
Iterative Incremental Clustering of Time Series

Jessica Lin, Michail Vlachos, Eamonn Keogh, and Dimitrios Gunopulos

Computer Science & Engineering Department
University of California, Riverside

Riverside, CA 92521
{jessica, mvlachos, eamonn, dg}@cs.ucr.edu

Abstract. We present a novel anytime version of partitional clustering
algorithm, such as k-Means and EM, for time series. The algorithm works by
leveraging off the multi-resolution property of wavelets. The dilemma of
choosing the initial centers is mitigated by initializing the centers at each
approximation level, using the final centers returned by the coarser
representations. In addition to casting the clustering algorithms as anytime
algorithms, this approach has two other very desirable properties. By working at
lower dimensionalities we can efficiently avoid local minima. Therefore, the
quality of the clustering is usually better than the batch algorithm. In addition,
even if the algorithm is run to completion, our approach is much faster than its
batch counterpart. We explain, and empirically demonstrate these surprising and
desirable properties with comprehensive experiments on several publicly
available real data sets. We further demonstrate that our approach can be
generalized to a framework of much broader range of algorithms or data mining
problems.

1 Introduction

Clustering is a vital process for condensing and summarizing information, since it can
provide a synopsis of the stored data. Although there has been much research on
clustering in general, most classic machine learning and data mining algorithms do not
work well for time series due to their unique structure. In particular, the high
dimensionality, very high feature correlation, and the (typically) large amount of noise
that characterize time series data present a difficult challenge. Although numerous
clustering algorithms have been proposed, the majority of them work in a batch
fashion, thus hindering interaction with the end users. Here we address the clustering
problem by introducing a novel anytime version of partitional clustering algorithm
based on wavelets. Anytime algorithms are valuable for large databases, since results
are produced progressively and are refined over time [11]. Their utility for data
mining has been documented at length elsewhere [2, 21]. While partitional clustering
algorithms and wavelet decomposition have both been studied extensively in the past,
the major novelty of our approach is that it mitigates the problem associated with the
choice of initial centers, in addition to providing the functionality of user-interaction.

The algorithm works by leveraging off the multi-resolution property of wavelet
decomposition [1, 6, 22]. In particular, an initial clustering is performed with a very

coarse representation of the data. The results obtained from this “quick and dirty”
clustering are used to initialize a clustering at a finer level of approximation. This
process is repeated until the “approximation” is the original “raw” data. Our approach
allows the user to interrupt and terminate the process at any level. In addition to
casting the clustering algorithm as an anytime algorithm, our approach has two other
very unintuitive properties. The quality of the clustering is often better than the batch
algorithm, and even if the algorithm is run to completion, the time taken is typically
much less than the time taken by the batch algorithm.

We initially focus our approach on the popular k-Means clustering algorithm [10,
18, 24] for time series. For simplicity we demonstrate how the algorithm works by
utilizing the Haar wavelet decomposition. Then we extend the idea to another widely
used clustering algorithm, EM, and another well-known decomposition method, DFT,
towards the end of the paper. We demonstrate that our algorithm can be generalized
as a framework for a much broader range of algorithms or data mining problems.

The rest of this paper is organized as follows. In Section 2 we review related
work, and introduce the necessary background on the wavelet transform and k-Means
clustering. In Section 3, we introduce our algorithm. Section 4 contains a
comprehensive comparison of our algorithm to classic k-Means on real datasets. In
Section 5 we study how our approach can be extended to other iterative refinement
method (such as EM), and we also investigate the use of other multi-resolution
decomposition such as DFT. In Section 6 we summarize our findings and offer
suggestions for future work.

2 Background and Related Work

Since our work draws on the confluence of clustering, wavelets and anytime
algorithms, we provide the necessary background on these areas in this section.

2.1 Background on Clustering

One of the most widely used clustering approaches is hierarchical clustering, due to
the great visualization power it offers [12]. Hierarchical clustering produces a nested
hierarchy of similar groups of objects, according to a pairwise distance matrix of the
objects. One of the advantages of this method is its generality, since the user does not
need to provide any parameters such as the number of clusters. However, its
application is limited to only small datasets, due to its quadratic (or higher order)
computational complexity.

A faster method to perform clustering is k-Means [2, 18]. The basic intuition
behind k-Means (and in general, iterative refinement algorithms) is the continuous
reassignment of objects into different clusters, so that the within-cluster distance is
minimized. Therefore, if x are the objects and c are the cluster centers, k-Means
attempts to minimize the following objective function:

��
� �

��
k

m

N

i
mi cxF

1 1

 (1)

The k-Means algorithm for N objects has a complexity of O(kNrD) [18], where k
is the number of clusters specified by the user, r is the number of iterations until
convergence, and D is the dimensionality of the points. The shortcomings of the
algorithm are its tendency to favor spherical clusters, and its requirement for prior
knowledge on the number of clusters, k. The latter limitation can be mitigated by
attempting all values of k within a large range. Various statistical tests can then be
used to determine which value of k is most parsimonious. However, this approach
only worsens k-Means’ already considerable time complexity. Since k-Means is
essentiality a hill-climbing algorithm, it is guaranteed to converge on a local but not
necessarily global optimum. In other words, the choices of the initial centers are
critical to the quality of results. Nevertheless, in spite of these undesirable properties,
for clustering large datasets of time-series, k-Means is preferable due to its faster running
time.

