we can do a lot of early abandoning, and we
are better off having many sequences in a single wedge so we can
early abandon all of them with a single calculation. Note however
that for nearest neighbor search the value of r will get smaller as
we search through the database.

With this in mind, we dynamically choose the wedge set based on
a fast empirical test. We start with the wedge set where K = 2.
Each time the bestSoFar value changes, we test a subset of the
possible values of K and choose the most efficient one (as
measured by num_steps) as the next K to use. Which subset to test
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is decided on-the-fly based on the current K value. They are the
values which evenly divide the ranges [1, current_K] and
[current_K, max_K] into 5 intervals. Note that on average the
bestSoFar value only changes log(m) during a linear search, so this
slight overhead in adjusting the parameter is not too burdensome,
however we do include this cost in all experiments in Section 5.

4.2 Lower Bounding in Index Space
True rotation invariance has traditionally been so demanding in
terms of CPU time that little or no effort was made to index it (or
it was indexed with the possibility of false dismissals with regard
to the raw shapes [4]). As we shall see in the experiments in
Section 5.2, the ideas presented in the last section produce such
dramatic reductions in CPU time that it is worth considering
indexing the data.
There are several possible techniques we could consider for
indexing. Recent years have seen dozens of papers on indexing
time series envelopes that we could attempt to leverage off
[16][21][30][31][37]. The only non-trivial adaptation to be made
is that instead of the query being a single envelope, it would be
necessary to search for the best match to K envelopes in the
wedge set W.
Note however that we do not necessarily have to use the
enveloping idea in the indexing phase. So long as we can lower
bound in the index space we can use an arbitrary technique to get
(hopefully a small subset of) the data from disk to main memory
[8], where our H-Merge can very efficiently find the distance to
the best rotation.

Table 7: A Vantage Point Tree for Indexing Shapes

Algorithm [BSF] = NNSearch(C)
BSF.ID = null; // BSF is the Best-So-Far variable
BSF.distance = infinity;
W = convert_time_series_to_wedge_set(C);
Search(

rootQ ,W, BSF); // Invoke subroutine on the root of index tree
Subroutine Search(NODE, W, BSF)
if NODE.isLeaf // we are at a leaf node.

for each compressed time-series cT in node
LB = computeLowerBound(cT, W);
queue.push(cT,LB); // sorted by lower bound.

end
while (not (queue.empty()) and (queue.top().LB < BSF.distance))

if (BSF.distance > queue.top().LB)
retrieve full time series Q of queue.top() from disk;
distance = H-Merge(Q, W, BSF.distance ) // calculate full distance.

if distance < BSF.distance // update the best-so-far
BSF.distance = distance; // distance and location.
BSF.ID = Q;

end
end

end
else // we are at a vantage point.

LB = computeLowerBound(VP, W);
queue.push(VP,LB);

if LB < (node.median + BSF.distance)
search(NODE.left, W, BSF); // recursive search left.

else
search(NODE.right, W, BSF); // recursive search right.

end
end

One possible method to achieve this indexable lower bound is to
use Fourier methods. Many authors have independently noted that
transforming the signal to the Fourier space and calculating the
Euclidean distance between the magnitude of the coefficients
produces a lower bounds to any rotation [4][38]. We can leverage
of this lower bound to use a VP-tree to index our time series as
shown in Table 7.

This technique is adapted from [38], and we refer the reader to
this work for a more complete treatment.

4.3 Generalizing to other Distance Measures
As we shall see in Section 5, the Euclidean distance is typically
very effective and intuitive as a distance measure for shapes.
However in some domains it may not produce the best possible
precision/recall or classification accuracy [2][30]. The problem is
that even after best rotation alignment, subjectively similar shapes
may produce time series that are globally similar but contain local
“distortions”. These distortions may correspond to local features
in that are present in both shapes but in different proportions. For
example in Figure 11 we can see that the larger brain case of the
Lowland Gorilla changes the locations in which the brow ridge
and jaw map to in a time series relative to the Mountain Gorilla.

