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Abstract.  We present a novel anytime version of partitional clustering 
algorithm, such as k-Means and EM, for time series.  The algorithm works by 
leveraging off the multi-resolution property of wavelets. The dilemma of 
choosing the initial centers is mitigated by initializing the centers at each 
approximation level, using the final centers returned by the coarser 
representations. In addition to casting the clustering algorithms as anytime 
algorithms, this approach has two other very desirable properties.  By working at 
lower dimensionalities we can efficiently avoid local minima. Therefore, the 
quality of the clustering is usually better than the batch algorithm. In addition, 
even if the algorithm is run to completion, our approach is much faster than its 
batch counterpart.  We explain, and empirically demonstrate these surprising and 
desirable properties with comprehensive experiments on several publicly 
available real data sets.   We further demonstrate that our approach can be 
generalized to a framework of much broader range of algorithms or data mining 
problems. 

1   Introduction 

Clustering is a vital process for condensing and summarizing information, since it can 
provide a synopsis of the stored data. Although there has been much research on 
clustering in general, most classic machine learning and data mining algorithms do not 
work well for time series due to their unique structure. In particular, the high 
dimensionality, very high feature correlation, and the (typically) large amount of noise 
that characterize time series data present a difficult challenge.  Although numerous 
clustering algorithms have been proposed, the majority of them work in a batch 
fashion, thus hindering interaction with the end users. Here we address the clustering 
problem by introducing a novel anytime version of partitional clustering algorithm 
based on wavelets. Anytime algorithms are valuable for large databases, since results 
are produced progressively and are refined over time [11]. Their utility for data 
mining has been documented at length elsewhere [2, 21].  While partitional clustering 
algorithms and wavelet decomposition have both been studied extensively in the past, 
the major novelty of our approach is that it mitigates the problem associated with the 
choice of initial centers, in addition to providing the functionality of user-interaction. 

The algorithm works by leveraging off the multi-resolution property of wavelet 
decomposition [1, 6, 22].  In particular, an initial clustering is performed with a very 



coarse representation of the data.  The results obtained from this “quick and dirty” 
clustering are used to initialize a clustering at a finer level of approximation.  This 
process is repeated until the “approximation” is the original “raw” data.  Our approach 
allows the user to interrupt and terminate the process at any level.  In addition to 
casting the clustering algorithm as an anytime algorithm, our approach has two other 
very unintuitive properties.  The quality of the clustering is often better than the batch 
algorithm, and even if the algorithm is run to completion, the time taken is typically 
much less than the time taken by the batch algorithm.   

We initially focus our approach on the popular k-Means clustering algorithm [10, 
18, 24] for time series.  For simplicity we demonstrate how the algorithm works by 
utilizing the Haar wavelet decomposition.  Then we extend the idea to another widely 
used clustering algorithm, EM, and another well-known decomposition method, DFT, 
towards the end of the paper.  We demonstrate that our algorithm can be generalized 
as a framework for a much broader range of algorithms or data mining problems.   

The rest of this paper is organized as follows. In Section 2 we review related 
work, and introduce the necessary background on the wavelet transform and k-Means 
clustering. In Section 3, we introduce our algorithm.  Section 4 contains a 
comprehensive comparison of our algorithm to classic k-Means on real datasets.  In 
Section 5 we study how our approach can be extended to other iterative refinement 
method (such as EM), and we also investigate the use of other multi-resolution 
decomposition such as DFT.  In Section 6 we summarize our findings and offer 
suggestions for future work. 

2   Background and Related Work  

Since our work draws on the confluence of clustering, wavelets and anytime 
algorithms, we provide the necessary background on these areas in this section.  

2.1   Background on Clustering  

One of the most widely used clustering approaches is hierarchical clustering, due to 
the great visualization power it offers [12]. Hierarchical clustering produces a nested 
hierarchy of similar groups of objects, according to a pairwise distance matrix of the 
objects.  One of the advantages of this method is its generality, since the user does not 
need to provide any parameters such as the number of clusters.  However, its 
application is limited to only small datasets, due to its quadratic (or higher order) 
computational complexity.  

