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Abstract—In recent years, the Matrix Profile has emerged as a 
promising approach to allow data mining on large time series 
archives. By efficiently computing all of the “essential” distance 
information between subsequences in a time series, the Matrix 
Profile makes many analytic problems, including classification 
and anomaly detection, easy or even trivial. However, for many 
tasks, in addition to archives of data, we may face never-ending 
streams of newly arriving data. While there is an algorithm to 
maintain a Matrix Profile in the face of newly arriving data, it is 
limited to streams arriving on the order of one Hz and with small 
archives of historical data. However, in domains as diverse as 
seismology, neuroscience and entomology, we may encounter 
datasets that stream at rates that are orders of magnitude faster. 
In this work we introduce LAMP, a model that predicts, in 
constant time, the Matrix Profile value that would have been 
assigned to an incoming subsequence. This allows us to exploit the 
utility of the Matrix Profile in settings that would otherwise be 
untenable. While learning LAMP models is computationally 
expensive, this stage is done offline with an arbitrary 
computational paradigm. The models can then be deployed on 
resource-constrained devices including wearable sensors. We 
demonstrate the utility of LAMP with experiments on diverse and 
challenging datasets with billions of datapoints on a simple 
desktop machine. We achieve more than 10000x speedup over 
exact methods on the same data.   
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I. INTRODUCTION 
As time series data becomes ever more pervasive in personal, 

industrial and scientific settings, there has been an explosion of 
interest in creating algorithms to analyze such data. The Matrix 
Profile (MP) has emerged as a promising tool to support many 
such time series data mining tasks [29][31][32]. The MP is 
simply a data structure that contains the nearest neighbor 
distance for every subsequence in a time series. It has two 
unexpected properties: it can be computed very efficiently, and, 
given just the MP, most time series analytic tasks are easy or 
even trivial to solve. In particular, it has been shown that we 
can use the MP for classification, motif discovery [29][23], 
anomaly detection [31], evolving pattern (chain [32]) 
discovery, summarization and segmentation [29][31]. 

Moreover, the MP can be computed incrementally, meaning 
that we can create streaming versions of the algorithms noted 
above. STOMPI is the current state of the art algorithm for 
maintaining the matrix profile on streaming data. However, 
STOMPI has a problem: the time required to update the MP 
slowly grows as a function of how much data we have seen. 

 
1  Assuming an off-the shelf desktop machine. Full details of this 
calculation are deferred to [13] to enhance the flow of the text. 

Suppose we start monitoring a new 5 Hz process at midnight on 
Sunday. Initially, we can use STOMPI to maintain the MP, and 
have plenty of cycles to spare. However, by Wednesday at 
10:25 AM, when we have seen just over one million datapoints 
and we can no longer maintain the MP fast enough1, the next 
datapoint will arrive before STOMPI is finished updating the 
matrix profile for the last datapoint. 

 We can push back this time horizon with faster machines, 
but the reprieve is temporary. At some point, the growing 
computational demands will outstrip our resources. To make 
this concrete let us preview two real-world applications of our 
system that we will later revisit in our experiments. In Fig. 1.top 
we show a classification problem for telemetry for insects. The 
recording apparatus produces a snippet that we must classify in 
to one of several classes. We have just 1/100th of a second to do 
this, before the next snippet arrives. 

 
Fig. 1: Two time series subsequences (shown in red) that need to be quickly 
processed. top) An example of data from an insect EPG (Electrical Penetration 
Graph) apparatus. bottom) An example of a trace from a seismograph.  

In Fig. 1.bottom we show a snippet from a seismograph. Here 
the sampling rate (after some inline processing) is slower, with 
new snippets arriving every 1/20th of a second. However, to 
answer the question posed, we need to compare this data with 
four years of data, or 2.53 ×109 datapoints.  

The problem is exacerbated by the fact that we would like to 
deploy MP-based algorithms on embedded devices with very 
little computational power. This would potentially allow 
analytics to be done “at the edge”  [18], reducing the network 
and power overhead of transmitting data. 

