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ABSTRACT 
The ability to make predictions about future events is at the heart 
of much of science; so, it is not surprising that prediction has been 
a topic of great interest in the data mining community for the last 
decade. Most of the previous work has attempted to predict the 
future based on the current value of a stream. However, for many 
problems the actual values are irrelevant, whereas the shape of the 
current time series pattern may foretell the future. The handful of 
research efforts that consider this variant of the problem have met 
with limited success. In particular, it is now understood that most 
of these efforts allow the discovery of spurious rules. We believe 
the reason why rule discovery in real-valued time series has failed 
thus far is because most efforts have more or less indiscriminately 
applied the ideas of symbolic stream rule discovery to real-valued 
rule discovery. In this work, we show why these ideas are not 
directly suitable for rule discovery in time series. Beyond our 
novel definitions/representations, which allow for meaningful and 
extendable specifications of rules, we further show novel 
algorithms that allow us to quickly discover high quality rules in 
very large datasets that accurately predict the occurrence of future 
events. 

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Database Application – Data 
Mining 

Keywords 
Rule Discovery, Prediction, Motif Discovery, Time Series 

1. INTRODUCTION 
Prediction and forecasting have been a topic of great interest in 
the data mining community for the last decade. Most of the work 
in the literature has dealt with discrete objects, such as keystrokes 
(i.e. predictive text), database queries [16], medical interventions 
[28], web clicks, etc. However, prediction may also have great 
utility in real-valued time series. For concreteness we briefly 
consider two examples: 
• Researchers in robotic interaction have long noted the 

importance of short-term prediction of human initiated forces to 
allow a robot to plan its interaction with a human. For example 
a recent paper notes the critical “importance of the prediction of 
motion velocity and the anticipation of future perceived forces 
[to allow the] robot to anticipate the partner’s intentions and 
adapt its motion” [10]. 

 
• Doppler radar technology introduced in the last two decades has 

increased the mean lead time for tornado warnings from 5.3 to 
9.5 minutes, saving countless lives [3]. But progress seems to 
have stalled, with 26% of tornados within the US occurring with 
no warning. McGovern et al. argue that further improvements 
will come not from new sensors, but from yet-to-be-invented 
algorithms that “examine existing (time series) data for 
predictive rules” [19].   

Most of the current work has attempted to predict the future based 
on the current value of a stream [18]. However, for many 
problems the actual values are irrelevant, but the shape of the 
current pattern may foretell the future. For clarity we call the 
former forecasting, and the latter, the subject of this paper, rule-
based prediction (although the literature is inconsistent on this 
convention). There is an additional critical distinction between 
forecasting and rule-based prediction. Time series forecasting is 
typically always-on; it predicts values at every time step. In 
contrast, rule-based prediction monitors the incoming data at each 
time step, but only occasionally makes a prediction about an 
imminent occurrence of a pattern. 
While forecasting is mature enough to have its own conferences 
and commercial software (SAS, IBM Cognos, etc.), the handful of 
research efforts to consider time series rule-based prediction have 
met with limited success. In particular, it is widely accepted that 
these efforts allow the discovery of spurious rules [12], including 
finding high confidence “rules” in random walk data. We believe 
that the reason why rule discovery in real-valued time series has 
failed thus far is that most efforts have more or less 
indiscriminately applied the ideas of symbolic stream rule 
discovery to real-valued rule discovery. In this work, we argue 
that such ideas are not directly transferable to rule discovery in 
real-valued time series. Instead, we formulate a rule representation 
and a Minimum Description Length (MDL) inspired search 
strategy that evaluates candidate rules based on how well they can 
compress the data.  

2. BACKGROUND AND RELATED WORK 
In a sequence of papers culminating in [21], Park and Chu 
investigate a rule finding mechanism for time series. However, the 
algorithm is only evaluated for speed and then only on random 
walk data. No evidence was presented that the algorithm could 
actually find generalizable rules in time series.  
Work by Wu and colleagues also use a piecewise linear 
representation to support rule discovery in time series. They tested 
their algorithm on real (financial) data, reporting approximately 
68% “correctness of trend prediction” [29]. However, the authors 
graciously ran their algorithm on data provided by others and 
when they ran their algorithms on pure random walk data, they 
again achieved approximately 68% correctness of trend prediction 
[30]. This suggests their original results did not outperform 
random guessing. 
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The most referenced time series rule-finding method in the 
literature is [5], which quantizes the data with K-means clustering 
of the entire training dataset and passes the (now) symbolic data 
over to a classic association rule discovery algorithm. The success 
of a rule is measured with a score called the J-measure. The 
method was used in several papers before it was shown that the J-
measure gave the same significance to rules found in completely 
random data as to rules found in real data [12]. Later analyses by 
more than a dozen follow-up papers suggest that the problem is 
with the quantization step; in essence any technique that involves 
clustering all subsequences is doomed to produce cluster centers 
that are independent of the data [12]. In Section 7.7 we have 
compared our algorithm to the three highly cited rival methods.  
For brevity, we forgo an in-depth review related work here, 
referring the reader to an expanded version of this paper [31]. For 
more background on MDL we direct the interested reader to 
[1][15]. We will discuss our use of MDL in Section 5.1. 

3. THE INTUITION OF RULE DISCOVERY 
It may be instructive to first consider the analogue problem of rule 
discovery in symbolic strings.  Let us consider “The Raven”, by 
Edgar Allan Poe. It begins: 

Once upon a midnight dreary, while I pondered weak and … 
What are the possible rules we might discover in this text? One 
possible rule is that the word “door” often follows the word 
“chamber,” a rule we can denote as: 

chamber → door 
The left side of the rule is the antecedent and the right side is the 
consequent. This rule is based on our observation that we see the 
phrase “chamber door” ten times in the text. We note that this is 
not a perfect rule; the word “chamber” appears once without been 
followed by “door” (“...into the chamber turning...”). 
Furthermore, it is important to note that the rule does not make the 
claim that all, or even many, occurrences of “door” are preceded 
by “chamber”. In fact, there are four more examples of the word 
“door” in the text. 
A major difference between text and time series is that the latter 
does not have a natural segmentation (i.e. spaces or periods), thus 
we are facing data that is more like this: 