A faster method to perform clustering is k-Means [2, 18].  The basic intuition 
behind k-Means (and in general, iterative refinement algorithms) is the continuous 
reassignment of objects into different clusters, so that the within-cluster distance is 
minimized. Therefore, if x are the objects and c are the cluster centers, k-Means 
attempts to minimize the following objective function: 
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The k-Means algorithm for N objects has a complexity of O(kNrD) [18], where k 
is the number of clusters specified by the user, r is the number of iterations until 
convergence, and D is the dimensionality of the points. The shortcomings of the 
algorithm are its tendency to favor spherical clusters, and its requirement for prior 
knowledge on the number of clusters, k. The latter limitation can be mitigated by 
attempting all values of k within a large range. Various statistical tests can then be 
used to determine which value of k is most parsimonious. However, this approach 
only worsens k-Means’ already considerable time complexity.  Since k-Means is 
essentiality a hill-climbing algorithm, it is guaranteed to converge on a local but not 
necessarily global optimum.  In other words, the choices of the initial centers are 
critical to the quality of results. Nevertheless, in spite of these undesirable properties, 
for clustering large datasets of time-series, k-Means is preferable due to its faster running 
time.  

Table 1. An outline of the k-Means algorithm 

Algorithm k-Means 

1 Decide on a value for k. 

2 Initialize the k cluster centers (randomly, if necessary). 

3 Decide the class memberships of the N objects by 
assigning them to the nearest   cluster center. 

4 Re-estimate the k cluster centers, by assuming the 
memberships found above are correct. 

5 If none of the N objects changed membership in the 
last iteration, exit. Otherwise goto 3. 

In order to scale the various clustering methods to massive datasets, one can either 
reduce the number of objects, N, by sampling [2], or reduce the dimensionality of the 
objects [1, 3, 9, 12, 13, 16, 19, 25, 26].  For time-series, the objective is to find a 
representation at a lower dimensionality that preserves the original information and 
describes the original shape of the time-series data as closely as possible.  Many 
approaches have been suggested in the literature, including the Discrete Fourier 
Transform (DFT) [1, 9], Singular Value Decomposition [16], Adaptive Piecewise 
Constant Approximation [13], Piecewise Aggregate Approximation (PAA) [4, 26], 
Piecewise Linear Approximation [12] and the Discrete Wavelet Transform (DWT) [3, 
19].  While all these approaches have shared the ability to produce a high quality 
reduced-dimensionality approximation of time series, wavelets are unique in that their 
representation of data is intrinsically multi-resolution.  This property is critical to our 
proposed algorithm and will be discussed in detail in the next section.  

 



2.2   Background on Wavelets  

Wavelets are mathematical functions that represent data or other functions in terms of 
the averages and differences of a prototype function, called the analyzing or mother 
wavelet [6].   

In this sense, they are similar to the Fourier transform.  One fundamental 
difference is that wavelets are localized in time.  In other words, some of the wavelet 
coefficients represent small, local subsections of the data being studied, as opposed to 
Fourier coefficients, which always represent global contributions to the data. This 
property is very useful for multi-resolution analysis of data.  The first few coefficients 
contain an overall, coarse approximation of the data; additional coefficients can be 
perceived as "zooming-in" to areas of high detail. Figs 1 and 2 illustrate this idea.  

The Haar Wavelet decomposition is achieved by averaging two adjacent values 
on the time series function at a given resolution to form a smoothed, lower-
dimensional signal, and the resulting coefficients at this given resolution are simply 
the differences between the values and their averages [3].  As a result, the Haar 
wavelet decomposition is the combination of the coefficients at all resolutions, with 
the overall average for the time series being its first coefficient. The coefficients are 
crucial for reconstructing the original sequence, as they store the detailed information 
lost in the smoothed signal. 

  

Fig 1. The Haar Wavelet representation can 
be visualized as an attempt to approximate a 
time series with a linear combination of basis 
functions.  In this case, time series A is 
transformed to B by Haar wavelet 
decomposition, and the dimensionality is 
reduced from 512 to 8.  

Fig 2. The Haar Wavelet can represent data 
at different levels of resolution.  Above we 
see a raw time series, with increasing 
faithful wavelet approximations below. 