In this work, we propose to solve this problem by introducing 
a Learned Approximate Matrix Profile (LAMP), which enables 
constant time approximation of the MP value given a newly 
arriving time series subsequence. With this approximate value, 
we can do most of the analytics based on the MP, including 
anomaly detection and classification.  

4,213,300 4,214,200

7,661 8,161 8,661

Is this behavior Xylem-Ingestion, Phloem-Ingestion or Phloem-Salivation?

Has this seismic event previously happened anytime in the last 4 years? 



The rest of this paper is organized as follows. In Section II 
we introduce background material and review related work. 
This allows us to introduce our algorithm in Section III. Section 
IV offers an extensive empirical evaluation of our ideas, before 
we offer conclusions and directions for future work in Section 
V.  

II. RELATED WORK AND BACKGROUND 
In this section, we first introduce all necessary definitions 

before considering related work. 

A. Definitions 
We begin by defining the data type of interest, time series: 

Definition 1: A time series T is a sequence of real-valued 
numbers ti: T = t1, t2, ..., tn where n is the length of T: 

For most time series data mining tasks, we are interested not 
in global, but local properties of a time series. A local region of 
a time series is called a subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a 
continuous subset of the values from T of length m starting 
from position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤  i ≤  
n-m+1. 

Given a query subsequence Ti,m and a time series T, we can 
compute the correlation between Ti,m and all the subsequences 
in T. We call this a correlation profile: 

Definition 3: A correlation profile Ci corresponding to query 
Ti,m and time series T is a vector of the Pearson correlations 
between a given query subsequence Ti,m and each subsequence 
in time series T. Formally, Ci = [ci,1, ci,2,…, ci,n-m+1], where ci,j 
(1 ≤  j ≤ n-m+1) is the Pearson correlation between Ti,m and Tj,m. 

Note that prior work [29][31][32] has defined the matrix 
profile in terms of the Euclidean distance between z-normalized 
subsequences. However, in this work, we define the matrix 
profile in terms of the Pearson correlation. This is because it 
creates results limited to the intuitive range of [-1, 1]. For 
example, seismologists may prefer to filter out weakly matching 
sequences for some analytic task, perhaps by setting a correlation 
threshold to say 0.8 [23]. Working with correlation allows them 
to reuse such a threshold on multiple datasets, without having to 
worry about the sampling rate of the length of the subsequences. 
In contrast, for Euclidean distance, any threshold discovered 
would have to be recalibrated for new sampling rates or 
subsequence lengths.  

 It is important to recognize that using correlation does not 
change the information contained in the matrix profile, as the 
Pearson correlation can be converted to z-normalized Euclidean 
distance in constant time [16]. Moreover, the ranking of all the 
top-K nearest neighbors to a time series is identical under 
Pearson correlation and between z-normalized Euclidean 
distance. 

Once we obtain Ci, we can extract the nearest neighbor of Ti,m 
in T. Note that if the query Ti,m is a subsequence of  T, the ith 
location of correlation profile Ci is 1 (i.e., ci,i = 1) and close to 1 
just to the left and right of i. This is called a trivial match in the 
literature. We avoid such matches by ignoring an “exclusion” 
zone of length m/4 before and after i, the location of the query. In 

practice, we simply set ci,j (i-m/4 ≤  j ≤ i+m/4) to negative infinity, 
and the nearest neighbor of Ti,m can thus be found by evaluating 
max(Ci). 

We wish to find the nearest neighbor of every subsequence in 
T. This nearest neighbor information is stored in two “meta time 
series”, the matrix profile and the matrix profile index: 

Definition 4: A matrix profile P of time series T is a vector of 
the Pearson correlation between every subsequence of T and its 
nearest neighbor in T. Formally, P = [max(C1), max(C2),…, 
max(Cn-m+1)], where Ci (1 ≤ i ≤  n-m+1) is the correlation 
profile Ci corresponding to query Ti,m and time series T. 