Figure 11: The Lowland Gorilla and Mountain Gorilla are
morphologically similar, but have slightly different proportions.
Dynamic Time Warping can be used to align homologous features in
the time series representation space

Even if we assume that the database contains the actual object
used as a query, it is possible that the two time series are distorted
versions of each. Here the distortions may be caused by camera
perspective effect, differences in lighting causing shadows which
appear to be features, parallax etc.
Fortunately there is a well-known technique for compensating
such local misalignments, Dynamic Time Warping (DTW)
[16][30]. While DTW was invented in the context of 1D speech
signals others have noted its utility for matching shapes, including
face profiles [5], hand gestures [25], leafs [30] and handwriting
[31].
To align two sequences using DTW, an n-by-n matrix is
constructed, where the (ith, jth) element of the matrix is the
distance d(qi, cj) between the two points qi and cj (i.e. d(qi, cj) = (qi

- cj)
2 ). Each matrix element (i, j) corresponds to the alignment

between the points qi and cj, as illustrated in Figure 12.
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Gorilla gorilla beringei

Lowland Gorilla
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A warping path P is a contiguous set of matrix elements that
defines a mapping between Q and C. The tth element of P is
defined as pt = (i, j)t so we have:

P = p1, p2, … , pt, … , pT n ≤ T < 2n-1
The warping path that defines the alignment between the two time
series is subject to several constraints. For example, the warping
path must start and finish in diagonally opposite corner cells of
the matrix; the steps in the warping path are restricted to adjacent
cells (including diagonally adjacent cells); the points in the
warping path must be monotonically spaced in time. In addition to
these constraints, virtually all practitioners using DTW also
constrain the warping path in a global sense by limiting how far it
may stray from the diagonal [16][30][31]. A typical constraint is
the Sakoe-Chiba Band which states that the warping path cannot
deviate more than R cells from diagonal [34].

Figure 12: Left) Two time series sequences with local differences. Right)
To align the sequences we construct a warping matrix, and search for the
optimal warping path, shown with solid squares. Note that Sakoe-Chiba
Band with width R is used to constrain the warping path

The optimal warping path can be found in O(nR) time by dynamic
programming [16].

Based on an arbitrary wedge W and the allowed warping range R,
we define two new sequences, DTW_U and DTW_L:

DTW_Ui = max(Ui-R : Ui+R )

DTW_Li = min(Li-R : Li+R )

They form an additional envelope above and below the wedge, as
illustrated in Figure 13.

Figure 13: The idea of bounding envelopes introduced in Figure 6 is
generalized to allow DTW. A) Two time series C1 and C2. B) A time
series wedge W, created from C1 and C2. C) In order to allow lower
bounding of DTW, an additional envelope is created above and below
the wedge. D) An illustration of
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We can now define a lower bounding measure for DTW distance
between an arbitrary query Q and the entire set of candidate
sequences contained in a wedge W:
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We will now prove the claim of the lower bounding.

Proposition 2: For any sequence Q of length n and a wedge W
containing a set of time series C1, … , Ck of the same length n, for
any global constraint on the warping path of the

form RjiRj  , the following inequality holds:
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Proof:
Suppose we know that among the k time series C1, … , Ck, Cs has
the minimal DTW distance to query Q. And we wish to prove
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Since the terms under radicals are positive, we can square both
sides:
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Recall that that when we stated the definition of the warping path
above we had, P = p1, p2, … , pt, … , pT n ≤ T < 2n-1. We
therefore have n ≤ T, so our strategy will be to show that every
term in the left summation can be matched with some greater or
equal term in the right summation.
There are three cases to consider, for the moment we will just
consider the case when qi > DTW_Ui . We want to show:

stii pUDTWq  2)_(

22 )()_( sjiii CqUDTWq  By Definition 3

)()_( sjiii CqUDTWq  Since qi > DTW_Ui , we
can take square roots on
both sides

sji CUDTW  _ Subtract qi from both
sides

isj UDTWC _ Add DTW_Ui + Csj to
both sides

):max( RiRisj UUC 

By definition DTW_Ui =
max(Ui-R : Ui+R )