onceuponamidnightdrearywhileIponderedweak.... 
Given such a text, there are (language agnostic) algorithms that 
can segment the string into the original words [4], with varying 
degrees of accuracy. However, segmenting a real-valued time 
series into meaningful episodes is much more difficult. 
Furthermore, the problem is further complicated by the fact that, 
in most cases, the time series does not consist solely of discretely 
concatenated events. Rather, the events may be interspersed with 
filler symbols. For example, if we examine a motion capture of a 
sign language version of this poem there will be locations that do 
not correspond to discrete signs, but rather to transitions between 
signs. This will produce something rather like this: 

oncexauponwamidnightmtdrearydwhileuIpponderediweak... 
Finally, time series are inherently real-valued and as such, tests 
for equality are meaningless. This would be equivalent to our text 
string having some misspellings: 

qncexauponwamidmightmtdreerydwgileuIpponderediweek... 
The problem is now significantly more difficult than the original 
statement. We must generalize the antecedent to allow flexibility, 
perhaps by triggering the occurrence of a pattern that is within a 
certain threshold t distance under some suitable distance measure: 

dist(“chamber”, substring) ≤ t → door 
However, we are not done generalizing the rule model. The 
existence of misspellings in our data means that we may wish to 
accept similar consequents such as poor or dooor as successful 
predictions. Furthermore, we originally assumed that the 
consequent immediately followed the antecedent. However there 
may be some additional symbols between words. Thus we need to 
define a parameter, maxlag, which is the maximum number of 
characters between the end of the antecedent and the beginning of 
the consequent. For example, if maxlag, is set to two, then any of 
the below would be considered successful predictions:  

...chamberdoor..., ...chamberzdoor..., ...chamberxydoor... 
but the following: 

...chamberxzuvdoor... 
is not a successful prediction because the lag between the 
antecedent  and consequent is too long.  
The maxlag parameter allows for meaningful falsifiable 
predictions. The prediction that “this consequent will eventually 
occur” is paradoxically both unfalsifiable and almost certainly 
true (if we wait long enough). We can now show our final rule 
format: 

dist(chamber, substri,) ≤  t1 → dist(door, substrj) ≤  t2, 
 j - (i + ρ - 1) ≤ maxlag 

This can be read as follows: “If we see a substring of length ρ that 
is within distance t1 of the word chamber, then we fire the rule and 
expect to see a similar substring to word door, within a learned 
distance t2, in the next maxlag time steps.” 

3.1 Moving to Real-Valued Data 
We are now ready to begin to “port” our ideas to the real-valued 
time series that are of interest in this work. We will start with an 
example for which we know the ground truth and for which the 
reader has already developed some intuition. However, we note 
that we are not using external knowledge to help our algorithm, 
only to validate and explain it. As shown in Figure 1, we took an 
audio recording of the first four verses of “The Raven” 
(performed by an American male actor), and converted it to Mel-
frequency cepstrum coefficient (MFCC) space, keeping just the 
second coefficient.  
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Figure 1. The motif pair discovered in the first 2,000 data 
points (20 seconds) of “The Raven”. The shape corresponds to 
the utterance “...at my chamber door”. 

Using just the first 2,000 data points, which corresponds to the 
first verse of the poem, we found the pair of non-overlapping 
subsequences of length 100 (one second length in the original 
data) that had the minimum distance to each other. Such a pair of 
subsequences is referred to as a time series motif and extensively 
studied in the literature [19][20].  
The occurrence of such a highly conserved motif suggests one 
possible method for specifying rules. We could simply split the 
motif pattern in two, let the average of the left side be the 
antecedent, and let the average of the right side be the consequent. 
We need to set the maxlag and the threshold, t1, parameters.  For 
the moment, let us set the former to zero and the later to twice the 



 

distance between the antecedent motif prefixes. Figure 2 shows 
the rule. 
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Figure 2. A rule learned (Figure 1) from the first 2,000 data 
points of the “The Raven”. If the antecedent pattern (left) is 
matched to a subsequence in a stream that is within Euclidean 
distance of 7.58 to it, we predict the immediate occurrence of 
the consequent pattern (right). 

We can immediately test this rule by running it on the remainder 
of The Raven data. The rule fires exactly three times and in every 
case it maps to an utterance of “door.” In this simple example, 
hard-coding the maxlag to zero is intuitive; however, we can 
easily imagine examples that need the flexibility of a larger 
maxlag constraint. Consider Figure 3 which shows accelerometer 
data collected from a device worn by a student at USC as he went 
about daily activities [22]. 
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Figure 3. left) A rule for an accelerometer dataset encodes the 
fact that the initial acceleration “bump” of going up in an 
elevator must be eventually be matched by the elevator 
stopping at a floor. right) Real data from which this rule was 
learned [22]. 

This example shows a very easy rule to spot. The semicircular 
bump created by an elevator accelerating must eventually be 
matched by a bump in the opposite direction when the elevator 
brakes (the rule for elevators going down is similar, but with the 
consequent and antecedent swapped). The time lag between these 
two events is highly variable and depends on the number of floors 
serviced by the elevator. 

4. THE RULE FRAMEWORK 
We are now in a position to present the definitions necessary to 
rigorously define our rule framework. First, we need to define a 
distance measure between two subsequences. While there are 
dozens of measures in the literature, recent empirical evidence 
suggests that Euclidean distance is very difficult to beat [7]. 
Furthermore, Euclidean distance is parameter-free, fast to 
compute, and is amiable to various data mining optimizations 
such as indexing and early abandoning computation [20]. We 
empirically considered other distance measures including DTW, 
Swale, Spade and EPR [6], none improved the accuracy of the 
rules (a finding consistent with [6]) and all required at least an 
order of magnitude more time.  
We formally define a time series antecedent as a subsequence 
used to trigger a rule if it is similar to the current sliding window:  

Definition 1: Assume we are monitoring a time series by 
continuously extracting the sliding window, W. Given a positive 
constant t (threshold), and an antecedent time series Ra, a binary 
flag fired is set to TRUE if D(Ra, W) < t. 

Note that in order for a candidate antecedent to be even 
considered as a rule precursor, it must occur at least twice; we 
cannot generalize from single exemplars. This is essentially the 
definition of a time series motif [20]. In Section 6, we will exploit 
this in order to reduce our search space of antecedents and 
consequents. 

In principle, the threshold, maxlag, and antecedent could be hand 
chosen by a domain expert. However, as we show later it is 
possible to find them automatically. As an antecedent is a 
precursor to an event, a predicted subsequence shape which 
follows an antecedent within a specified time (the maxlag) is 
called the antecedent’s consequent: 

Definition 2: A consequent, , is a time series subsequence 
that is predicted to follow the detection of an antecedent within 
maxlag time steps. 