The ith element in the matrix profile P tells us the Pearson 
correlation from subsequence Ti,m to its nearest neighbor in time 
series T. However, it does not tell us the location of that nearest 
neighbor; this is stored in the companion matrix profile index: 

Definition 5: A matrix profile index I of time series T is a vector 
of integers: I=[I1, I2, … In-m+1], where Ii=j if ci,j = max(Ci). 

Fig. 2 shows the relationship between correlation matrix, 
correlation profile (Definition 3) and matrix profile (Definition 
4). Each element of the correlation matrix ci,j is the correlation 
between Ti,m and Tj,m (1 ≤ i, j ≤ n-m+1) of time series T.  

 
Fig. 2: The relationship between the correlation matrix, correlation profile and 
matrix profile. A correlation profile is a column (also a row) of the correlation 
matrix. The matrix profile stores the maximum (off diagonal) value of each 
column of the correlation matrix; the location of the maximum value within 
each column is stored in the companion matrix profile index. 

 Fig. 3 shows a visual example of a correlation profile and a 
matrix profile created from the same time series T. 

 
Fig. 3: top) A correlation profile Ci created from Ti,m shows the correlation 
between Ti,m and all the subsequences in T. The values in the dark zone are 
ignored to avoid trivial matches. bottom) The matrix profile P is the element-
wise maximum of all the correlation profiles (Ci is one of them). Note that the 
two highest values in P are at the location of the 1st motif in T. (Figure adapted 
from [33], used with permission). 



Note that as presented above, the matrix profile can be 
considered a self-join [29]: for every subsequence in a time 
series T, it records information about its (non-trivial-match) 
nearest neighbor in the same time series T. However, we can 
trivially generalize it to be an AB-join [29]: for every 
subsequence in a time series A, it records information about its 
nearest neighbor in time series B. Note that A and B can be of 
different lengths, and that in general, AB-join ≠ BA-join. 

We are now able to introduce the definitions immediately 
relevant to the problem at hand. First, we consider the output of 
the STOMPI algorithm [29], which is the exact matrix profile 
for all data seen up to the current time in a streaming setting. 
This will serve as our ground truth or oracle. 

Definition 6: An Oracle Matrix Profile (OMP) of a stream S is 
the matrix profile of the entire stream; it encodes the nearest 
neighbor for all subsequences in the history of the stream, where 
the nearest neighbor can be any observed subsequence of S. 

Given a new set of k consecutive subsequences observed 
from S: the OMP can be updated via STOMPI in time O((S+k)k), 
which is the time it takes to compute the AB-join between S and 
k and the self-join of k. For data with a very low sample rate, it 
might be enough to simply maintain the OMP. However, in many 
cases this is untenable because the cost of maintaining the OMP 
grows as more data is observed. Therefore, we assume we have 
a representative subset of S that we can use as a proxy. 

Definition 7: A Representative Matrix Profile (RMP) of a 
stream S is the matrix profile of the entire stream, where the 
nearest neighbor can only occur in some representative subset 
R consisting of observed subsequences of S. Formally, RMP is 
the AB-join between S and R where RMP encodes the nearest 
neighbor of each subsequence of S in R. Note that an exclusion 
zone must be applied to each subsequence in R when 
comparing to its ‘original copy’ in S.  

We can update the RMP in time O(Rk) which is the time it 
takes to compute the AB-join between R and k. Note that the time 
complexity per update no longer depends on the entire history of 
the stream. For some applications this might be enough. 
However, for applications with a high sample rate, large R, or on 
systems with low computational power, this will still likely be 
above our compute budget and we will need something better. 

Definition 8: A Learned Approximate Matrix Profile (LAMP) 
of a stream S is the output of a learned model that compresses 
R into a fixed-size compressed representation. It approximates 
the RMP of S. 

 Using this definition, we can now perform updates in O(k), 
no longer depending on the size of the representative dataset.  