Since the query sequence Q and all the candidate sequences C1,
… , Ck are of the same length and j-R ≤ i ≤ j+R, we know i-R ≤ j ≤
i+R. So we can rewrite the right side and the inequality becomes

),...,,...,,max( )1( RijRiRisj UUUUC 

If we remove all terms except Uj from the RHS we are left with
)max( jsj UC 

which is obviously true since Uj = max(C1j,..,Ckj).
The case qi < DTW_Ui yields to a similar argument. The final case

is simple to show, since clearly
2)(0 sji Cq 

because
2)( sji Cq 

must be nonnegative.
Thus we have shown that each term on the left side is matched
with an equal or larger term on the right side. Our inequality
holds. ■
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For brevity we omit the very minor modifications required to
index LB_KeoghDTW(Q,W), however [37] contains the necessary
modifications for both DTW and for LCSS which is discussed
below.
To facilitate later efficiency comparisons to Euclidean distance
and other methods, it will be useful to define the time complexity
of DTW in terms of “num_steps”as returned by Table 1 and
Table 5. The variable “num_steps”is the number of real-value
subtractions that must be performed, and completely dominates
the CPU time, since the square root function is only performed
once (and can be removed, see [17]). If we construct a full n by n

warping matrix, then DTW clearly requires at least n2 steps.
However as we noted above and illustrated in Figure 12, we can
truncate the corners of the matrix to reduce this number to
approximately nR, where R is the width of the Sakoe-Chiba Band.
While nR is the number of steps for a single DTW, we expect the
average number of steps to be less, because some full DTW
calculations will not be needed if the lower bound test fails. Since
the lower bound test requires n steps, the average number of steps
when doing m comparisons should be:

m

nmnRam )()( 

Where a is the fraction of the database that requires the full DTW
calculated. Note that even this is pessimistic, since both DTW2

and LB_KeoghDTW are implemented as early abandoning (recall
Table 5). We therefore simply count the “num_steps”required by
each approach and divide it by m to get the average number of
steps required for one comparison.
In addition to DTW, several researchers have suggested using
Longest Common SubSequence (LCSS) as a distance measure for
shapes. The LCSS is very similar to DTW except that while DTW
insists that every point in C maps onto one (or more) point(s) in
Q, LCSS allows some points to go unmatched. The intuition
behind this idea in a time series domain is that subsequences may
contain additions or deletions, for example an extra (or forgotten)
dance move in a motion capture performance, or a missed beat in
ECG data. Rather than forcing DTW to produce an unnatural
alignment between two such sequences, we can use LCSS, which
simply ignores parts of the time series that are too difficult to
match. In the image space the missing section of the time series
may correspond to a partial occlusion of an object, or to a
physically missing part of the object, as shown in Figure 14.

2 Note that a recursive implementation of DTW would always require nR
steps, however iterative implementation (as used here) can potentially
early abandon with as few as R steps.

Figure 14: A) The famous Skhul V is generally reproduced with the
missing bones extrapolated in epoxy, however the original Skhul V (B)
is missing the nose region, which means it will match to a modern
human (C) poorly, even after DTW alignment (inset). In contrast, LCSS
alignment will not attempt to match features that are outside a
“matching envelope”(heavy gray line) created from the other sequence.

Real world examples of domains that require LCSS abound. For
example anthropologists are interested in exploring large dataset
of projectile points (“arrowheads”). At the UCR Lithic
Technology Lab at UCR there are over a million specimens, so
indexing is required for efficient access. While anthropologists
have long been interested in shape, interest in matching such
objects is further fueled by the availability of computing power
and by a recent movement that notes, “an increasing number of
archaeologists are showing interest in employing Darwinian
evolutionary theory to explain variation in the material record”
[26]. Anthropologists have recently used tools from biological
morphology to attempt to explain spatial and temporal distribution
of projectile points in North America. As we illustrate in Figure
15 many examples are incomplete, missing tip or tangs. LCSS can
ignore such missing feature to provide more robust matching.