The maxlag parameter encodes the fact that for a time series 
subsequence to be a meaningful consequent in a rule, it must 
occur within some acceptable time after the rule’s antecedent has 
been detected. Without such a constraint on time, a consequent's 
occurrence may be coincidental. 

Definition 3: The maxlag is the maximum number of time steps 
allowed between a detected antecedent and its consequent. In 
particular, if tk is the last value in W, the moment the rule is 
triggered, then the consequent must be derived from a 
subsequence of T, Ti, such that . 

With an antecedent, its consequent, the maximum expected 
maxlag delay between the two, and the threshold distance used to 
trigger a subsequence match, we have all the necessary 
components to specify a single time series rule:  

Definition 4: A time series rule, R, is a 4-tuple of { , , 
maxlag, t}. 

One obvious way to obtain an antecedent and consequent with a 
zero maxlag is to take a subsequence and split it: 

Definition 5: The Split Point is a ratio in the range (0, 1) which 
indicates the end point of the antecedent and the beginning of 
the consequent.  

Having defined time series rules and all supporting notation, we 
have just two more tasks. We need to formalize a scoring function 
to tell us how good a candidate rule is, and design an efficient 
search strategy.   
5. DATA DISCRETIZATION 
Because of our intention to use MDL to measure the relative 
merits of candidate rules, we must transform our real-valued time 
series into a discretized space [15]. After consideration of the 
many quantization options, we quantize the time series’ real 
values into uniformly sized bins. For a subsequence length ρ, we 
z-normalize all possible subsequences of that length and record 
the minimum and maximum values across the normalized 
subsequences. After attaining the global minimum value, min, and 
global maximum value, max, across all subsequences, we set bin 
boundaries that are uniformly sized between min and max. The 
resulting bin width is then: (max - min) / cardinality. 
We can show the (lack of) effect that discretization has on time 
series with classification experiments, since the rule triggering 
step is essentially a classification problem. We conducted 
empirical tests on data from the UCR Archive [26]. For each 
dataset, we ran leave-one-out one-nearest-neighbor classification 
tests using uniform quantization with varying cardinalities. Table 
1 provides a snapshot of the results.  

It is demonstrated that a real-valued time series can be drastically 
reduced through discretization without significantly affecting the 
intrinsic information available. In fact, because cardinality 
reduction of the original data can reduce the effects of noise and 
outliers, we can sometimes see tiny improvements in accuracy. 



 

Table 1. One-nearest-neighbor leave-one-out accuracy results 
on UCR datasets for various cardinalities 

Dataset 64-bit (raw) 
Cardinality: 264 

16-bit 
Cardinality: 65536 

6-bit 
Cardinality: 64 

50words 63.1% 63.1% 63.3% 
CBF 85.2% 85.2% 85.2% 
Beef 66.7% 66.7% 66.7% 
ECG 88.0% 88.0% 88.0% 

FaceAll 71.4% 69.6% 69.6% 
Fish 78.3% 78.3% 77.7% 

Lightning2 75.4% 75.4% 77.1% 
OSULeaf 52.1% 52.1% 52.1% 

These results allow us to use MDL with little fear that we are 
throwing away valuable information. Which value of cardinality 
should we use? Empirically, if the value is anywhere in the range 
of [16, 65536], it makes no significant difference; we therefore 
use a cardinality of 16 throughout this work. 

5.1 MDL Scoring 
We begin with an important disclaimer. We claim only that our 
work in this section is inspired by, and in the spirit of MDL (and 
MML [27]). In particular, we have adopted (cf. [11]) and 
extended ideas may deviate slightly from the absolute purist’s 
interpretation of MDL. Our goal here is to produce a pragmatic 
scoring function that works in the real world. We thus defer 
theoretical and philosophical discussions to an appropriate venue.   
The intuition behind our scoring function is that if we make a 
good prediction, the consequent shape we predict will be similar 
to a subsequence that occurs within maxlag steps. We could 
quantify this similarity with Euclidean distance (essentially the 
mean squared prediction error used in forecasting [18]), however, 
the Euclidean distance does not allow us to compare the quality of 
consequents with different lengths. To make this clearer, let us 
return to our expository text example. Suppose we have to 
evaluate the following candidate rule: dist(“chamber”, substring) 
≤ t → door, which when fired makes a prediction of length four. 
When encountering this string: 

... bustabovehischamberdoorwithsuchnameasnevermore… 
it achieves a hamming distance (a good analogue of Euclidean 
distance) of 0. Contrast this result with the following rule: 
dist(“chamber”, substring) ≤ t → doorwithlikename, which when 
fired makes a prediction of length sixteen. While encountering the 
same string: 

... bustabovehischamberdoorwithsuchnameasnevermore… 
it achieves a hamming distance of four. Which of these two rules 
is better?  
The former is an exact but short prediction; the latter is an 
approximate but longer and arguably more informative prediction. 
Unfortunately, simply normalizing for length does not work here; 
while it is not commonly understood, the Euclidean distance 
between two subsequences of length ρ can actually decrease when 
we expand to length ρ + 1 due to the (re)normalization of the data. 
So not only is the effect of length not linear, it is not even 
monotonic.    
Our solution to this problem, and the reason for the earlier 
digression into discretization of time series, is MDL [1][15]. For 
several decades MDL has been used to solve very similar 
problems in intrinsically discrete domains such as text, DNA, 
MIDI, etc. However, this application to time series rules is novel. 
The intuition behind our use of MDL is to consider a candidate 
subsequence as a hypothesis, H, about a future event. This 
hypothesis (the bold/green line in Figure 4) has some cost, the 

number of bits it takes to store it. We denote this cost as the 
Description Length, DL. If we store the subsequences as simple 
integer arrays, we have DL(H) = length(H) × log2(cardinality).  
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Figure 4. A hypothesis (green/bold) can be used to score 
subsequences by subtracting it from them (producing the 
small integers shown top) and encoding the difference vector 
with Huffman encoding.  Intuitively, here the left sequence 
requires 57 bits, whereas the right sequence requires 84. 