B. Motivation and Formal Problem Statement 
Assume we have a continuously arriving stream of time 

series from a sensor. We may wish to take the most recent 
subsequence of length m and compare it with an archive of 
previously collected data. There are multiple reasons why we 
may wish to do this, including: 

• Classification: We may have partitioned our archive of 
previously collected data into labeled subsets, for 
example {wild-type | mutant} [5] or 

{ingestion | probing | salivation} [28]. In 
this case we have an implicit nearest neighbor classifier. 

• Anomaly Detection: In some domains, we can expect 
that all newly arriving subsequences should be close to a 
pattern we have already observed. A pattern that is not 
(formally a “time series discord” [2]) may signal the 
discovery of an anomaly. 

• Segmentation: In [10] it was shown that a very 
competitive time series sematic segmentation algorithm 
can be built on top of the Matrix Profile. 

A more formal problem statement is: 
Problem Statement: Given a streaming time series and 
representative subset of data from that stream, subject to the 
constraint that data must be analyzed at the time of arrival, 
approximate the matrix profile values associated with this 
newly arriving data, such that they closely approximate the 
matrix profile values that would be produced by existing 
exact methods.   

C. Dismissing Apparent Solutions  
Before introducing LAMP, here we will take the time to 

dismiss some apparent solutions to the task at hand. 

• Indexing: Would it be possible to just index the data, 
and perform a nearest neighbor search for each arriving 
subsequence?  Recall that the seismology example shown in 
Fig. 1.bottom would require us to index 2.53 ×109 datapoints. 
The fastest query times for datasets approaching this size are 
three to four orders of magnitude slower than our required 
processing rate [8]. Moreover, virtually every indexing 
techniques takes a variable and unpredictable amount of time to 
answer queries. Thus, even if we had a much slower arrival rate 
where the index could keep up on average, and we had a highly 
optimized index running in main memory, it is always possible 
that we could see multiple slow-to-process subsequences in a 
row, and therefore run out of time.  

• Dictionary Building/Numerosity Reduction: Could 
we not just build a compact “dictionary” of events and brute 
force search it in the time allowed? There are many papers that 
suggest something like this, and it is good idea in limited 
circumstances. For example, it seems to be possible to 
explicitly build a full dictionary of heartbeats; several papers 
have explicitly suggested this “We model heartbeats by 
dictionaries..”[6]. However, heartbeats are a relatively easy 
case, as there are algorithms that can robustly extract individual 
phase-aligned beats. In contrast, we are interested in datasets 
where this is not possible in general, because the target behavior 
is highly polymorphic, and only weakly labeled. Consider Fig. 
4, which shows some examples of a single behavior from an 
insect. We know it reflects a single behavior because an 
entomologist labeled the entire five-minute session with the 
label Xylem-Ingestion. However, it not clear that we 
could build a dictionary to summarize this class, either with an 
algorithm or using significant human labor.       



 
Fig. 4: Six random examples of insect Xylem-Ingestion behavior, from a 
single insect, taken from a five-minute window.  

As the reader will come to appreciate, in a sense LAMP is 
implicitly both indexing and dictionary building. The intuition 
behind LAMP can be summarized as: If a data object is 
conserved in the training data (dictionary building) then make 
sure it is represented in the LAMP model (index). However, 
unlike indexing, LAMP can return an answer in strictly 
bounded constant time, and unlike dictionary building, LAMP 
does not need carefully curated data.  

D. Related Work 
Our proposed system touches on many aspects of data 

mining, time series analysis, classification, streaming data and 
deep learning. However, we believe that there is no direct 
competitor to LAMP. Our work extends and exploits the Matrix 
Profile, which has recently gained significant attention because 
of its generality and simplicity [29][31][32][8]. While there 
exists a technique to incrementally update the Matrix Profile 
[29], it is limited to settings where the update rate is relatively 
slow, on the order of ~1 Hz. As the original authors point out 
[29], there are many domains where this is more than sufficient. 
However, domains in medicine, seismology and life sciences 
(i.e. entomology) can produce data at least two orders of 
magnitude faster than this. 