Table 1. An outline of the k-Means algorithm

Algorithm k-Means

1 Decide on a value for k.

2 Initialize the k cluster centers (randomly, if necessary).

3 Decide the class memberships of the N objects by
assigning them to the nearest cluster center.

4 Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5 If none of the N objects changed membership in the
last iteration, exit. Otherwise goto 3.

In order to scale the various clustering methods to massive datasets, one can either
reduce the number of objects, N, by sampling [2], or reduce the dimensionality of the
objects [1, 3, 9, 12, 13, 16, 19, 25, 26]. For time-series, the objective is to find a
representation at a lower dimensionality that preserves the original information and
describes the original shape of the time-series data as closely as possible. Many
approaches have been suggested in the literature, including the Discrete Fourier
Transform (DFT) [1, 9], Singular Value Decomposition [16], Adaptive Piecewise
Constant Approximation [13], Piecewise Aggregate Approximation (PAA) [4, 26],
Piecewise Linear Approximation [12] and the Discrete Wavelet Transform (DWT) [3,
19]. While all these approaches have shared the ability to produce a high quality
reduced-dimensionality approximation of time series, wavelets are unique in that their
representation of data is intrinsically multi-resolution. This property is critical to our
proposed algorithm and will be discussed in detail in the next section.

2.2 Background on Wavelets

Wavelets are mathematical functions that represent data or other functions in terms of
the averages and differences of a prototype function, called the analyzing or mother
wavelet [6].

In this sense, they are similar to the Fourier transform. One fundamental
difference is that wavelets are localized in time. In other words, some of the wavelet
coefficients represent small, local subsections of the data being studied, as opposed to
Fourier coefficients, which always represent global contributions to the data. This
property is very useful for multi-resolution analysis of data. The first few coefficients
contain an overall, coarse approximation of the data; additional coefficients can be
perceived as "zooming-in" to areas of high detail. Figs 1 and 2 illustrate this idea.

The Haar Wavelet decomposition is achieved by averaging two adjacent values
on the time series function at a given resolution to form a smoothed, lower-
dimensional signal, and the resulting coefficients at this given resolution are simply
the differences between the values and their averages [3]. As a result, the Haar
wavelet decomposition is the combination of the coefficients at all resolutions, with
the overall average for the time series being its first coefficient. The coefficients are
crucial for reconstructing the original sequence, as they store the detailed information
lost in the smoothed signal.

Fig 1. The Haar Wavelet representation can
be visualized as an attempt to approximate a
time series with a linear combination of basis
functions. In this case, time series A is
transformed to B by Haar wavelet
decomposition, and the dimensionality is
reduced from 512 to 8.

Fig 2. The Haar Wavelet can represent data
at different levels of resolution. Above we
see a raw time series, with increasing
faithful wavelet approximations below.

2.3 Background on Anytime Algorithms

Anytime algorithms are algorithms that trade execution time for quality of results
[11]. In particular, an anytime algorithm always has a best-so-far answer available,
and the quality of the answer improves with execution time. The user may examine
this answer at any time, and choose to terminate the algorithm, temporarily suspend
the algorithm, or allow the algorithm to run to completion.

0 8 0 1 6 0 2 4 0 3 2 0 4 0 0 4 8 0 5 6 0

H a a r 0
H a a r 1
H a a r 2
H a a r 3
H a a r 4
H a a r 5
H a a r 6
H a a r 7

A

B

The utility of anytime algorithms for data mining has been extensively
documented [2, 21]. Suppose a batch version of an algorithm takes a week to run (not
an implausible scenario in mining massive, disk-resident data sets). It would be
highly desirable to implement the algorithm as an anytime algorithm. This would
allow a user to examine the best current answer after an hour or so as a “sanity check”
of all assumptions and parameters. As a simple example, suppose the user had
accidentally set the value of k to 50 instead of the desired value of 5. Using a batch
algorithm the mistake would not be noted for a week, whereas using an anytime
algorithm the mistake could be noted early on and the algorithm restarted with little
cost. This motivating example could have been eliminated by user diligence! More
generally, however, data mining algorithms do require the user to make choices of
several parameters, and an anytime implementation of k-Means would allow the user
to interact with the entire data mining process in a more efficient way.

2.4 Related Work

Bradley et. al. [2] suggest a generic technique for scaling the k-Means clustering
algorithms to large databases by attempting to identify regions of the data that are
compressible, that must be retained in main memory, and regions that may be
discarded. However, the generality of the method contrasts with our algorithm’s
explicit exploitation of the structure of the data type of interest.

Our work is more similar in spirit to the dynamic time warping similarity search
technique introduced by Chu et. al. [4]. The authors speed up linear search by
examining the time series at increasingly finer levels of approximation.

3 Our Approach – the I-kMeans Algorithm

As noted in Section 2.1, the complexity of the k-Means algorithm is O(kNrD), where
D is the dimensionality of data points (or the length of a sequence, as in the case of
time-series). For a dataset consisting of long time-series, the D factor can burden the
clustering task significantly. This overhead can be alleviated by reducing the data
dimensionality.