We then want to evaluate the quality of a predicted consequent by 
asking how well the prediction matched the future. We do this by 
asking, “Given our consequent H, what is the cost to encode the 
error of the actual match m?” We denote this as DL(m⎟ H), that is, 
the description length of a matching subsequence m, given our 
hypothesized consequent H. We can measure this encoding cost 
by simply subtracting the consequent from the matching time 
series and encoding the difference vector efficiently. Thus the 
score of a candidate subsequence, m, with a hypothesis, H, is: 

(1) . 

This idea is illustrated in Figure 4. Here we use a cardinality of 
just eight values for visual clarity.  
This equation allows us to measure the relative predictive power 
of subsequences, independent of their length. In order to find rules 
in a training set, we must have at least two firings. This means 
that to evaluate the hypothesis we must measure how well it 
encodes a set, M, of at least two consequents.  

(2) total-­‐bit-­‐save(M,H)=    

where the set M consists of all subsequences to be compressed 
with the consequent H.  

6. RULE DISCOVERY ALGORITHM 
We are finally in a position to introduce our rule finding 
algorithm. In essence, it has two parts: 1) a scoring function and 
2) a search algorithm which repeatedly invokes this scoring 
function while searching for high quality rules. As the scoring 
function is at the heart of our ideas, we will detail the intuition 
behind it next and then in Section 6.2 we will present our rule 
search method which utilizes this function. 

6.1 Rule Scoring 
For clarity of presentation we begin by considering the case in 
which maxlag is constrained to be zero. 
Our MDL scoring function is given two inputs: a candidate time 
series (like either one of the two time series in Figure 1) and an 
expected maxlag value (recall for the moment, it is hardcoded to 
zero). The function then returns three things: an antecedent, a 
consequent and the quality score of the resulting rule. Note that 
the antecedent concatenated with the consequent are simply the 
input time series, R, (much like Figure 2), however the split point 
is not known in advance. Table 2 illustrates the algorithm. Note 
that we propose a parameter-lite algorithm (Table 2), which is 



 

described by hierarchical functions that automatically generate 
most of the required inputs in Tables 3 to 6. 
Table 2. Algorithm to score all rules that can be created from 
a single time series subsequence R, returning the antecedent, 

consequent and quality of the best rule derived from R 
Procedure find_Best_Rule (T, R) 
Input: A time series subsequence, R, extracted from a time series, T; 
Output: The antecedent (a), consequent (c) and quality score (s) of 
 the best rule that can be derived from R; 
1 
2 
3 
4 
5 
6 
7 
8 
9 

for i ← 1 to 99 do                   //Test over all splitting points 
     splitPoint ← i / 100 
     ruleScore(i) ← Best_Rule_Score (T, R, splitPoint) //Table 3 
end for 
  s ← max (ruleScore) 
  sp ← find (ruleScore == s) / 100 
  a ← R (1 : sp × Length(R)) 
  c ← R (sp × Length(R) + 1: end) 
Return a, c, s 

In lines 1 to 4 the algorithm iterates on all possible split points for 
the candidate time series, R, and calculates the quality score 
described in Table 3. In line 5 we find the maximum quality score 
(s). In lines 6 to 8 we find the split point corresponding to the 
maximum quality score and we split R to the antecedent (a) and 
the consequent (c). The procedure returns a, c, and s.  
In Table 3 we describe how the rules are scored. For every 
antecedent that can be produced by R, we search for locations in T 
in which that rule would have fired. Given each firing, we 
“predict” the relevant consequent as a hypothesis H to explain the 
next |c| datapoints in T. We then calculate how many bits MDL 
could save using this prediction. If, as in Figure 4.left, our 
“prediction” was accurate we will save many bits. A less accurate 
prediction (Figure 4.right) will save fewer bits. The number of 
bits saved; summed over all firings (i.e. Eq. 2) is the score 
returned for the tentative rule. 

Table 3. Algorithm to find the best instances of a rule 
Procedure Best_Rule_Score (T, R, sp) 
Input: A time series subsequence, R, extracted from a time series, T; 
           Split point for the antecedent/consequent, a number between 
 zero and one, sp; 
Output: Greatest possible bit-saves by predicting rule R in the time 
 series T, bestTotalBitSave;  
1 
2 
3 
4 

ac ← find_Antecedent_Candidates (T, R, sp)                  //Table 4 
n ← find_Best_Number_of_Rule_Instances (T, R, sp, ac) // Table 5 
bestTotalBitSave ← Rule_Bit_Saves (T, R, sp, n, ac)     // Table 6 
Return bestTotalBitSave 

Concretely, in line 1 we find the set of subsequences similar to the 
antecedent of R. In line 2 we learn a threshold for the distance that 
leads to the largest quality score for R. In line 3 the algorithm 
calculates the largest number of bits saved for the rule instances 
and finally returns that value as a quality score for the rule.   
We find the set of subsequences similar to the antecedent of R in 
the subroutine described in Table 4. The first element of the set is 
the antecedent itself, the second element is the most similar 
subsequence to the antecedent, the next subsequence is the second 
closest and so on. This set includes all firings of R which need to 
be tested in Table 5.   

Table 4. Algorithm to find a set of antecedent candidates 
Procedure find_Antecedent_Candidates (T, R, sp) 
Input: A time series subsequence, R, extracted from a time series, T; 
           Split point for the antecedent/consequent, a number between 
 zero and one, sp; 
Output: locations of antecedents in T ordered by distances from R’s 
 antecedent, ac; 
1 
2 
3 
4 
5 
6 
7 

antecedentLength ← Length(R) × sp 
antecedent ← R (1:antecedentLength)  
Distances ← Euclidean (antecedent, each subsequence in T) 
AntecedentDistances ← sort (localMinimums (Distances)) 
AntecedentCandidates ← Locations (AntecedentDistances) 
ac ← AntecedentCandidates 
Return ac 

In lines 1 and 2 we find the antecedent of the rule R. In line 3 we 
slide the antecedent across the entire time series, T, and calculate 
the Euclidean distances for each subsequence of the same length. 
In line 4 the algorithm finds the local minimums and sorts them 
according to their distances (ignoring trivial matches [20]). In line 
5 we find the locations of the sorted distances in the time series T 
and finally the procedure returns a set of antecedent candidates 
sorted by their distances to the antecedent of R. 
Recall that in Table 3 we search for locations in T in which that 
rule would have fired. However the number of firings clearly 
depends on the distance threshold we have chosen. A conservative 
(small) threshold is more likely to produce an accurate rule, but 
may miss opportunities when it could have fired and produce 
predictions that are at least better than random. We generally have 
no idea what a suitable threshold could be, fortunately we only 
have to test |AntecedentCandidates| different values. In particular we 
just need to test all the values in the sorted list AntecedentDistances, 
as each new value ensures exactly one additional firing of the rule 
on our training data, this occurs in Table 5. 