2.3   Background on Anytime Algorithms  

Anytime algorithms are algorithms that trade execution time for quality of results 
[11].  In particular, an anytime algorithm always has a best-so-far answer available, 
and the quality of the answer improves with execution time.  The user may examine 
this answer at any time, and choose to terminate the algorithm, temporarily suspend 
the algorithm, or allow the algorithm to run to completion.  
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The utility of anytime algorithms for data mining has been extensively 
documented [2, 21].  Suppose a batch version of an algorithm takes a week to run (not 
an implausible scenario in mining massive, disk-resident data sets).  It would be 
highly desirable to implement the algorithm as an anytime algorithm.  This would 
allow a user to examine the best current answer after an hour or so as a “sanity check” 
of all assumptions and parameters. As a simple example, suppose the user had 
accidentally set the value of k to 50 instead of the desired value of 5. Using a batch 
algorithm the mistake would not be noted for a week, whereas using an anytime 
algorithm the mistake could be noted early on and the algorithm restarted with little 
cost. This motivating example could have been eliminated by user diligence! More 
generally, however, data mining algorithms do require the user to make choices of 
several parameters, and an anytime implementation of k-Means would allow the user 
to interact with the entire data mining process in a more efficient way.  

2.4   Related Work  

Bradley et. al. [2] suggest a generic technique for scaling the k-Means clustering 
algorithms to large databases by attempting to identify regions of the data that are 
compressible, that must be retained in main memory, and regions that may be 
discarded.  However, the generality of the method contrasts with our algorithm’s 
explicit exploitation of the structure of the data type of interest.  

Our work is more similar in spirit to the dynamic time warping similarity search 
technique introduced by Chu et. al. [4].  The authors speed up linear search by 
examining the time series at increasingly finer levels of approximation.  

3   Our Approach – the I-kMeans Algorithm 

As noted in Section 2.1, the complexity of the k-Means algorithm is O(kNrD), where 
D is the dimensionality of data points (or the length of a sequence, as in the case of 
time-series).  For a dataset consisting of long time-series, the D factor can burden the 
clustering task significantly.  This overhead can be alleviated by reducing the data 
dimensionality.  

Another major drawback of the k-Means algorithm is that the clustering quality is 
greatly dependant on the choice of initial centers (i.e., line 2 of Table 1). As 
mentioned earlier, the k-Means algorithm guarantees local, but not necessarily global 
optimization. Poor choices of the initial centers, therefore, can degrade the quality of 
clustering solution and result in longer execution time (See [10] for an excellent 
discussion of this issue).  Our algorithm addresses these two problems of k-Means, in 
addition to offering the capability of an anytime algorithm, which allows the user to 
interrupt and terminate the program at any stage.  

We propose using a wavelet decomposition to perform clustering at increasingly 
finer levels of the decomposition, while displaying the gradually refined clustering 
results periodically to the user.  Note that any wavelet basis (or any other multi-



resolution decomposition such as DFT) can be used, as will be demonstrated in 
Section 5.  We opt for the Haar Wavelet here for its simplicity and its wide use in the 
time series community.   

We compute the Haar Wavelet decomposition for all time-series data in the 
database. The complexity of this transformation is linear to the dimensionality of each 
object; therefore, the running time is reasonable even for large databases. The process 
of decomposition can be performed off-line, and needs to be done only once.  The 
time series data can be stored in the Haar decomposition format, which takes the same 
amount of space as the original sequence. One important property of the 
decomposition is that it is a lossless transformation, since the original sequence can 
always be reconstructed from the decomposition.  

Once we compute the Haar decomposition, we perform the k-Means clustering 
algorithm, starting at the second level (each object at level i has 2(i-1) dimensions) and 
gradually progress to finer levels.  Since the Haar decomposition is completely 
reversible, we can reconstruct the approximation data from the coefficients at any 
level and perform clustering on these data. We call the new clustering algorithm I-
kMeans, where I stands for “interactive.”  Fig 3 illustrates this idea.  
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Fig 3. k-Means is performed on each level on the reconstructed data from the Haar wavelet 
decomposition, starting with the second level 

 
The intuition behind this algorithm originates from the observation that the general 
shape of a time series sequence can often be approximately captured at a lower 
resolution. As shown in Fig 2, the shape of the time series is well preserved, even at 
very coarse approximations.  Because of this desirable feature of wavelets, clustering 
results typically stabilize at a low resolution, thus saving time by eliminating the need 
to run at full resolution (the raw data). The pseudo-code of the algorithm is provided 
in Table 2. 