Another major drawback of the k-Means algorithm is that the clustering quality is
greatly dependant on the choice of initial centers (i.e., line 2 of Table 1). As
mentioned earlier, the k-Means algorithm guarantees local, but not necessarily global
optimization. Poor choices of the initial centers, therefore, can degrade the quality of
clustering solution and result in longer execution time (See [10] for an excellent
discussion of this issue). Our algorithm addresses these two problems of k-Means, in
addition to offering the capability of an anytime algorithm, which allows the user to
interrupt and terminate the program at any stage.

We propose using a wavelet decomposition to perform clustering at increasingly
finer levels of the decomposition, while displaying the gradually refined clustering
results periodically to the user. Note that any wavelet basis (or any other multi-

resolution decomposition such as DFT) can be used, as will be demonstrated in
Section 5. We opt for the Haar Wavelet here for its simplicity and its wide use in the
time series community.

We compute the Haar Wavelet decomposition for all time-series data in the
database. The complexity of this transformation is linear to the dimensionality of each
object; therefore, the running time is reasonable even for large databases. The process
of decomposition can be performed off-line, and needs to be done only once. The
time series data can be stored in the Haar decomposition format, which takes the same
amount of space as the original sequence. One important property of the
decomposition is that it is a lossless transformation, since the original sequence can
always be reconstructed from the decomposition.

Once we compute the Haar decomposition, we perform the k-Means clustering
algorithm, starting at the second level (each object at level i has 2(i-1) dimensions) and
gradually progress to finer levels. Since the Haar decomposition is completely
reversible, we can reconstruct the approximation data from the coefficients at any
level and perform clustering on these data. We call the new clustering algorithm I-
kMeans, where I stands for “interactive.” Fig 3 illustrates this idea.

.........

.........

Level 1

Level 2

Level n

Time Series 1

.........

.........

.........

.........

.........

Time Series 2 TIme Series k

Level 3

points for kmeans
at level 2

points for kmeans
at level 3

Fig 3. k-Means is performed on each level on the reconstructed data from the Haar wavelet
decomposition, starting with the second level

The intuition behind this algorithm originates from the observation that the general
shape of a time series sequence can often be approximately captured at a lower
resolution. As shown in Fig 2, the shape of the time series is well preserved, even at
very coarse approximations. Because of this desirable feature of wavelets, clustering
results typically stabilize at a low resolution, thus saving time by eliminating the need
to run at full resolution (the raw data). The pseudo-code of the algorithm is provided
in Table 2.

The algorithm achieves the speed-up by doing the vast majority of reassignments
(Line 3 in Table 1) at the lower resolutions, where the costs of distance calculations
are considerably lower. As we gradually progress to finer resolutions, we already start
with good initial centers (the choices of initial centers will be discussed later in this

section). Therefore, the number of iterations r until convergence will typically be
much lower.

Table 2. An outline of the I-kMeans algorithm

Algorithm I-kMeans

1 Decide on a value for k.

2 Initialize the k cluster centers (randomly, if necessary).

3 Run the k-Means algorithm on the leveli representation
of the data

4 Use final centers from leveli, as initial centers for leveli+1.
This is achieved by projecting the k centers returned by
k-Means algorithm for the 2i space in the 2i+1 space.

5 If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3.

The I-kMeans algorithm allows the user to monitor the quality of clustering
results as the program executes. The user can interrupt the program at any level, or
wait until the execution terminates once the clustering results stabilize. One
surprising and highly desirable finding from the experimental results is that even if the
program is run to completion (until the last level, with full resolution), the total
execution time is generally less than that of clustering on raw data.

As mentioned earlier, on every level except for the starting level (i.e. level 2),
which uses random initial centers, the initial centers are selected based on the final
centers from the previous level. More specifically, the final centers computed at the
end of level i will be used as the initial centers on level i+1. Since the length of the
data reconstructed from the Haar decomposition doubles as we progress to the next
level, we project the centers computed at the end of level i onto level i+1 by doubling
each coordinate of the centers. This way, they match the dimensionality of the points
on level i+1. For example, if one of the re-computed centers at the end of level 2 is
(0.5, 1.2), then the initial center used for this cluster on level 3 is (0.5, 0.5, 1.2, 1.2).
This approach resolves the dilemma associated with the choice of initial centers,
which is crucial to the quality of clustering results [10]. It also contributes to the fact
that our algorithm often produces better clustering results than the k-Means algorithm.
More specifically, although our approach also uses random centers as initial centers,
it’s less likely to be trapped in local minima at such a low dimensionality. In addition,
the results obtained from this initial level will be refined in subsequent levels. Note
that while the performance of k-Means can be improved by providing “good” initial
centers, the same argument applies to our approach as well1.

The algorithm can be further sped up by not reconstructing the time series.
Rather, clustering directly on the wavelet coefficients will produce identical results.
However, the projection technique for the final centers mentioned above would not be
appropriate here. Instead, we can still reuse the final centers by simply padding the

1 As a matter of fact, our experiments (results not shown) with good initial centers show that

this is true – while the performance of k-Means improves with good initial centers, the
improvements on I-kMeans, in terms of both speed and accuracy, are even more drastic.

additional dimensions for subsequent levels with zeros. For brevity, we defer further
discussion on this version to future work.