Table 5. Algorithm to discover the best number of rule 
instances to maximize the total number of bit-saves 

Procedure find_Best_Number_of_Rule_Instances (T, R, sp, ac) 
Input: One instance of a rule, R, extracted from a time series, T; 
            Split point for the antecedent/consequent, between zero and                      
 one, sp;  
             Locations of antecedents in T ordered by distances from R’s 
 antecedent, ac;  (i. e. AntecedentCandidates) 
Output: Best Number of instances of R to pick in the time series, n; 
1 
2 
3 
4 
5 
6 
7 
8 
9 

totalBitSaves (1) ← 0 
instances ← 1 
   while (totalBitSaves is monotonically increasing)  do   
     instances ← instances +1 
     totalBitSaves(instances)←Rule_Bit_Saves(T,R,sp,instances,ac)   
   end while 
bestBitSaves ← max (totalBitSaves) 
n ← find (totalBitSaves == bestBitSaves) 
Return n 

In lines 3 to 6 we iterate on the number of rule instances and each 
time calculate the total number of bit-saves as in Eq. 2. The loop 
terminates when the totalBitSaves starts decreasing. This use of a 
greedy approach to avoid searching all possible rules produces 
several orders of magnitude speedup, with little chance of missing 
a useful rule. In Section 6.2 we show that we can use the 
Euclidean distance as a heuristic to both guide the “rule test” 
order, and to tell us when we can abandon the rule test with a 
small, user-defined probability of missing the optimal answer (cf. 
Figure 5). We further justify a probabilistic early abandoning 
approach in our supporting webpage [31]. In line 7 we calculate 
the maximum number of total bit-saves and in line 8 we find the 



 

corresponding number of rule instances picked during the iteration 
in lines 3 to 6.   In the subroutine in Table 5 (and its invoking 
functions) we used Euclidean distance to process the data and 
create a large set of candidate rules with their observed outcomes 
on the training data.  In Table 6 we move from Euclidean distance 
to MDL to score these rules. 
We consider the consequent of R as a model/hypothesis and 
calculate the total number of bit-saves in order to predict other 
consequents. A larger number of bit-saves indicates more accurate 
predictions. After discovering antecedent candidates, we consider 
their following subsequences as consequents. The procedure then 
calculates the number of bits required to record the differences of 
the consequent saved as a model and the subsequences following 
antecedent candidates.  
In lines 1 and 2 the algorithm finds the consequent of R. In line 3 
we discretize the consequent into 16 values and we z-normalize it. 
We will use this consequent as the hypothesis therefore we 
exclude the antecedent of R in line 6. In lines 7 to 10 for all n-1 
AntecedentCandidates we find their corresponding consequents. 
In line 11 the algorithm discretizes and z-normalizes the 
corresponding consequents. In line 12 we calculate the number of 
bits required to record the consequents by using Huffman coding. 
In line 13 we use the consequent of R as a hypothesis and 
calculate the number of bits to save all other consequents by using 
MDL.         

Table 6. Algorithm to score rule instances based on MDL 
Procedure Rule_Bit_Saves (T, R, sp, n, ac) 
Input: A time series subsequence, R, extracted from a time series, T; 
Split point for the antecedent/consequent, between  zero and one, sp; 
The Number of instances of R to pick in the time series, n;   locations 
of antecedents in T ordered by distances from R’s antecedent, ac; 
Output: totalBitSave; 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

antecedentLength ← Length(R) × sp 
consequent ← R (antecedentLength:end) 
Discretize and z-normalize (consequent)    
AntecedentCandidates ← ac  
totalBitSave ← 0 
antecedentsSelected ← AntecedentCandidates (2 : n) 
   for i ← 1 to Length(antecedentsSelected) do 
      s1 ← AntecedentCandidates(i) + antecedentLength +1 
      s2 ← AntecedentCandidates(i) + Length(R) 
      subConsequent ← T (s1 : s2)  
      Discretize and z-normalize (subConsequent)       
      subConsequentBits ← Huffman (subConsequent) 
      subConsequentMDLbits←MDL(subConsequent, consequent) 
      totalBitSave ← totalBitSave + subConsequentBits -   
  subConsequentMDLbits 
   end for 
Return totalBitSave – Huffman (consequent)   // Eq. 2 

In lines 14 and 15 our algorithm calculates the total number of bit-
saves by subtracting the number of bits to record the consequents 
by using MDL from the number of bits to save the consequents by 
using Huffman coding (i.e. Eq. 2) and finally returns the total 
number of bit-saves, which tells us the quality of the rule.  
6.2 Motif-Based Rule Searching 
The previous section explained the rule scoring operator 
algorithm (Table 2), all that remains is to explain the search 
algorithm that uses this operator. In principle we could use a brute 
force search, testing all subsequences of T. However this would 
be intractable. Fortunately we have an exploitable observation, a 
good rule candidate must be a time series motif in T, and efficient 
algorithms for discovering the top K motifs in a time series are 

well-known [19][20]. Thus as illustrated in Table 7, we simply 
evaluate motifs from T, until we can claim the probability of 
finding a better rule is less than some small user-supplied 
threshold.  
In lines 3 to 8 we iterate over the motifs to discover the best rule. 
In line 4 our procedure calls the subroutine motif_Discovery (T, L, 
K), which uses the MK motif discovery algorithm [20] to return 
the Kth best motif of length L in the time series T.     