While one instance of LAMP uses a deep neural network, it 
is important for us to note that we are not claiming any 
contribution to deep learning. We simply assume that the 
current state-of-the-art can be plugged into our framework.  

III. METHOD 
In order to avoid ever-growing computational cost as more 

data is observed, we will assume that we have some 
representative time series, R, observed from the stream. For 
example, the insect data we empirically consider in Section IV 
is collected each day, seven days a week in ten to sixteen-hour 
sessions. We can take a single day of this data, and use it as our 
R, for all sessions recorded on subsequent days. 

 Given R, we can generate the RMP (Definition 7) for the 
stream. The RMP is illustrated in Fig. 5. If our comparison data 
is truly representative of the stream, then this RMP will very 
closely resemble the oracle OMP (Definition 6). 

 
Fig. 5: Illustration of comparisons to compute the ab-join MP with a 
representative dataset (Linear in the length of R) 

If R is small and our sample rate is low enough, say, under 
one million datapoints, with a sample rate of 1 Hz, then we are 
done. We can approximate the matrix profile values of new 
subsequences in time O(||R||). However, if the representative 
dataset is large, or we are working with low power hardware, 
then the computational complexity would likely still be above 
our compute budget for typical streaming rates.  

Thus, in order to truly have a useful method in the general 
case, we need an algorithm that does not depend on the full size 
of the representative dataset. To this end, we implement LAMP 
(Definition 8), which models the representative dataset in a 
compressed, fixed-memory-size model, which requires a fixed 
time budget to process each arriving datapoint. Fig. 6 illustrates 
this idea. 

 
Fig. 6: Illustration of approximation of the matrix profile using a model 
learned from a representative dataset 

There are many learned models we can choose to 
summarize the training data; we choose to highlight two of 
these in this work. 

A. Top K Diverse Motifs 

TABLE 1 explains our method for extracting the Top-k 
diverse motifs from a training dataset. In line 2 we compute its 
exact MP using GPU-STOMP [31], then in line 3-4 we sort the 
MP to generate a list of the top motifs. Then in lines 6-11 we 
create a model which contains a set of diverse motifs such that 
no pair is closer to each other than the diversity threshold.  

There are other methods for selecting a diverse set of k 
motifs. For example, prior work investigated the k-
diversification problem for time series [9]. We leave such 
considerations for future work. 

There are several advantages to using the Diverse Motifs 
model as the subroutine for LAMP. It is highly interpretable; 
every subsequence in the model (everything that the model 
“knows”) can be directly visualized. Additionally, adding 
examples to the model is as simple as appending to a list.  

Moreover, because the motifs are sorted by their utility, we 
can use the Diverse Motifs model as an anyspace model. An 
anyspace model is the analogue of an anytime algorithm [29], 
but with memory as the limiting factor. For example, suppose 
we create a 10,000 motif model to use in an insect monitoring 
task in a lab (See Fig. 12). However, later the entomologist has 
the idea to run experiments in the field with a small memory 
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limited device such as a raspberry pi, which only has space or 
compute resources for say 2,500 motifs. We can simply 
truncate off the bottom ¾ of the motifs and push the model onto 
the smaller device. The main disadvantage of this method is that 
it is essentially uncompressed. Since the size of the model 
affects the number of operations required to perform the 
prediction, performing inference when k is large can be slow 
and prohibitively expensive to run in real-time. 
TABLE 1: TRAINING AND PREDICTING USING THE TOP-k MOTIFS LAMP 
REPRESENTATION 