4 Experimental Evaluation

To show that our approach is superior to the k-Means algorithm for clustering time
series, we performed a series of experiments on publicly available real datasets. For
completeness, we ran the I-kMeans algorithm for all levels of approximation, and
recorded the cumulative execution time and clustering accuracy at each level. In
reality, however, the algorithm stabilizes in early stages and can automatically
terminate much sooner. We compare the results with that of k-Means on the original
data. Since both algorithms start with random initial centers, we execute each
algorithm 100 times with different centers. However, for consistency we ensure that
for each execution, both algorithms are seeded with the same set of initial centers.
After each execution, we compute the error (more details will be provided in Section
4.2) and the execution time on the clustering results. We compute and report the
averages at the end of each experiment. By taking the average, we achieve better
objectiveness than taking the best (minimum), since in reality, it’s unlikely that we
would have the knowledge of the correct clustering results, or the “oracle,” to
compare with (as was the case with one of our test datasets).

4.1 Datasets and Methodology

We tested on two publicly available, real datasets. The dataset cardinalities range
from 1,000 to 8,000. The length of each time series has been set to 512 on one
dataset, and 1024 on the other.

• JPL: This dataset consists of readings from various inertial sensors from Space
Shuttle mission STS-57. The data is particularly appropriate for our experiments since
the use of redundant backup sensors means that some of the data is very highly
correlated. In addition, even sensors that measure orthogonal features (i.e. the X and
Y axis) may become temporarily correlated during a particular maneuver; for
example, a “roll reversal” [8]. Thus, the data has an interesting mixture of dense and
sparse clusters. To generate data of increasingly larger cardinality, we extracted time
series of length 512, at random starting points of each sequence from the original data
pool.

• Heterogeneous: This dataset is generated from a mixture of 10 real time series
data from the UCR Time Series Data Mining Archive [14] (see Fig 4). Using the 10
time-series as seeds, we produced variation of the original patterns by adding small
time shifting (2-3% of the series length), and interpolated Gaussian noise. Gaussian
noisy peaks are interpolated using splines to create smooth random variations. Fig 5
illustrates how the data is generated.

Fig 4. Real time series data from UCR Time
Series Data Mining Archive. We use these
time series as seeds to create our
Heterogeneous dataset.

Fig 5. Generation of variations on the
heterogeneous data. We produced variation
of the original patterns by adding small time
shifting (2-3% of the series length), and
interpolated Gaussian noise. Gaussian noisy
peaks are interpolated using splines to
create smooth random variations.

In the Heterogeneous dataset, we know that the number of clusters is 10. However,
for the JPL dataset, we lack this information. Finding k is an open problem for the k-
Means algorithm and is out of scope of this paper. To determine the optimal k for k-
Means, we attempt different values of k, ranging from 2 to 8. Nonetheless, our
algorithm out-performs the k-Means algorithm regardless of k. In this paper we only
show the results with k equals to 5. Fig 6 shows that our algorithm produces the same
results as the hierarchical clustering algorithm, which is in generally more costly.

a

a

a

c

c

c

b

b

b

d

d

d

e

e

e

Fig 6. On the left-hand side, we show three instances taken from each cluster of the JPL
dataset discovered by the I-kMeans algorithm. We can visually verify that our algorithm
produces intuitive results. On the right-hand side, we show that hierarchical clustering (using
average linkage) discovers the exact same clusters. However, hierarchical clustering is more
costly than our algorithm.

4.2 Error of Clustering Results

In this section we compare the clustering quality for the I-kMeans and the classic k-
Means algorithm.

Since we generated the heterogeneous datasets from a set of given time series
data, we have the knowledge of correct clustering results in advance. In this case, we
can simply compute the clustering error by summing up the number of incorrectly
classified objects for each cluster c and then dividing by the dataset cardinality. This
is achieved by the use of a confusion matrix. Note the accuracy computed here is
equivalent to “recall,” and the error rate is simply (1-accuracy).

The error is computed at the end of each level. However, it’s worth mentioning
that in reality, the correct clustering results would not be available in advance. The
incorporation of such known results in our error calculation merely serves the purpose
of demonstrating the quality of both algorithms.

For the JPL dataset, we do not have prior knowledge of correct clustering results
(which conforms more closely to real-life cases). Lacking this information, we cannot
use the same evaluation to determine the error.

Since the k-Means algorithm seeks to optimize the objective function by
minimizing the sum of squared intra-cluster error, we evaluate the quality of clustering
by using the objective functions. However, since the I-kMeans algorithm involves
data with smaller dimensionality except for the last level, we have to map the cluster
membership information to the original space, and compute the objective functions
using the raw data in order to compare with the k-Means algorithm. We show that
the objective functions obtained from the I-kMeans algorithm are better than those
from the k-Means algorithm. The results are consistent with the work of Ding et. Al.
[5], in which the authors show that dimensionality reduction reduces the chances of
the algorithm being trapped in a local minimum. Furthermore, even with the
additional step of computing the objective functions from the original data, the I-
kMeans algorithm still takes less time to execute than the k-Means algorithm.