The algorithm achieves the speed-up by doing the vast majority of reassignments 
(Line 3 in Table 1) at the lower resolutions, where the costs of distance calculations 
are considerably lower. As we gradually progress to finer resolutions, we already start 
with good initial centers (the choices of initial centers will be discussed later in this 



section).  Therefore, the number of iterations r until convergence will typically be 
much lower.   

Table 2. An outline of the I-kMeans algorithm 

Algorithm I-kMeans 

1 Decide on a value for k. 

2 Initialize the k cluster centers (randomly, if necessary). 

3 Run the k-Means algorithm on the leveli representation 
of the data 

4 Use final centers from leveli, as initial centers for leveli+1. 
This is achieved by projecting the k centers returned by 
k-Means algorithm for the 2i space in the 2i+1 space. 

5 If none of the N objects changed membership in the last 
iteration, exit. Otherwise goto 3. 

The I-kMeans algorithm allows the user to monitor the quality of clustering 
results as the program executes.  The user can interrupt the program at any level, or 
wait until the execution terminates once the clustering results stabilize.  One 
surprising and highly desirable finding from the experimental results is that even if the 
program is run to completion (until the last level, with full resolution), the total 
execution time is generally less than that of clustering on raw data. 

As mentioned earlier, on every level except for the starting level (i.e. level 2), 
which uses random initial centers, the initial centers are selected based on the final 
centers from the previous level.  More specifically, the final centers computed at the 
end of level i will be used as the initial centers on level i+1.  Since the length of the 
data reconstructed from the Haar decomposition doubles as we progress to the next 
level, we project the centers computed at the end of level i onto level i+1 by doubling 
each coordinate of the centers. This way, they match the dimensionality of the points 
on level i+1. For example, if one of the re-computed centers at the end of level 2 is 
(0.5, 1.2), then the initial center used for this cluster on level 3 is (0.5, 0.5, 1.2, 1.2).  
This approach resolves the dilemma associated with the choice of initial centers, 
which is crucial to the quality of clustering results [10].  It also contributes to the fact 
that our algorithm often produces better clustering results than the k-Means algorithm. 
More specifically, although our approach also uses random centers as initial centers, 
it’s less likely to be trapped in local minima at such a low dimensionality.  In addition, 
the results obtained from this initial level will be refined in subsequent levels.  Note 
that while the performance of k-Means can be improved by providing “good” initial 
centers, the same argument applies to our approach as well1. 

The algorithm can be further sped up by not reconstructing the time series.  
Rather, clustering directly on the wavelet coefficients will produce identical results.  
However, the projection technique for the final centers mentioned above would not be 
appropriate here.  Instead, we can still reuse the final centers by simply padding the 

                                                           
1 As a matter of fact, our experiments (results not shown) with good initial centers show that 

this is true – while the performance of k-Means improves with good initial centers, the 
improvements on I-kMeans, in terms of both speed and accuracy, are even more drastic. 



additional dimensions for subsequent levels with zeros.  For brevity, we defer further 
discussion on this version to future work. 

4   Experimental Evaluation  

To show that our approach is superior to the k-Means algorithm for clustering time 
series, we performed a series of experiments on publicly available real datasets.  For 
completeness, we ran the I-kMeans algorithm for all levels of approximation, and 
recorded the cumulative execution time and clustering accuracy at each level.  In 
reality, however, the algorithm stabilizes in early stages and can automatically 
terminate much sooner.  We compare the results with that of k-Means on the original 
data.  Since both algorithms start with random initial centers, we execute each 
algorithm 100 times with different centers.  However, for consistency we ensure that 
for each execution, both algorithms are seeded with the same set of initial centers.  
After each execution, we compute the error (more details will be provided in Section 
4.2) and the execution time on the clustering results.  We compute and report the 
averages at the end of each experiment.  By taking the average, we achieve better 
objectiveness than taking the best (minimum), since in reality, it’s unlikely that we 
would have the knowledge of the correct clustering results, or the “oracle,” to 
compare with (as was the case with one of our test datasets). 