 Inputs: time series t, subsequence length m, 
number of motifs to extract k, diversity 
threshold d. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Train(t,m,k,d): 
MP = GPU-STOMP(t, m) 
indexes = sequence(0,length(MP))      
indexes = argsort(indexes, MP) 
model = [], count = 0 
while count < length(MP) and length(model) < k do 
   considered = t[indexes[count]:indexes[count]+m] 
   if IsDiverse(considered, model, d) then 
      model.append(considered) 
   endif 
   count++ 
done 
return model 

1 
2 
3 
4 
5 
6 
7 

IsDiverse(motif, currentMotifs, threshold) 
   for sequence in currentMotifs do 
      if correlation(motif, sequence)> threshold then 
          return false 
      endif 
   done 
   return true 

1 
2 
3 
4 
5 
6 
7 
8 

Predict (sequence, model) 
   maxcorr = -1; 
   for motif in model do     
    corr = correlation(motif, sequence) 
     if corr > maxcorr then 
       maxcorr = corr 
     endif 
  return maxcorr   

B. Neural Networks 

Using a neural network as the basis of the LAMP model has 
many advantages. We can utilize any of the infrastructures built 
up around deep learning over the last several years, including 
GPU optimized code, embedded platform support, and ongoing 
research in accuracy/speed tradeoffs, which can allow us to 
adapt to a stream’s sample rate according to our platform. 

While LAMP is agnostic to the actual network used, in this 
work we use the simplified version of Resnet [11] proposed by 
[27] for time series classification, but with the activation on the 
output layer changed to sigmoid to enable regression. We also 
modify the input and output of the Resnet model to support 
multiple predictions at once. i.e. Each of our inputs consists of 
J z-normalized subsequences of length M from the data, 
extracted with stride S. This procedure defines an extraction 
window in the time series, W, where ||𝑾|| 	= 	𝑱𝑺	 + 	𝑴	– 	1. 
We can slide W across the time series and extract a new input 
for the neural network for each position of W.  Following this 
logic, each input to the neural network is a vector of length M 
with J channels, where we set M as the subsequence length 
parameter of the matrix profile. For each input, the neural 
network outputs 𝑱𝑺 LAMP values, one for each subsequence in 
W. Fig. 7 shows the outline of our scheme.  

 
Fig. 7: LAMP neural network input scheme. 

This input scheme has three main advantages over a single 
subsequence input scheme: 
1. Reduces overfitting by increasing the dimensionality of the 

output space. Intuitively, a larger output dimension 
provides regularization and leads to smoother predictions. 

2. Enables faster processing by GPUs and CPUs by exposing 
additional parallelism through the added dimensionality. 

3. Enables the convolutional network to learn short-term time 
dependencies in the data. 

It is important to note that when the subsequence length is 
very long, the inputs to the neural network also get large. 
Though it is possible to perform subsampling and other types 
of dimensionality reduction on the input before sending it to a 
LAMP model, we have found that the most effective way to 
reduce the amount of input to the model is to increase the 
extraction stride S. In almost all applications, this is a 
reasonable assumption. For example, if a classifier correctly 
predicts that you are running at time 17sec, and that you are 
running at time 19sec, it is a reasonable assumption that you 
were also running at all times in-between. For very long 
subsequence lengths, there is a large overlap between the 
information contained in consecutive or close-by subsequences, 
so a moderate increase in the extraction stride typically causes 
an imperceptible accuracy loss in these cases. 

For the experiments in this paper, we set W=256, S=8, J=32. 
We set the learning rate to 1e-3 and we use the Adam [7] 
optimizer for stochastic gradient descent with a batch size of 
32. We optimize the network for the mean squared error loss 
between the predicted and exact RMP values for our training 
data. These all reflect common values/practices in the literature. 
We did not carefully optimize the model, as we wish to 
demonstrate the robustness of our overall system. The network 
is implemented in Keras and available at [13]. 

C. Configuring the Model Size 
It is useful to consider how to select the size of a LAMP 

model, as this can be done deterministically before model 
construction. Given the computational capability c (FLOP/s) of 
a system and the sample rate r (Hz) of a stream we can compute 
the maximum size of a model, in terms of the number of FLOPs 
possible per inference step using the equation 𝐹𝐿𝑂𝑃𝑠 = 𝒄𝒓. 
Once we know our limitations, we can choose a model 
appropriate for our specific use case.  