In Figs 7-8, we show the errors/objective functions from the I-kMeans algorithm
as a fraction of those obtained from the k-Means algorithm. As we can see from the
plots, our algorithm stabilizes at early (i.e. 2nd or 3rd) stages and consistently results in
smaller error than the classic k-Means algorithm.

2 8

32

12
8

51
2

1000
2000

4000
80000

0.5

1

Fraction

Dimensionality

Data
Size

I-kMeans Error As Fraction of k-Means
(Heterogeneous)

2 8

32

12
8

51
2

1000
2000

4000
8000

0.00

0.50

1.00

Fraction

Dimensionality

Data
Size

I-kMeans Obj Function As Fraction to k-Means
(JPL)

Fig 7. Error of I-kMeans algorithm on the
Heterogeneous dataset, presented as fraction
of the error from the k-Means algorithm.

Fig 8. Objective functions of I-kMeans
algorithm on the JPL dataset, presented as
fraction of error from the k-Means algorithm.

4.3 Running Time

In this section, we present the cumulative running time for each level on the I-kMeans
algorithm as a fraction to the k-Means algorithm. The cumulative running time for
any level i is the total running time from the starting level to level i. In most cases,
even if the I-kMeans algorithm is run to completion, the total running time is still less
than that of the k-Means algorithm. We attribute this improvement to the good
choices of initial centers, since they result in very few iterations until convergence.
Nevertheless, we have already shown in the previous section that the I-kMeans
algorithm finds the best result in relatively early stage and does not need to run
through all levels. The time required for I-kMeans is therefore less than 50% of time
required for k-Means for the Heterogeneous datasets. For the JPL datasets, the
running time is less than 20% of time for k-Means, and even if it is run to completion,
the cumulative running time is still 50% less than that of the k-Means algorithm.

Fig 9. Cumulative running time for the
Heterogeneous dataset. Our algorithm cuts
the running time by more than half.

Fig 10. Cumulative running time for the JPL
dataset. Our algorithm typically takes only
20% of the time required for k-Means.

While the speedup achieved is quite impressive, we note that these results are only for
the main memory case. We should expect a much greater speedup for more realistic
data mining problems. The reason is that when performing k-Means on a massive
dataset, every iteration requires a database scan [2]. The I/O time for the scans dwarfs
the relatively inexpensive CPU time. In contrast, our multi-resolution approach is
able to run its first few levels in main memory, building a good “approximate” model2
before being forced to access the disk. We can therefore expect our approach to make
far fewer data scans.

4.4 I-kMeans Algorithm vs. k-Means Algorithm

In this section, rather than showing the error/objective function on each level, we
present only the error/objective function returned by the I-kMeans algorithm when it
out-performs the k-Means algorithm. We also present the time taken for the I-kMeans
algorithm to stabilize (i.e. when the result does not improve anymore). We compare

2 As we have seen in Figs 7 and 8, the “approximate” models are typically better than the model

built on the raw data.

2 8

32

12
8

51
2

1000
2000

4000
80000

0.3

0.6

0.9

1.2

Fraction

Dimensionality

Data
Size

Cumulative Time As Fraction of k-Means
(Heterogeneous)

2 8

32

12
8

51
2

1000
2000

4000
8000

0.00
0.20
0.40
0.60
0.80
1.00

Fraction

Dimensionality

Data
Size

I-kMeans Cumulative Time As Fraction to k-
Means (JPL)

the results to those of the k-Means algorithm. The running time for I-kMeans remains
small regardless of data size because the algorithm out-performs k-Means at very
early stages.

I-kMeans Alg vs. Kmeans Alg (Heterogeneous)

0

0.2

0.4

0.6

0.8

1

1000 2000 4000 8000

Data Size

E
rr
o
r

0

10

20

30

40

50

T
im

e
(s

ec
o
n
d
s)

error_I-kM eans error_kmeans

time_I-kM eans time_kmeans

I-kMeans Alg vs K-Means Alg (JPL)

0

50

100

150

1000 2000 4000 8000

Data Size

O
b

j.
F

cn
 (

x1
0,

00
0)

0

20

40

60

80

obj. fcn_I-kM eans obj. fcn_k-Means

time_I-kM eans time_k-Means

Fig 11. The I-kMeans algorithm is highly
competitive with the k-Means algorithm.
The errors (bars) and execution time (lines)
are significantly smaller.

Fig 12. I-kMeans vs. k-Means algorithms in
terms of objective function (bars) and
running time (lines) for JPL dataset.

Below we present additional results on a number of additional datasets from the UCR
time-series archive. The running time recorded for I-kMeans is the time required to
achieve the best result. Therefore, the speedup measured here is pessimistic, since I-
kMeans typically outperforms k-Means in very early levels. We observe an average
speedup of 3 times against the traditional k-Means and a general improvement in the
objective function. Only in the earthquake dataset the cumulative time is more than
k-Means. This happens because the algorithm has to traverse the majority of the levels
in order to perform the optimal clustering. However, in this case the prolonged
execution time can be balanced by the significant improvement in the objective
function.