4.1   Datasets and Methodology  

We tested on two publicly available, real datasets.  The dataset cardinalities range 
from 1,000 to 8,000.  The length of each time series has been set to 512 on one 
dataset, and 1024 on the other.  

• JPL: This dataset consists of readings from various inertial sensors from Space 
Shuttle mission STS-57. The data is particularly appropriate for our experiments since 
the use of redundant backup sensors means that some of the data is very highly 
correlated.  In addition, even sensors that measure orthogonal features (i.e. the X and 
Y axis) may become temporarily correlated during a particular maneuver; for 
example, a “roll reversal” [8].  Thus, the data has an interesting mixture of dense and 
sparse clusters.  To generate data of increasingly larger cardinality, we extracted time 
series of length 512, at random starting points of each sequence from the original data 
pool.   

• Heterogeneous: This dataset is generated from a mixture of 10 real time series 
data from the UCR Time Series Data Mining Archive [14] (see Fig 4).  Using the 10 
time-series as seeds, we produced variation of the original patterns by adding small 
time shifting (2-3% of the series length), and interpolated Gaussian noise. Gaussian 
noisy peaks are interpolated using splines to create smooth random variations.  Fig 5 
illustrates how the data is generated.   



  
Fig 4. Real time series data from UCR Time 
Series Data Mining Archive.  We use these 
time series as seeds to create our 
Heterogeneous dataset. 

Fig 5. Generation of variations on the 
heterogeneous data.  We produced variation 
of the original patterns by adding small time 
shifting (2-3% of the series length), and 
interpolated Gaussian noise. Gaussian noisy 
peaks are interpolated using splines to 
create smooth random variations.   

In the Heterogeneous dataset, we know that the number of clusters is 10.  However, 
for the JPL dataset, we lack this information.  Finding k is an open problem for the k-
Means algorithm and is out of scope of this paper.  To determine the optimal k for k-
Means, we attempt different values of k, ranging from 2 to 8.  Nonetheless, our 
algorithm out-performs the k-Means algorithm regardless of k.  In this paper we only 
show the results with k equals to 5.  Fig 6 shows that our algorithm produces the same 
results as the hierarchical clustering algorithm, which is in generally more costly. 
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Fig 6.  On the left-hand side, we show three instances taken from each cluster of the JPL 
dataset discovered by the I-kMeans algorithm.  We can visually verify that our algorithm 
produces intuitive results.  On the right-hand side, we show that hierarchical clustering (using 
average linkage) discovers the exact same clusters.  However, hierarchical clustering is more 
costly than our algorithm. 



4.2   Error of Clustering Results 

In this section we compare the clustering quality for the I-kMeans and the classic k-
Means algorithm. 

Since we generated the heterogeneous datasets from a set of given time series 
data, we have the knowledge of correct clustering results in advance.  In this case, we 
can simply compute the clustering error by summing up the number of incorrectly 
classified objects for each cluster c and then dividing by the dataset cardinality.  This 
is achieved by the use of a confusion matrix.  Note the accuracy computed here is 
equivalent to “recall,” and the error rate is simply (1-accuracy). 

The error is computed at the end of each level.  However, it’s worth mentioning 
that in reality, the correct clustering results would not be available in advance.  The 
incorporation of such known results in our error calculation merely serves the purpose 
of demonstrating the quality of both algorithms. 

For the JPL dataset, we do not have prior knowledge of correct clustering results 
(which conforms more closely to real-life cases).  Lacking this information, we cannot 
use the same evaluation to determine the error. 

Since the k-Means algorithm seeks to optimize the objective function by 
minimizing the sum of squared intra-cluster error, we evaluate the quality of clustering 
by using the objective functions.  However, since the I-kMeans algorithm involves 
data with smaller dimensionality except for the last level, we have to map the cluster 
membership information to the original space, and compute the objective functions 
using the raw data in order to compare with the k-Means algorithm.    We show that 
the objective functions obtained from the I-kMeans algorithm are better than those 
from the k-Means algorithm.  The results are consistent with the work of Ding et. Al. 
[5], in which the authors show that dimensionality reduction reduces the chances of 
the algorithm being trapped in a local minimum.  Furthermore, even with the 
additional step of computing the objective functions from the original data, the I-
kMeans algorithm still takes less time to execute than the k-Means algorithm.   