Table 7. Algorithm to discover rules in a time series 
Procedure Discover_Rules (T, L) 
Input: A user provided time series, T, and the rule length, L; 
Output: A set of discovered rules, Rules;  
1 
2 
3 
4 
5 
6 
7 
8 
9 

Rules ← [ ]                         // Initialize rules to empty set 
K ← 1                                // Initialize which motif to consider 
  while (earlyAbandoning is False) do 
       motif ← motif_Discovery (T, L, K)         // MK algorithm 
       [a, c, s] ← find_Best_Rule(T, motif)        // Table 2 
       Rules. add([a, c, s]) 
       K ← K + 1                                
   end while 
Return best(Rules)  //returns the rule with the maximum score, s 

Note that by definition, the distance between each pair of motifs is 
non-decreasing in K [20]. We exploit this to create an 
earlyAbandoning function, described later in this section, to 
terminate the loop. In line 5 we pass the discovered motif to the 
rule scoring function (Table 2) which finds the best rule that can 
be derived from that motif. In line 6 we add the discovered rule to 
the set of existing rules and finally we return the rule which has 
the largest score s in line 9. 
We have glossed over the termination condition for our algorithm 
(line 3). Here we describe it in more detail. Note that there is a 
strong relationship between Euclidean Distance (which motif 
discovery is minimizing) and bit-saves defined in Eq. 1 (which 
Table 2 is maximizing). To illustrate this we performed the 
following experiment. From the MFCC time series of a recitation 
of the poem “The Dream within a Dream”, we randomly sampled 
20,000 subsequence pairs of length 100 (1 sec of audio), denoting 
one subsequence H and the other m. We measured  
and the  (Eq. 1), and use the two values to 
create the scatterplot shown in Figure 5. 
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Figure 5. bottom) The empirical relationship between 
Euclidean and bit-save. top) As we search in Euclidean order 
(the x-axis order) from left to right, the expected value of the 
bit-save (the mean of the Gaussians) decreases. 



 

The figure suggests we can use the Euclidean distance between 
motifs as a heuristic to tell us when we can abandon the motif 
discovery with a small, user-provided probability of missing the 
optimal answer. In essence, we propose to allow rule search in the 
form “stop searching when there is only a one in a thousand 
chance that the current best-so-far is not the best rule.” 
Let Pbit-save(best-so-far) be the probability that the remaining pairs 
of subsequences in the Euclidean searching order (the x-axis 
ordering of Figure 5.bottom) contains a better rule than the rule 
represented by the current best-so-far. Concretely, we compute 
the bit-saves (Eq. 1) for the subsequences on the left side of the 
dash-line (a) in Figure 5.bottom to form the histogram shown at 
the top left of Figure 5.    
The bit-saves property of the distribution can be realized by a 
Gaussian process (GP) [8]. The probability vector {φk} is drawn 
from a GP as φk ~ N(𝜇k, 𝜎k

2), where µk is the mean and 𝜎k
2 is the 

variance shown as the red “bell” curve. For example, the best-so-
far bit-saves is 99 bits for both histograms in Figure 5.top and the 
Pbit-save(best-so-far) of the distribution changes from 0.040 to 
0.005 from left to right as shown in Figure 5.top. The area below 
the red curve to the right of the best-so-far marker, is the 
probability that there exists an untested pair of subsequences with 
bit-saves greater than the best-so-far bit-saves. If Pbit-save(best-so-
far) is less than the user threshold then we simply set the 
earlyAbandoning flag to be True, and the invoking search 
algorithm will terminate.  
This method has a few assumptions; for example that a thin 
vertical “slice” of the scatterplot is Gaussian. These assumptions 
are empirically observed on most datasets (see [31]), and 
violations tend to result in a more conservative algorithm. That is 
the say, the algorithm may run a little longer, but will over-deliver 
on the requested probability of a true positive.   
Our illustration in Figure 5 makes one assumption that is 
unwarranted, that total bit-saves come from exactly two of 
subsequences. Recall from Table 6 that in fact the total bit-saves 
come from at least two subsequences. We can easily generalize 
the earlyAbandoning function to account for this, but as it makes 
no empirical difference on the datasets we considered, for 
simplicity we ignore this idea in this work.  
We conclude this section with a simple experiment to reinforce 
the intuition that motif distances are a good proxy for rules. We 
took every subsequence of length 100 (one sec) of the MFCC 
version of “The Raven” and recorded its distance to its nearest 
neighbor. The distribution of these distances is shown in Figure 6 
with a few annotated examples. Note that one occurrence of the 
phrase “...chamber door...” has a very small distance to its nearest 
neighbor, which is naturally just another occurrence of the phrase. 
Similarly, the repeated phrases such as “...the raven....”, “…on the 
floor…”, etc., also have small distances to their nearest neighbors. 
In contrast, phrases featuring hapax legomena1 such as “caught” 
or “crest” have a huge distance to their nearest neighbor. If we 
were attempting to find rules in the text space, unique words or 
phrases do not need to be considered since we clearly cannot 
generalize rules from a single example.  Moreover, Zipf's law tells 
us that about half the words in an English text are hapax legomena 
[14], and an even larger proportion of phrases must be unique. 
This observation is for text and, as Figure 6 hints, it is also true for 
most real-valued time series.  

                                                             
1 A hapax legomena is a word that appears only once in a body of text. 
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Figure 6. Distribution of nearest neighbor distances for one 
second snippets of the audio (in MFCC space) of “The 
Raven.” 

6.3 Generalizing to allow a Maxlag 
Our rule discovery algorithm described in Section 6.1 assumes a 
zero maxlag. To generalize to the arbitrary maxlag value case, we 
just need to slightly modify the “algorithm to score rule instances 
based on MDL” (Table 6). All other algorithms in our approach 
(Tables 2, 3, 4, 5 and 7) remain unchanged. While maxlag is 
allowed, we should consider a maxlag interval to search the 
consequent after the split point. The highlighted section of Table 8 
shows the modifications of Table 6 which allows a non-zero 
maxlag in our rule discovery algorithm.   
In line 10 we allow a maxlag value after the split point 
(subConsequent) to search for a subsequence in T closest to the 
consequent. In lines 11 to 14 we slide the consequent through 
each subsequence of the subConsequent and find the closest 
subsequence to the consequent. The remainder of the algorithm is 
the same as Table 6.  In Section 7.2 we conduct an experiment 
which requires a non-zero maxlag. 