Figure 15: Project points are frequently found with broken tips or
tangs. Such objects require LCSS to find meaningful matches to
complete specimens. From left to right, Edwards, Langtry, and
Golondrina projectile points.

While we considered LCSS for generality, we will not further
explain how to incorporate it into our framework. It has been
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shown in [37] that it is trivial to lower bound LCSS using the
envelope-based techniques described above. The minor changes
include reversing some inequality signs since LCSS is a similarity
measure, not a distance measure. Unlike Euclidean distance which
has no parameters, or DTW, which has one intuitive and easy to
set parameter, LCSS requires 2 parameters, and tuning them is
nontrivial. In objective classification experiments we found that
we could sometimes tune LCSS to slightly beat DTW on some
problems, however we did not have large enough datasets to allow
training/test splits that guarded against overfitting to a statistically
significant standard. Automatically choosing the correct
parameters for LCSS is a matter for future research.

5. EXPERIMENTAL RESULTS
In this section we empirically evaluate our approach. We begin by
stating our experimental philosophy. In a recent paper Veltkamp
and Latecki attempted to reproduce the accuracy claims of several
shape matching papers but discovered to their dismay that they
could not match the claimed accuracy for any approach [36]. One
suggested reason is the observation that many approaches have
highly tuned parameters, a fact which we believe makes Euclidean
distance (zero parameters) and DTW (one parameter) particularly
attractive. Veltkamp and Latecki conclude “It would be good for
the scientific community if the reported test results are made
reproducible and verifiable by publishing data sets and software
along with the articles”. We completely concur and have placed
all datasets at the following URL [14].

5.1 Effectiveness of Shape Matching
In general this paper is not making any claims about the
effectiveness of shape matching. Because we are simply speeding
up arbitrary distance calculations on arbitrary 1-dimensional
representations of shapes, we automatically inherit the well-
documented effectiveness of other researchers published work
[1][2][3][9][12][30][38].
Nevertheless, for completeness and in order to justify the extra
computational expense of DTW, we will show the effectiveness of
shape matching on several publicly available datasets.
Table 8 shows the error rate of one-nearest neighbor classification
as measured using leaving-one-out evaluation. Recall that
Euclidean distance has no parameters, DTW has a single
parameter (the warping window width R) which was learned by
looking only at the training data.

Table 8: The Error of Euclidean distance and DTW on
publicly available datasets

Name Number of
Classes

Number
of

Instances

Euclidean
Error (%)

DTW
Error (%) {R}

Face 16 2240 3.839% 3.170% {3}

Swedish Leaves 15 1125 13.33% 10.84% {2}

Chicken 5 446 19.96% 19.96% {1}

MixedBag 9 160 4.375% 4.375% {1}

OSU Leaves 6 442 33.71% 15.61% {2}

Diatoms 37 781 27.53% 27.53% {1}

Aircraft 7 210 0.95% 0.0% {3}

Fish 7 350 11.43% 9.71% {1}

Light-Curve 3 954 14.15% 11.43% {3}

Yoga 2 3300 4.70% 4.85% {1}

For the Face and Leaf datasets the (approximate) correct rotation
was known [30]. We removed this information by randomly
rotating the images.

The MixedBag dataset is small enough to run the more
computationally expensive Chamfer [6] and Hausdorff [27]
distance measures. They achieved an error rate of 6.0% and 7.0%
respectively [38], slightly worse than Euclidean distance.
Likewise the Chicken dataset allows us to compare directly to
[24], which used identical experiments to test 6 different
algorithms based on discrete sequences extracted from the shapes.
The best of these algorithms had an error rate of 20.5% and took
over a minute for each distance calculation, whereas our approach
takes an average time of 0.0039 seconds for each distance
calculation3. For the Diatom dataset, the results are competitive
with human experts, whose error rates ranged from 57% to 13.5%
[12], and only slightly worse than the Morphological Curvature
Scale Spaces (MCSS) approach of [12], which got 26.0%. Note
however that the Euclidean distance requires zero parameters once
the time series have been extracted, whereas the MCSS has
several parameters to set. On the aircraft dataset the data donors
tried 4 different Hidden Markov Model based approaches and
achieve a best error-rate of 0.95% [35]. However, we can achieve
this accuracy with zero-parameter Euclidean distance and get zero
error with DTW. The data donors of the fish dataset tested many
shape descriptors, such as Fourier descriptors, polygon
approximation and line segments to achieve the best error rate of
36.0% [19], however we get dramatically lower error rates for
both Euclidean distance and DTW.