In Figs 7-8, we show the errors/objective functions from the I-kMeans algorithm 
as a fraction of those obtained from the k-Means algorithm.  As we can see from the 
plots, our algorithm stabilizes at early (i.e. 2nd or 3rd) stages and consistently results in 
smaller error than the classic k-Means algorithm. 
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Fig 7. Error of I-kMeans algorithm on the 
Heterogeneous dataset, presented as fraction 
of the error from the k-Means algorithm.   

Fig 8. Objective functions of I-kMeans 
algorithm on the JPL dataset, presented as 
fraction of error from the k-Means algorithm.   



4.3   Running Time 

In this section, we present the cumulative running time for each level on the I-kMeans 
algorithm as a fraction to the k-Means algorithm.  The cumulative running time for 
any level i is the total running time from the starting level to level i.  In most cases, 
even if the I-kMeans algorithm is run to completion, the total running time is still less 
than that of the k-Means algorithm.  We attribute this improvement to the good 
choices of initial centers, since they result in very few iterations until convergence.  
Nevertheless, we have already shown in the previous section that the I-kMeans 
algorithm finds the best result in relatively early stage and does not need to run 
through all levels.  The time required for I-kMeans is therefore less than 50% of time 
required for k-Means for the Heterogeneous datasets. For the JPL datasets, the 
running time is less than 20% of time for k-Means, and even if it is run to completion, 
the cumulative running time is still 50% less than that of the k-Means algorithm. 

  

Fig 9. Cumulative running time for the 
Heterogeneous dataset.  Our algorithm cuts 
the running time by more than half. 

Fig 10. Cumulative running time for the JPL 
dataset.  Our algorithm typically takes only 
20% of the time required for k-Means.   

While the speedup achieved is quite impressive, we note that these results are only for 
the main memory case. We should expect a much greater speedup for more realistic 
data mining problems. The reason is that when performing k-Means on a massive 
dataset, every iteration requires a database scan [2]. The I/O time for the scans dwarfs 
the relatively inexpensive CPU time.  In contrast, our multi-resolution approach is 
able to run its first few levels in main memory, building a good “approximate” model2 
before being forced to access the disk. We can therefore expect our approach to make 
far fewer data scans. 

 
 

4.4   I-kMeans Algorithm vs. k-Means Algorithm 

In this section, rather than showing the error/objective function on each level, we 
present only the error/objective function returned by the I-kMeans algorithm when it 
out-performs the k-Means algorithm.  We also present the time taken for the I-kMeans 
algorithm to stabilize (i.e. when the result does not improve anymore).  We compare 

                                                           
2 As we have seen in Figs 7 and 8, the “approximate” models are typically better than the model 

built on the raw data. 
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the results to those of the k-Means algorithm.  The running time for I-kMeans remains 
small regardless of data size because the algorithm out-performs k-Means at very 
early stages. 
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Fig 11. The I-kMeans algorithm is highly 
competitive with the k-Means algorithm.  
The errors (bars) and execution time (lines) 
are significantly smaller. 

Fig 12. I-kMeans vs. k-Means algorithms in 
terms of objective function (bars) and 
running time (lines) for JPL dataset.   

 
Below we present additional results on a number of additional datasets from the UCR 
time-series archive. The running time recorded for I-kMeans is the time required to 
achieve the best result.  Therefore, the speedup measured here is pessimistic, since I-
kMeans typically outperforms k-Means in very early levels. We observe an average 
speedup of 3 times against the traditional k-Means and a general improvement in the 
objective function.  Only in the earthquake dataset the cumulative time is more than 
k-Means. This happens because the algorithm has to traverse the majority of the levels 
in order to perform the optimal clustering. However, in this case the prolonged 
execution time can be balanced by the significant improvement in the objective 
function. 
 