Table 8. Algorithm to score rule instances based on MDL 
(allowing maxlag) Differs from Table 6, only in lines 10 to 14 
Procedure Rule_Bit_Saves (T, R, sp, n, ac, mlag) 
Input: A time series subsequence, R, extracted from a time series, T; 
Split point for the antecedent/consequent, between  zero and one, sp; 
The Number of instances of R to pick in the time series, n;   locations 
of antecedents in T ordered by distances from R’s antecedent, ac;  
Maxlag allowed between the antecedent and consequent, mlag; 
Output: totalBitSave; 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

antecedentLength ← Length(R) × sp 
consequent ← R (antecedentLength:end) 
Discretize and z-normalize (consequent)    
AntecedentCandidates ← ac  
totalBitSave ← 0 
antecedentsSelected ← AntecedentCandidates (2 : n) 
   for i ← 1 to Length(antecedentsSelected) do 
      s1 ← AntecedentCandidates(i) + antecedentLength +1 
      s2 ← AntecedentCandidates(i) + Length(R) 
      subConsequent ← T (s1 : s1 + mlag)     // considering maxlag 
      consequentDist ← Euclidean (consequent, each subsequence 
    of subConsequent) 
      conseqLoc ← find (consequentDist == min(consequentDist)) 
      subConsequent ← T (s1 + conseqLoc : s2 + conseqLoc) 
      Discretize and z-normalize (subConsequent)       
      subConsequentBits ← Huffman (subConsequent) 
      subConsequentMDLbits←MDL(subConsequent, consequent) 
      totalBitSave ← totalBitSave + subConsequentBits -   
  subConsequentMDLbits 
   end for 
Return totalBitSave – Huffman (consequent)  // Eq. 2 

7. EXPERIMENTAL EVALUATION 
To ensure that our experiments are reproducible, we have built a 
website which contains all data/code/raw spreadsheets for the 
results, in addition to many experiments that are omitted here for 
brevity [31]. The visualization of the rules suffers from space 
limitations/BW formatting; we encourage the reader to view high-
resolution color versions at [31]. 
We provide two sources of evaluation for quality. In some cases, 
as in “The Raven” example above, we show the rules are 



 

meaningful by considering the annotation available by external 
labels of some kind. In the more general case we use the 
Euclidean distance between our predicted consequent and the F 
matching locations where the rule fired, a value we denote as Ferror 
(this is essentially the root-mean-squared error). Because this 
number is difficult to interpret by itself, we do the following: On 
the same testing set, using the same consequent, we fire the rule 
randomly F times and measure the Euclidean distance between 
our predicted consequent and the F random locations. We denote 
this value as  Rerror (which is averaged over 1,000 random runs). 
Our reported measure of quality then is just . Values 
close to one suggest our rules are no better than random guessing 
and values significantly less than one indicate that we are finding 
true structure in the data. For all experiments, except where 
otherwise stated, the maxlag parameter is set to zero. 
We compared our work to the three most obvious and widely 
cited rival methods. None perform above chance levels, therefore 
for brevity and clarity we push the details of these comparisons to 
the expanded version of our paper in [31]. 

7.1 Finding Rules in Bird Vocalization 
We consider the task of finding rules in Zebra finch vocalizations 
(in MFCC space). Such rules may help weigh in on the “nature vs. 
nurture” debate [13], but here, simply show that we can learn 
robust accurate rules from complex and noisy datasets. 
The vocal learning lab at Hunter College provided recordings of 
Zebra finches singing (~one minute) every ten days, from day 40 
to 100 (post hatching). Starting from day 40, we split data into a 
train (first 30-sec) and test set. Our algorithm finds several high 
quality rules, one of them shown in Figure 7.  
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Figure 7. left) 25 seconds of zebra finch vocalization from the 
day-40 training data set. The discovered locations 
(orange/bold) are used to find a rule (right). 

The rule shown in Figure 7.right looks plausible, but does it 
generalize to the test set? In Figure 8 we show one rule firing on 
an excerpt of the test set. 

1300 1400 1500 1600 1700 1800  
Figure 8. The rule learned in Figure 7 fires (bold/orange) on 
the test set of day 40 (only an excerpt is shown). The Q (cf. 
Section 7) for the fired rule is 0.33, suggesting high accuracy. 

It is interesting to ask if the discovered rule generalizes over time, 
as the bird’s song evolves (i.e. concept drift). To test this we apply 
the learned rule in Figure 7 to the zebra finch song from day 50.  

3500 4000 4500 5000 5500 6000  
Figure 9. The rule learned in Figure 7 is applied to the same 
Zebra finch ten days later. The Q for the left and right 
instances are 0.19 and 0.40 respectively. 

The low Q-scores in Figure 9 indicate that the rule discovered on 
day 40 (Figure 7) still generalizes. In Figure 10 we repeat the 
same experiment for day 100.   
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Figure 10. The rule learned in Figure 7 is applied to the 
singing of the same Zebra finch sixty days later. 

Here we find that while the rule does predict the future much 
better than chance, the song seems to have undergone some 
modifications. This finding is consistent with the literature which 
suggests that young birds vocally improvise until about 90 days, 
after which the song “crystallizes” [2]. In [31] we show many 
addition experiments in this domain, and allow the reader to 
actually hear the data/rules. 

7.2 Finding Rules in Energy Disaggregation 
A home-based intelligent energy conservation system needs to 
know what appliances (or loads) are being used in the home and 
when they are being used in order to provide intelligent feedback 
or to make decisions that can reduce costs. The AMPds, Almanac 
of Minutely Power dataset, contains one year of such data that 
includes eleven measurements at one-minute intervals for twenty-
one sub-meters [17].  
For our experiments we consider a single meter into which the 
Fridge, Dishwasher, Clothes Washer and Clothes Dryer are 
plugged in. We run our rule discovery algorithm on the first 
month of the data and find the rule shown in Figure 11.right as 
one of the top rules. Then we apply it to our test set and show one 
of the firings in Figure 11.left.      

maxlag = 20 minutes
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Figure 11. right) One of the top rules learned from the first 
month of the AMPds data set. left) One firing of the learned 
rule in the right which contains a 20 minute lag between its 
antecedent and consequent. 

The antecedent and consequent in Figure 11.right correspond to 
the Clothes Washer and Clothes Dryer respectively. The 
discovered rule in Figure 11.right can be interpreted as: when the 
tenant uses the Clothes Washer, after a while they will run the 
Clothes Dryer. It is obvious that the tenant may immediately run 
the dryer or may spend some time doing something else first. 
Therefore in this case a non-zero maxlag must be allowed. For 
example the rule fired in Figure 11.left contains a 20 minute gap 
between its antecedent and consequent. Other firings of the rule 
contained different values. In order to assure we capture most of 
the firings, we allowed a 100 minute maxlag. Our algorithm to 
allow maxlag is described in Section 6.3. 
An examination of the data suggests that our algorithm did not 
report any false positives for this experiment; however we did 
observe some true negatives. Most of these omissions may be 
attributed to the fact (as visually hinted at in Figure 11.right) that 
the Clothes Washer patterns are complicated and polymorphic. 
That is to say, the patterns depend on many settings of the 
washing machine (whites/colors, rinse/spin etc). Automatically 
generalizing to handle such situations is ongoing work.  