Table 3. Performance of I-kMeans on additional datasets. Smaller numbers indicate better
performance

Dataset Obj.
k-Means

Obj.
I-kMeans

Time
k-Means

Time
 I-kMeans

Speed
Up

Ballbeam 6328.21 6065.61 5.83 4.30 1.36

earthquake 110159 108887 12.9 15.19 0.85

sunspot 4377E6 4361E6 7.45 3.07 3.36

spot_exRates 2496.66 2497.47 6.83 2.71 2.52

powerplant 9783E8 9584E8 10.33 3.07 3.36

evaporator 6303E3 6281E3 21.33 6.59 3.24

memory 1921E4 1916E4 19.48 5.91 3.29

5 Extension to a General Framework

We have seen that our anytime algorithm out-performs k-Means in terms of clustering
quality and running time. We will now extend the approach and generalize it to a

framework that can adapt to a much broader range of algorithms. More specifically,
we apply prominent alternatives on the frame of our approach, the clustering
algorithm, as well as its essence, the decomposition method.

We demonstrate the generality of the framework by two examples. Firstly, we
use another widely-used iterative refinement algorithm – the EM algorithm, in place
of the k-Means algorithm. We call this version of EM the I-EM algorithm. Next,
instead of the Haar wavelet decomposition, we utilize an equally well-studied
decomposition method, the Discrete Fourier Transform (DFT), on the I-kMeans
algorithm. Both approaches have shown to outperform their k-Means or EM
counterparts. In general, we can use any combination of iterative refining clustering
algorithm and multi-resolution decomposition methods in our framework.

5.1 I-EM with Expectation Maximization (EM)

The EM algorithm with Gaussian Mixtures is very similar to k-Means algorithm
introduced in Table 1. As with k-Means, the algorithm begins with an initial guess to
the cluster centers (the “E” or Expectation step), and iteratively refines them (the “M”
or maximization step). The major distinction is that k-Means attempts to model the
data as a collection of k spherical regions, with every data object belonging to exactly
one cluster. In contrast, EM models the data as a collection of k Gaussians, with every
data object having some degree of membership in each cluster (in fact, although
Gaussian models are most common, other distributions are possible). The major
advantage of EM over k-Means is its ability to model a much richer set of cluster
shapes. This generality has made EM (and its many variants and extensions) the
clustering algorithm of choice in data mining [7] and bioinformatics [17].

5.2 Experimental Results for I-EM

Similar to the application of k-Means, we apply EM for different resolutions of data,
and compare the clustering quality and running time with EM on the original data.
We use the same datasets and parameters as in k-Means. However, we have to reduce
the dimensionality of data to 256, since otherwise the dimensionality-cardinality ratio
would be too small for EM to perform well (if at all!). The EM algorithm presents the
error as the negative log likehood of data. We can compare the clustering results in a
similar fashion as in k-Means, by projecting the results obtained at a lower dimension
to the full dimension and computing the error on the original raw data. More
specifically, this is achieved by re-computing the centers and the covariance matrix on
the full dimension, given the posterior probabilities obtained at a lower dimension.
The results are similar to those of k-Means. Fig 13 shows the errors for EM and I-EM
algorithms on the JPL datasets. The errors for EM are shown as straight lines for easy
visual comparison with I-EM at each level. The results show that I-EM outperforms
EM at very early stages (4 or 8 dimensions).

Fig 14 shows the running time for EM and I-EM on JPL datasets. As with the error
presentation, the running times for EM are shown as straight lines for easy visual

EM Error - 8000 Objects

1600000

1650000

1700000

1750000

1800000

2 4 8 16 32 64 128 256
Dimensionality

E
rr

or

EM Error - 4000 Objects

800000

820000

840000

860000

880000

900000

2 4 8 16 32 64 128 256
Dimensionality

E
rr

o
r

EM Error - 1000 Objects

195000
200000
205000
210000
215000
220000
225000
230000

2 4 8 16 32 64 128 256
Dimensionality

E
rr

o
r

EM

I-EM

comparison with I-EM. The vertical dashed line indicates where I-EM starts to out-
perform EM (as illustrated in Fig 13, I-EM out-performs EM at every level forward,
following the one indicated by the dashed line).

Fig 13. We show the errors for different data cardinalities. The errors for EM are presented as
constant lines for easy visual comparison with the I-EM at each level. I-EM out-performs EM
at very early stages (4 or 8 dimensions)

Fig 14. Running times for different data cardinalities. The running times for EM are
presented as constant lines for easy visual comparison with the I-EM at each level. The
vertical dashed line indicates where I-EM starts to out-perform EM as illustrated in Fig 13

EM Error - 2000 Objects

400000

410000

420000

430000

440000

450000

2 4 8 16 32 64 128 256
Dimensionality

Er
ro

r

EM Time - 4000 Objects

0

5

10

15

20

25

30

2 4 8 16 32 64 128 256

Dimensionality

S
ec

EM Time - 1000 Objects

0

2

4

6

8

10

2 4 8 16 32 64 128 256
Dimensionality

S
ec

EM

I-EM
EM Time - 2000 Objects

0
2
4
6
8

10
12
14
16

2 4 8 16 32 64 128 256

Dimensionality

Se
c

EM Time - 8000 Objects

0
10
20
30
40
50
60

2 4 8 16 32 64 128 256

Dimensionality

S
ec

5.3 I-kMeans with Discrete Fourier Transform

As mentioned earlier, the choice of Haar Wavelet as the decomposition method is due
to its efficiency and simplicity. In this section we extend the I-kMeans to utilize
another equally well-known decomposition method, the Discrete Fourier Transform
(DFT) [1, 20].