It is also important to note that in many of these applications 
we do not need the result immediately even in a real-time 
application. For example, if our sample rate is 100Hz, perhaps 
we don’t need to make decisions based on every single new 



datapoint, but only once per second. In this case, we can process 
multiple subsequences at once via batching, like in our neural 
network input scheme, which is more efficient computationally, 
and can help give additional context to our predictions. 

IV. EMPIRICAL EVALUATION 
To ensure that our experiments are reproducible, we have 

built a website [13] which contains all data/code/raw 
spreadsheets for the results, in addition to many experiments that 
are omitted here for brevity. Unless otherwise stated, all 
experiments were run on a system with an Intel Core i7-8700K 
CPU and 32GB RAM.  

For neural network LAMP, we used the parameters 
discussed in Section III.B for all experiments. Clearly tuning the 
neural networks could produce improved results, however we 
wanted to demonstrate the generality of LAMP models and to 
show that they can work well “out of the box”. Similarly, for 
Diverse Motifs LAMP we use a hard-coded diversity threshold 
of 0.95 unless otherwise noted. 

In the following section we evaluate LAMP in the most 
direct way possible. Recall that the goal of LAMP is to predict 
the value that the much slower full Matrix Profile algorithm 
would have produced, thus we can both visualize and measure 
the difference between the OMP and LAMPs output.  However, 
in some sense this is an indirect measurement for most 
practitioners. They typically only care about the classification or 
detection accuracy of their higher-level tasks which would 
exploit LAMP. Thus, in the remainder of the paper we will offer 
detailed case studies to demonstrate that LAMP can offer real-
time performance even in challenging scenarios.   

A. LAMP method evaluation 
In TABLE 2, we compare the performance of various model 

types with a subsequence length of 100 on various 
architectures. The values in the table are measured in 
subsequences per second. The first two rows show the Diverse 
Motifs model with various settings for K. We did not 
implement these methods on the GPU, which is why no results 
are reported for the Tesla P100. For these models, our 
implementation was unbatched; it used only a single thread and 
processed just a single subsequence at a time.  
TABLE 2: LAMP INFERENCE PERFORMANCE FOR M = 100 

Method NVIDIA 
Tesla P100 

Desktop CPU 
I7-8700K 

Raspberry 
Pi 3 

Diverse Motifs Inference Rates (Hz) 
K = 1000 N/A 4852 434.8 
K = 60000 N/A 403 16.9 

Neural Network Inference Rates (Hz) 
J = 1, S = 1, Batch = 1 125 200 9.2 
J = 32, S = 8, Batch = 1 51.2K 85.3K 2782 
J = 32, S = 8, Batch = 128 482K 206K 5461 

The bottom 3 rows show the results for our neural network 
scheme with various levels of batching. The first row is 
completely unbatched. The neural network is shown every 
subsequence individually and predicts a matrix profile value for 
each one. The second row uses the default settings that we 

presented in the Section III.B: with an input of 32 subsequences 
with stride 8, each inference produces 256 LAMP values. This 
enables increased efficiency and other advantages described in 
Section III.B. The last row uses a second level of batching 
where the neural network inputs are batched. Depending on 
how quickly decisions must be made, a user can choose a 
method of batching to suit their constraints. Differences in 
speed between single input and batched input are only because 
of the added data locality and dimensionality, which allow for 
exploiting multiprocessor and SIMD architectures. As 
mentioned previously, LAMP model inference time is dataset 
agnostic, depending only on the model size and input size. 