Table 3. Performance of I-kMeans on additional datasets. Smaller numbers indicate better 
performance 
 

Dataset Obj.  
k-Means 

Obj.  
I-kMeans 

Time  
k-Means 

Time 
 I-kMeans 

Speed
Up 

Ballbeam 6328.21 6065.61 5.83 4.30 1.36 

earthquake 110159 108887 12.9 15.19 0.85 

sunspot 4377E6 4361E6 7.45 3.07 3.36 

spot_exRates 2496.66 2497.47 6.83 2.71 2.52 

powerplant 9783E8 9584E8 10.33 3.07 3.36 

evaporator 6303E3 6281E3 21.33 6.59 3.24 

memory 1921E4 1916E4 19.48 5.91 3.29 

5   Extension to a General Framework 

We have seen that our anytime algorithm out-performs k-Means in terms of clustering 
quality and running time.  We will now extend the approach and generalize it to a 



framework that can adapt to a much broader range of algorithms.  More specifically, 
we apply prominent alternatives on the frame of our approach, the clustering 
algorithm, as well as its essence, the decomposition method.  

We demonstrate the generality of the framework by two examples.  Firstly, we 
use another widely-used iterative refinement algorithm – the EM algorithm, in place 
of the k-Means algorithm.  We call this version of EM the I-EM algorithm.  Next, 
instead of the Haar wavelet decomposition, we utilize an equally well-studied 
decomposition method, the Discrete Fourier Transform (DFT), on the I-kMeans 
algorithm.  Both approaches have shown to outperform their k-Means or EM 
counterparts.  In general, we can use any combination of iterative refining clustering 
algorithm and multi-resolution decomposition methods in our framework. 

5.1   I-EM with Expectation Maximization (EM) 

The EM algorithm with Gaussian Mixtures is very similar to k-Means algorithm 
introduced in Table 1. As with k-Means, the algorithm begins with an initial guess to 
the cluster centers (the “E” or Expectation step), and iteratively refines them (the “M” 
or maximization step). The major distinction is that k-Means attempts to model the 
data as a collection of k spherical regions, with every data object belonging to exactly 
one cluster. In contrast, EM models the data as a collection of k Gaussians, with every 
data object having some degree of membership in each cluster (in fact, although 
Gaussian models are most common, other distributions are possible). The major 
advantage of EM over k-Means is its ability to model a much richer set of cluster 
shapes. This generality has made EM (and its many variants and extensions) the 
clustering algorithm of choice in data mining [7] and bioinformatics [17]. 

5.2   Experimental Results for I-EM 

Similar to the application of k-Means, we apply EM for different resolutions of data, 
and compare the clustering quality and running time with EM on the original data.  
We use the same datasets and parameters as in k-Means.  However, we have to reduce 
the dimensionality of data to 256, since otherwise the dimensionality-cardinality ratio 
would be too small for EM to perform well (if at all!).  The EM algorithm presents the 
error as the negative log likehood of data.  We can compare the clustering results in a 
similar fashion as in k-Means, by projecting the results obtained at a lower dimension 
to the full dimension and computing the error on the original raw data.  More 
specifically, this is achieved by re-computing the centers and the covariance matrix on 
the full dimension, given the posterior probabilities obtained at a lower dimension.  
The results are similar to those of k-Means.  Fig 13 shows the errors for EM and I-EM 
algorithms on the JPL datasets.  The errors for EM are shown as straight lines for easy 
visual comparison with I-EM at each level.  The results show that I-EM outperforms 
EM at very early stages (4 or 8 dimensions). 

Fig 14 shows the running time for EM and I-EM on JPL datasets.  As with the error 
presentation, the running times for EM are shown as straight lines for easy visual 
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Fig 13.  We show the errors for different data cardinalities.  The errors for EM are presented as 
constant lines for easy visual comparison with the I-EM at each level.  I-EM out-performs EM 
at very early stages (4 or 8 dimensions) 

 

  

  
Fig 14.  Running times for different data cardinalities.  The running times for EM are 
presented as constant lines for easy visual comparison with the I-EM at each level.  The 
vertical dashed line indicates where I-EM starts to out-perform EM as illustrated in Fig 13 
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5.3   I-kMeans with Discrete Fourier Transform 

As mentioned earlier, the choice of Haar Wavelet as the decomposition method is due 
to its efficiency and simplicity.  In this section we extend the I-kMeans to utilize 
another equally well-known decomposition method, the Discrete Fourier Transform 
(DFT) [1, 20].   