Similar to the wavelet decomposition, DFT approximates the signal with a linear
combination of basis functions. The vital difference between the two decomposition
methods is that the wavelets are localized in time, while DFT coefficients represent
global contribution of the signal. Fig 15 provides a side-by-side visual comparison of
the Haar wavelet and DFT.

Fig 15. Visual comparison of the Haar Wavelet and the Discrete Fourier Transform.
Wavelet coefficients are localized in time, while DFT coefficients represent global
contributions to the signal

While the competitiveness of either method has been largely argued in the past, we
apply DFT in the algorithm to demonstrate the generality of the framework. As a
matter of fact, consistent with the results shown in [15], the superiority of either
method is highly data-dependent. In general, however, DFT performs better for
smooth signals or sequences that resemble random walks.

5.4 Experimental Results for I-kMeans with DFT

In this section we show the quality of the results of I-kMeans, using DFT as the
decomposition method instead of the Haar wavelet. Although there is no clear
evidence that one decomposition method is superior than the other, it’s certain that
using either one of these methods with I-kMeans outperforms the batch k-Means
algorithm. Naturally it can be argued that instead of using our iterative method, one
might be able to achieve equal-quality results by using a batch algorithm on higher
resolution with either decomposition. While this is true to some extent, there is
always a higher chance of the clustering being trapped in the local minima. By
starting off at lower resolution and re-using the cluster centers each time, we minimize
the dilemma with local minima, in addition to the choices of initial centers.

0 5 0 1 0 0

D i s c r e t e F o u r i e r
T r a n s f o r m

0 5 0 1 0 0

H a a r W a v e l e t

In datasets where the time-series is approximated more faithfully by using Fourier
than wavelet decomposition, the quality of the DFT-based incremental approach is
slightly better. This experiment suggests that our approach can be tailored to specific
applications, by carefully choosing the decomposition that provides the least
reconstruction error.

Table 4 shows the results of I-kMeans using DFT.

Table 4. Objective functions for k-Means, I-kMeans with Haar Wavelet, and I-kMeans with
DFT. Smaller numbers indicate tighter clusters.

Dataset Obj.
k-Means

Haar
I-kMeans

DFT
I-kMeans

ballbeam 6328.21 6065.61 6096.54

earthquake 110159 108887 108867

Sunspot 4377E6 4361E6 4388E6

spot_exRates 2496.66 2497.47 2466.28

powerplant 9783E8 9584E8 11254E8

evaporator 6303E3 6281E3 6290E3

Memory 1921E4 1916E4 1803E4

6 Conclusions and Future Work

We have presented an approach to perform incremental clustering of time-series at
various resolutions using multi-resolution decomposition methods. We initially focus
our approach on the k-Means clustering algorithm, and then extend the idea to EM.
We reuse the final centers at the end of each resolution as the initial centers for the
next level of resolution. This approach resolves the dilemma associated with the
choices of initial centers and significantly improves the execution time and clustering
quality. Our experimental results indicate that this approach yields faster execution
time than the traditional k-Means (or EM) approach, in addition to improving the
clustering quality of the algorithm. Since it conforms with the observation that time
series data can be described with coarser resolutions while still preserving a general
shape, the anytime algorithm stabilizes at very early stages, eliminating the needs to
operate on high resolutions. In addition, the anytime algorithm allows the user to
terminate the program at any stage.

Our extensions of the iterative anytime algorithm on EM and the multi-resolution
decomposition on DFT show great promise for generalizing the approach at an even
wider scale. More specifically, this anytime approach can be generalized to a
framework with a much broader range of algorithms or data mining problem. For
future work, we plan to investigate the following:
� Extending our algorithm to other data types. For example, image histograms can

be successfully represented as wavelets [6, 23]. Our initial experiments on image
histograms show great promise of applying the framework on image data.

� For k-Means, examining the possibility of re-using the results (i.e. objective
functions that determine the quality of clustering results) from the previous stages
to eliminate the need to re-compute all the distances.

References

1. Agrawal, R., Faloutsos, C. & Swami, A. (1993). Efficient Similarity Search in Sequence
Databases. In proceedings of the 4th Int'l Conference on Foundations of Data
Organization and Algorithms. Chicago, IL, Oct 13-15. pp 69-84.

2. Bradley, P., Fayyad, U., & Reina, C. (1998). Scaling Clustering Algorithms to Large
Databases. In proceedings of the 4th Int'l Conference on Knowledge Discovery and Data
Mining. New York, NY, Aug 27-31. pp 9-15.

3. Chan, K. & Fu, A. W. (1999). Efficient Time Series Matching by Wavelets. In
proceedings of the 15th IEEE Int'l Conference on Data Engineering. Sydney, Australia,
Mar 23-26. pp 126-133.

4. Chu, S., Keogh, E., Hart, D., Pazzani, M. (2002). Iterative Deepening Dynamic Time
Warping for Time Series. In proceedings of the 2002 IEEE International Conference on
Data Mining. Maebashi City, Japan. Dec 9-12.