The yoga dataset is of particular interest. It has previously been
classified without rotation invariance [15]. In that case human
volunteers painstakingly located a landmark point in each of
3,300 images. The accuracy for the human annotated dataset was
17.0% and 15.5% for Euclidean distance and DTW respectively.
However the rotation invariant classification here has reduced the
error rate by a factor of three. Since the only thing to differ
between the two experiments is rotation invariance, this strongly
supports the contention made in Section 2.1, that “rotation
(mis)alignment is the most important invariance for shape
matching, unless we have the best rotation then nothing else
matters”. Note that here DTW is very slightly worse on the
dataset, but the difference is not statistically significant at the 0.01
level.

5.2 Shape Matching Sanity Checks
In general the experiments in the previous section show two
things (which had been noted before), the extra effort of DTW is
useful in some domains, and very simple time series
representations of shapes are completive to other more complex
representations.
We also performed extensive “sanity check” experiments in
domains where we could meaningful visualize the results.

Our first example uses a large database of skulls. For all primate
species where we have at least two examples we perform a
hierarchical clustering and check to see if both samples of the
same species clustered together. Figure 16 shows a typical
example.

3 We are aware that one should normally not compare CPU times from
different computers, however here the 4 orders of magnitude offers a
comfortable margin that dwarfs implementation details.



Figure 16: A group average hierarchal clustering of eight primate
skulls based on the lateral view, using Euclidean distance

It is important to recall that Figure 16 shows a phenogram, not a
phylogenetic tree. However on larger scale experiments in this
domain (shown in [14]) we found that large subtrees of the
dendrograms did conform to the current consensus on primate
evolution.
While the Euclidean distance works very well on the relatively
simple primate skulls, we found that considering a more
(morphologically) diverse groups of animals, such as all reptiles,
requires DTW as a distance measure. Consider Figure 17 which
shows a hierarchical clustering of a very diverse set of reptiles. As
with the primates, this is not the correct phylogenetic tree for
these animals, once again however, the (uniquely colored)
subtrees do correspond to current consensus on reptiles evolution
based on DNA analysis and/or more complete morphological
studies [10][11].
Note that we are not claiming that our shape matching techniques
replace or even complement classic morphometrics in zoology.
The point of these experiments is that if the shape matching
techniques can produce intuitive results in a domain in which we
know the correct relationships by other means, this suggests that
algorithms may also produce meaningful results in shape
problems for which there is more uncertainty, including projectile
points (see [26] and Figure 15), petroglyphs, insect bite patterns
in leaves [42], mammographic calcifications [43] etc.
It has recently been claimed that shape matching methods that
only look at the contours of shapes (boundary based methods) are
brittle to articulation distortion [33], however we believe that
while this may be true for certain boundary based methods (i.e
Hausdorff, Champer etc) the centroid based method we use is very
robust to articulation distortions. To demonstrate this, we
conducted a simple experiment/demonstration. We took three
Lepidoptera, including the very similar and closely related Actias
maenaes and Actias philippinica, and produced a copy of each.
We then took these copies and “bent”the right hindwing. The
clustering of the three originals and three copies under Euclidean
distance, group average linkage is shown in Figure 18.