7.3 Finding Rules in an Activity Data Set 
We consider a benchmark data set that contains daily activity 
telemetry [23], of four subjects wearing seven inertial 
measurement units (IMUs). Each subject created five recordings, 



 

which we randomly divided into disjoint train/test partitions. We 
consider only the data from the right upper arm. Figure 12 shows 
one of the top rules learned from a recording of a subject. 
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Figure 12. left) A subsequence from a recording of a subject 
that contains a rule discovered by our algorithm. The 
discovered locations (orange/bold) are generalized by our 
algorithm into a rule (right). 

To test if the discovered rule generalizes to other instances of the 
activity, we applied the discovered rule in Figure 12 to other 
recordings of the same subject. Figure 13 shows the rule firings 
found in the test recording.  

500 1000 1500 2000  
Figure 13. Three instances of the rule shown in Figure 12 
discovered in the test set. The Q for the three instances from 
left to right are 0.22, 0.10 and 0.41 respectively. 

According to the labels provided with the dataset, the rule 
discovered is a part of the activity: drinking from a cup while 
standing. To better understand the rule, we reproduced the data by 
having an actor wear an IMU on the same part of the body. We 
recorded the actor drinking from a cup using both the IMU (at 
100Hz) and a camera to capture simultaneous video. Figure 14.top 
shows some stills from the video. The time series of the complete 
activity from the IMU is shown in Figure 14.bottom. 
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Figure 14. bottom) The IMU data of an actor drinking from a 
cup. top) Stills from a video aligned with the IMU. 

Our data is very similar to the original benchmark data (our actor 
may have a different physique, mannerisms etc), and gives us 
some hints to understand the rule we discovered. As shown in 
Figure 14, the rule appears to describe the first half part of the 
drinking activity: a lifting of the cup to the mouth is immediately 
followed by a slightly tilting head to drink from the cup. 

7.4 Finding Rules in NASA Telemetry Data  
The NASA valve data set consists of 36 events of interleaved 
nominal and erroneous solenoid voltage measurements recorded 
from Marrotta series MPV-41 valves as they are tested in a 
laboratory [9]. Figure 15 shows one of the top rules learned from 

this time series where the first peak in Figure 15.left is that of a 
failed solenoid. 
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Figure 15. left) A snippet of the NASA data.  right) The first 

ranked rule learned which characterizes a nominal discharge. 

We applied the discovered rule in Figure 15 to the test set and 
found the rule fires four times. Figure 16 shows the rule instances 
fired on the test set.  

4000 8000 14000 18000  
Figure 16. The rule discovered in Figure 15 on the test set. 

This rule appears to describe a normal solenoid discharge event: a 
rapid decrease in the current is immediately followed by a slight 
ramp and gradual, complete discharge. 
Because of the variety of malfunction events in contrast to the 
homogeneity of normal solenoid readings in this data set, this rule 
learned from successful tests achieves the highest MDL score as 
well as very low average Q-value of 0.10. Note that the rule fails 
to fire in several locations in Figure 16. According to the domain 
experts [9], most of the non-firing locations correspond to a valve 
assembly miss-cycled for which the solenoid still experienced a 
nominal discharge. Apart from these outliers, all normal solenoid 
trials were detected with this rule. Thus, we can imagine using the 
negation of the rule firing as an anomaly detector.  

7.5 An Important Sanity Check 
We conducted a sanity check experiment that is very simple, but 
would nevertheless had demonstrated the problems with the 
approaches in [5][29] (as [12] also demonstrated, but in a different 
context). We reran all the experiments above, making a single 
change, which was to replace the data with random walk data. In 
no such case does our algorithm find any rules. This finding 
bolsters our confidence that our scoring function is valid. 

7.6 Time Complexity 
If maxlag is set to zero, then the time complexity for our 
algorithm is O(nlogn). Allowing a maxlag increases this to 
O(nlogn×|maxlag|). In essence, the time required by our 
algorithm is dominated by the speed of motif discovery, which 
fortunately has received a lot of attention in recent years [20][25]. 
We do not include explicit timing experiments because in general 
the time needed for rule discovery is inconsequential. For 
example, the insect EPG data took several months to collect, so 
the few minutes our algorithm needed to find rules is not likely to 
be a burden. Likewise, the Zebra finch data reflects years of 
painstaking work, so the few minutes our algorithm needs is 
simply negligible. 

7.7 On Comparisons to Rival Methods 
We compared our algorithm to the two (very different) Piecewise 
Linear Approximation (PLA) based approaches in [21] and [29], 
and also the highly cited paper [5]. To be as fair to them as 
possible we tested over many combinations of reasonable 
parameters, using both human-guided and brute force search for 
the best parameters. For all data sets in Section 7, the best results 
for all approaches had Q values, measure of quality, at the default 
rate (consistent with random guessing). Due to space limitations, 
we push the details of these comparisons to the expanded version 
of our paper in [31]. 



 

8. CONCLUSIONS 
We have introduced a technique for finding rules in time series 
which leverages of recent advances in time series motifs 
discovery to provide a tractable search. Our novel application of 
MDL to time series rule discovery allows us to meaningfully rank 
and compare varied length rules, and rules with different levels of 
“support”. Our rule representation is expressive enough to allow 
rules with different length antecedents/consequents/lags/firing 
thresholds, but at the same time does not require extensive human 
intervention or tweaking. We have also demonstrated our method 
by comparing it to the three most widely cited rival methods and 
show how we make much more accurate predictions [31]. 
There are many avenues for future work. On some datasets, 
Dynamic Time Warping, in single or multi-dimensional cases, 
may be more robust than the Euclidean distance, adapting to the 
concept drift that will be inevitable in some applications [24], and 
for some domains scalability to massive datasets remains an issue. 
It may be possible to generalize the rule representation to allow 
more expressive logical connectives, i.e.   
  D(Ra, W1) < t1  AND  D(Rb, W2) < t2 → Rc  
However this would require significantly more training data to 
guard against overfitting. Such flexibility would allow a rule to 
consider antecedents from two different sources. Finally, unlike 
time series classification [26], there are currently no standard 
benchmarks for time series rule discovery. We plan to repair this 
omission, and invite the community to donate challenging datasets 
for which the ground truth is known, and archiving them [31].      
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