5. Ding, C., He, X., Zha, H. & Simon, H. (2002). Adaptive Dimension Reduction for
Clustering High Dimensional Data. In proceedings of the 2002 IEEE Int’l Conference on
Data Mining. Dec 9-12. Maebashi, Japan. pp 147-154.

6. Daubechies, I. (1992). Ten Lectures on Wavelets. Number 61, in CBMS-NSF Regional
Conference Series in Applied Mathematics, Society for Industrial and Applied
Mathematics, Philadelphia.

7. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society, Series B. Vol. 39, No. 1,
pp. 1-38.

8. Dumoulin, J. (1998). NSTS 1988 News Reference Manual.
http://www.fas.org/spp/civil/sts/

9. Faloutsos, C., Ranganathan, M. & Manolopoulos, Y. (1994). Fast Subsequence Matching
in Time-Series Databases. In proceedings of the ACM SIGMOD Int'l Conference on
Management of Data. Minneapolis, MN, May 25-27. pp 419-429.

10. Fayyad, U., Reina, C. &. Bradley. P (1998). Initialization of Iterative Refinement
Clustering Algorithms. In proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining. New York, NY, Aug 27-31. pp 194-198.

11. Grass, J. & Zilberstein, S. (1996). Anytime Algorithm Development Tools. Sigart
Artificial Intelligence. Vol 7, No. 2, April. ACM Press.

12. Keogh, E. & Pazzani, M. (1998). An Enhanced Representation of Time Series Which
Allows Fast and Accurate Classification, Clustering and Relevance Feedback. In
proceedings of the 4th Int'l Conference on Knowledge Discovery and Data Mining.
NewYork, NY, Aug 27-31. pp 239-241.

13. Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S. (2001). Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases. In proceedings of
ACM SIGMOD Conference on Management of Data. Santa Barbara, CA. pp 151-162.

14. Keogh, E. & Folias, T. (2002). The UCR Time Series Data Mining Archive.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].

15. Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data Mining Benchmarks:
A Survey and Empirical Demonstration. In proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. July 23 - 26, 2002.
Edmonton, Alberta, Canada. pp 102-111.

16. Korn, F., Jagadish, H. & Faloutsos, C. (1997). Efficiently Supporting Ad Hoc Queries in
Large Datasets of Time Sequences. In proceedings of the ACM SIGMOD Int'l Conference
on Management of Data. Tucson, AZ, May 13-15. pp 289-300.

17. Lawrence, C. & Reilly, A. (1990). An Expectation Maximization (EM) Algorithm for the
Identification and Characterization of Common Sites in Unaligned Biopolymer
Sequences. Proteins, Vol. 7, pp 41-51.

18. McQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate
Observation. L. Le Cam and J. Neyman (Eds.), In proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, Berkeley, CA. Vol. 1, pp 281-
297.

19. Popivanov, I. & Miller, R. J. (2002). Similarity Search over Time Series Data Using
Wavelets. In proceedings of the 18th Int'l Conference on Data Engineering. San Jose, CA,
Feb 26-Mar 1. pp 212-221.

20. Rafiei, Davood & Mendelzon, Alberto. (1998). Efficient Retrieval of Similar Time
Sequences Using DFT. In proceedings of the FODO Conference. Kobe, Japan, November
1998.

21. Smyth, P,. Wolpert, D. (1997). Anytime Exploratory Data Analysis for Massive Data Sets.
In proceedings of the 3rd Int'l Conference on Knowledge Discovery and Data Mining.
Newport Beach, CA. pp 54-60

22. Shahabi, C., Tian, X. & Zhao, W. (2000). TSA-tree: a Wavelet Based Approach to
Improve the Efficiency of Multi-Level Surprise and Trend Queries. In proceedings of the
12th Int'l Conference on Scientific and Statistical Database Management. Berlin,
Germany, Jul 26-28. pp 55-68.

23. Struzik, Z. & Siebes, A. (1999). The Haar Wavelet Transform in the Time Series
Similarity Paradigm. In proceedings of Principles of Data Mining and Knowledge
Discovery, 3rd European Conference. Prague, Czech Republic, Sept 15-18. pp 12-22.

24. Vlachos, M., Lin, J., Keogh, E. & Gunopulos, D. (2003). A Wavelet-Based Anytime
Algorithm for K-Means Clustering of Time Series. In Workshop on Clustering High
Dimensionality Data and Its Applications, at the 3rd SIAM Int’l Conference on Data
Mining. San Francisco, CA. May 1-3.

25. Wu, Y., Agrawal, D. & El Abbadi, A. (2000). A Comparison of DFT and DWT Based
Similarity Search in Time-Series Databases. In proceedings of the 9th ACM Int'l
Conference on Information and Knowledge Management. McLean, VA, Nov 6-11. pp
488-495.

26. Yi, B. & Faloutsos, C. (2000). Fast Time Sequence Indexing for Arbitrary Lp Norms. In
proceedings of the 26th Int'l Conference on Very Large Databases. Cairo, Egypt, Sept 10-
14. pp 385-394.l Database Management. Berlin, Germany, Jul 26-28. pp 55-68.