Figure 17: A group average hierarchal clustering of fourteen reptile
skulls based on the superior view, using DTW distance
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Figure 18: An experiment to demonstrate that the centroid method is
reasonably articulation invariant. The gray highlighted areas have
been randomly “tweaked”in a photo editing program

As we can see, the one dimensional representation has hardly
changed, and the clustering correctly groups the three pairs. We
found that using DTW we can even more radically distort the
shapes and achieve similar results.
Given the above, why do boundary based methods have such a
poor reputation for domains where articulation is a problem [33]?
We believe the answer is not intrinsic to boundary based methods,
but lies in the measures typically used on them, especially the
Hausdorff distance and its many variants. Consider the following
thought experiment. Imagine we have two identical shapes; solid
automobiles. Assume that they have identical antenna protruding
from their roofs. As such, the Hausdorff distance between them is
zero, but if we bend the antenna in the spirit of Figure 18, we can
trivially increase the Hausdorff distance to one meter.
In addition to the above, the results in Table 8 already hinted at
the articulation invariance of our chosen representation. Many of
the datasets considered have significant articulation. For example
the face dataset considers classes with both closed-lip and
laughing/yawning people, the two leaf dataset have significant
amounts of articulation at the stem, and the Yoga dataset features
very flexible people in version poses.
Finally, we note that paper [25] uses the ideas in the conference
version of this work to index hand geometries for biometrics. It is
clear that the human hand has a high degree of articulation.

5.3 Main Memory Experiments
There is increasing awareness that comparing two competing
approaches using only CPU time opens the possibility of
implementation bias [17]. As a simple example, while the Haar
wavelet transform is O(n) and DFT is O(nlogn), the DFT is much
faster in the popular language Matlab, simply because it is a
highly optimized subroutine. For this reason many recent papers
compare approaches with some implementation-free metric
[16][30][37][38]. As we noted earlier, the variable “num_steps”

returned by Table 1 and Table 5 allows an implementation free
measure to compare performance.
For Euclidean distance queries we compare to brute force and
Fourier (FFT) methods, which are the only competitors to also
guarantee no false dismissals. The cost model for the FFT lower
bound is nlogn steps. If the FFT lower bound fails we allow the
approach to avail of our early abandoning techniques discussed in
Section 3.
We tested on two shape datasets, a homogeneous database of
16,000 projectile point images, all of length 251 and a
heterogeneous dataset consisting of all the data used in the
classification experiments, plus 1,000 projectile points. In total
the heterogeneous dataset contains 5,844 objects of length 1,024.
To measure the performance we averaged over 50 runs, with the
query object randomly chosen and removed from the dataset.
We measure the average number of steps required by each
approach for a single comparison of two shapes, divided by the
number of steps require by brute force. For our method, we
include a startup cost of O(n2), which is the time require to build
the wedges. Because the utility of early abandoning depends on
the value of the best-so-far, we expect our method to do better as
we see larger and larger datasets.
Figure 19 shows the results on the projectile points dataset using
Euclidean distance.

Figure 19: The relative performance of four algorithms on the
Projectile Points dataset using the Euclidean distance measure

We can see that for small datasets our approach is slightly worse
than FFT and simple Early abandon because we had to spend
some time building the wedges. However, by the time we have
seen 64 objects we have already broken even, and thereafter
rapidly race towards beating FFT and Early abandon by one
order of magnitude and Brute force by two orders of magnitude.
The results on the projectile points dataset using DTW are shown
in Figure 20, and are even more dramatic.
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Figure 20: The relative performance of four algorithms on the
Projectile Points dataset using the DTW distance measure. The inset
shows a zoom-in of the 3 best algorithms when m = 16,000

Here the cost of building the wedges is dwarfed by a single brute
force DTW-rotation-invariant comparison, so our approach is
faster even for a database of size 3. By the time we have examined
the entire database, our approach is more than 5,000 times faster
than the brute force approach. It is interesting to note that the
early abandoning strategy is by itself quite competitive, yet to our
knowledge no one uses it. We suspect this is because most people
are more familiar with the elegant and terse recursive version of
DTW, which does not allow early abandoning, than the iterative
implementation, which does. Note however that even though our
highly optimized early abandoning strategy is competitive, our
wedge approach is still an order of magnitude faster once the
dataset is larger than 500 objects.
Sometimes indexing methods that work well for highly
homogeneous datasets do not work well for heterogenous
datasets, and vice versa. We consider this possibility by testing on
the heterogenous dataset in Figure 21.