Similar to the wavelet decomposition, DFT approximates the signal with a linear 
combination of basis functions. The vital difference between the two decomposition 
methods is that the wavelets are localized in time, while DFT coefficients represent 
global contribution of the signal.  Fig 15 provides a side-by-side visual comparison of 
the Haar wavelet and DFT. 

 
 

 

 

 

 

 

 

Fig 15. Visual comparison of the Haar Wavelet and the Discrete Fourier Transform.  
Wavelet coefficients are localized in time, while DFT coefficients represent global 
contributions to the signal 

 
While the competitiveness of either method has been largely argued in the past, we 
apply DFT in the algorithm to demonstrate the generality of the framework.  As a 
matter of fact, consistent with the results shown in [15], the superiority of either 
method is highly data-dependent.  In general, however, DFT performs better for 
smooth signals or sequences that resemble random walks. 

5.4   Experimental Results for I-kMeans with DFT 

In this section we show the quality of the results of I-kMeans, using DFT as the 
decomposition method instead of the Haar wavelet.  Although there is no clear 
evidence that one decomposition method is superior than the other, it’s certain that 
using either one of these methods with I-kMeans outperforms the batch k-Means 
algorithm.  Naturally it can be argued that instead of using our iterative method, one 
might be able to achieve equal-quality results by using a batch algorithm on higher 
resolution with either decomposition.  While this is true to some extent, there is 
always a higher chance of the clustering being trapped in the local minima.  By 
starting off at lower resolution and re-using the cluster centers each time, we minimize 
the dilemma with local minima, in addition to the choices of initial centers.  
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In datasets where the time-series is approximated more faithfully by using Fourier 
than wavelet decomposition, the quality of the DFT-based incremental approach is 
slightly better. This experiment suggests that our approach can be tailored to specific 
applications, by carefully choosing the decomposition that provides the least 
reconstruction error. 

Table 4 shows the results of I-kMeans using DFT. 
 
Table 4. Objective functions for k-Means, I-kMeans with Haar Wavelet, and I-kMeans with 
DFT. Smaller numbers indicate tighter clusters. 

Dataset Obj.  
k-Means 

Haar  
I-kMeans 

DFT 
I-kMeans 

ballbeam 6328.21 6065.61 6096.54 

earthquake 110159 108887 108867 

Sunspot 4377E6 4361E6 4388E6 

spot_exRates 2496.66 2497.47 2466.28 

powerplant 9783E8 9584E8 11254E8 

evaporator 6303E3 6281E3 6290E3 

Memory 1921E4 1916E4 1803E4 

6   Conclusions and Future Work 

We have presented an approach to perform incremental clustering of time-series at 
various resolutions using multi-resolution decomposition methods. We initially focus 
our approach on the k-Means clustering algorithm, and then extend the idea to EM.  
We reuse the final centers at the end of each resolution as the initial centers for the 
next level of resolution.  This approach resolves the dilemma associated with the 
choices of initial centers and significantly improves the execution time and clustering 
quality.  Our experimental results indicate that this approach yields faster execution 
time than the traditional k-Means (or EM) approach, in addition to improving the 
clustering quality of the algorithm.  Since it conforms with the observation that time 
series data can be described with coarser resolutions while still preserving a general 
shape, the anytime algorithm stabilizes at very early stages, eliminating the needs to 
operate on high resolutions.  In addition, the anytime algorithm allows the user to 
terminate the program at any stage.  

Our extensions of the iterative anytime algorithm on EM and the multi-resolution 
decomposition on DFT show great promise for generalizing the approach at an even 
wider scale.  More specifically, this anytime approach can be generalized to a 
framework with a much broader range of algorithms or data mining problem.  For 
future work, we plan to investigate the following: 
� Extending our algorithm to other data types.  For example, image histograms can 

be successfully represented as wavelets [6, 23].  Our initial experiments on image 
histograms show great promise of applying the framework on image data. 



� For k-Means, examining the possibility of re-using the results (i.e. objective 
functions that determine the quality of clustering results) from the previous stages 
to eliminate the need to re-compute all the distances. 
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