Figure 21: The relative performance of four algorithms on the
Heterogeneous dataset using Euclidean distance (left) and DTW (right)

In this dataset it takes our wedge approach slightly longer to beat
Early abandon (and FFT for Euclidean search), however by the
time we have seen 8,000 objects our approach is two orders of
magnitude faster than its Euclidean competitors, and for DTW it
is an order of magnitude faster than Early abandon and 3,976
times faster than brute force.
Recall that our algorithm requires the setting of a single
parameter, the number of intervals to search for a new value for K
every time the bestSoFar variable is updated. In all the experiments
above this value was set to 5. We found that we can change this
value to any number in the range 3 to 20 without affecting the
performance of our algorithm by more than 4%, we therefore omit
further discussion of this parameter setting.

The Time Series Center at Harvard University Initiative in
Innovative Computing has collected light curves from various
completed surveys (total 100 million examples) and is collecting
data from an on-going survey (TAOS) which is producing few
billion additional examples. While light curves have been
collected for decades it is only recent years in which we have
begun to see serious efforts to index and data mine them. For
consistency we only consider the indexing of the small hand
labelled set of examples use in the classification experiments in
Table 8. Figure 22 shows the performance of the four rival
methods on the light curves under the Euclidean distance.

Figure 22: The relative performance of four algorithms on the light
curve dataset using Euclidean distance

As before, our approach is slightly slower on small datasets due to
the setup overhead. However once the dataset has more than 125
objects the wedge-based approach is slightly faster, and by the
time we see the full dataset it is and order of magnitude better
than the FFT approach.
Recall that in the classification experiments shown in Table 8, the
classification of light curves is significantly faster with the DTW
distance. Figure 23 shows the performance of four rival methods
on the light curves under the Euclidean distance.

Figure 23: The relative performance of four algorithms on the light
curve dataset using DTW distance
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As in the shape dataset, our method is several orders of magnitude
faster.
As a final sanity check we also measured the wall clock time of
our best implementation of all method. The results are essentially
identical to those shown above and are omitted for clarity.

5.4 Disk Access Experiments
The results in the previous section show that we can do true
rotation invariant matching so fast that CPU time is no longer the
bottleneck, and we should therefore also attempt to minimize disk
accesses. We will compare to Linear Scan, which is the only other
competitor that we are aware of that allows exact rotation
invariant indexing under Euclidean distance and DTW with a
guarantee of no false dismissals. Recall that the lower bound used
by the VP-tree requires transforming the signal to the Fourier
space and calculating the Euclidean distance between the
coefficient magnitudes [38]. It is well understood that most of the
energy of the signal will be concentrated in a relatively small
number of these coefficients [37] and that using just a few large
valued coefficients is better than using all of them. We therefore
will perform experiments keeping just the first D coefficients,
were D = {4, 8, 16, 32}.
We count the fraction of items that must be retrieved from disk.
Figure 24 illustrates the results for the full projectile points and
heterogeneous datasets over a range of dimensionalities.

Figure 24: The fraction of items retrieved from disk to answer a 1-
nearest neighbor query, using dimensionalities D = {4, 8, 16, 32}.

6. CONCLUSIONS AND FUTURE WORK
We have introduced a method to support fast rotation-invariant
search of large shape datasets with arbitrary representations and
distance functions. Our method supports rotation limited queries
and mirror image invariance if desired.
Future work includes both extensions and applications of the
current work. We will attempt to extend this approach to the
indexing of 3D shapes, and we have begun to use our algorithm as
a subroutine in several data mining algorithms which attempt to
cluster, classify and discover motifs in a variety of
anthropological datasets, including petroglyph and projectile
point databases.

Reproducible Research Statement: All datasets and images used
in this work are freely available at this URL [14].
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