We note that the neural network is much more efficient in 
general, due in part to a multitude of optimizations 
implemented by the Tensorflow developers and the deep 
learning community at large. Given the resources, a more 
efficient solution to inference with diverse motifs could be 
developed. However, it is also true that we have not actively 
optimized the neural network for any particular inference task. 
Depending on the dataset and other parameters of the problem, 
it might be possible to also make the neural network 
significantly faster via speed/accuracy tradeoffs. For example, 
adjusting the extraction stride S, applying quantization [25] or 
resource-constrained structure learning frameworks such as 
Morphnet [3]. We defer such an investigation to future work. 
 

 
Fig. 8: Tradeoff between input subsequence length and inference rate for our 
neural network method on three different architectures. 

It is also important to note that because we are extracting 
subsequences and sending them to the model for inference, the 
subsequence length parameter influences both the size of the 
models and inference time, as more FLOPS are required to 
perform a single inference using larger subsequences. Fig. 8 
illustrates this tradeoff for our default neural network method 
defined in Section III.B. 
TABLE 3: COMPARISON OF LAMP MODEL PERFORMANCE TO ORACLE 

Dataset Correlation to Oracle (OMP) 
Name Train/Test 

Split 
Exact 
RMP 

Neural 
Network 

Diverse Motifs 
K Correlation 

Earthquake 20M/10M .965 .887 60179 .731 
Street Mall  59K/17K .986 .690 128 .615 
Insect EPG 2.5M/5M .973 .959 11602 .625 

TABLE 3 illustrates how well our model fits the oracle for 
various datasets. The RMP’s performance can be viewed as a 
performance measure of the training data. A perfect LAMP 
model would achieve performance similar to the RMP. Note 
that as mentioned previously, this is an indirect measurement, 
as practitioners will be mostly concerned with classification or 
detection accuracy, which we discuss in the following sections. 
As mentioned before, there is room for improvement here via 
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parameter tuning, but we have explicitly kept a single set of 
parameters for Neural Network LAMP to show its robustness. 
The performance variation for the street mall dataset might be 
addressed via parameter tuning or the addition of more training 
data. For the Diverse Motifs model, we report the number of 
motifs used for that particular dataset. Due to the sensitivity of 
this parameter and the differences in the size of each of the 
datasets we evaluated, we could not achieve acceptable 
performance with the same K across the board. 

Fig. 9 shows a visual comparison of the performance of 
various LAMP models on a snippet of the seismogram dataset 
from TABLE 3. Note the smoothness of the neural network 
model and the improvement of the matches as K is increased 
for the diverse motifs model. For this figure, the diverse motif 
models were generated using a diversity threshold of 0.85, the 
neural network settings were set to the default. 

We have not reported training times for our experiments; 
however, most of the Neural Network LAMP models were 
quickly trainable in under an hour or two on a Tesla P100 GPU. 
The only exception to this is the large dataset presented in the 
next section, which took approximately 1 day to train on the 
GPU. 

 
Fig. 9: Visual Comparison of LAMP methods for a snippet of earthquake data 

B. Case Study in Seismology 
Real-time seismic event detection is a primary task in 

seismology that has a direct impact on earthquake physics, fault 
behavior and seismic hazard assessment studies [1][22][15]. 
Most modern seismic networks have implemented real-time 
streaming of data from their remotely installed instruments to 
their seismic observatories. There, real-time event detection 
methods are used to monitor earthquake activity and provide 
basic information on event occurrence, timing, and magnitude. 
This can have a direct impact on seismic hazard assessment and 
response and early warning systems [1][15].  

One of the most common real-time event detection methods 
is the short-term-average/long-term-average (STA/LTA) 
method, which computes the ratio between the average 
seismogram amplitude over a short time window and a longer 
time window. We expect that an earthquake will cause a sudden 
increase in the amplitude of the seismic waveform in the short 
term, leading to a spike in the ratio [24]. This method is widely 
used due to the ease of implementation and is effective at 
detecting large and/or close-by events. However, it can fail to 
detect smaller or more distant earthquakes, whose average 
waveform amplitudes are close to the noise floor. As a result, 

we speculate that many small events are missing from seismic 
event catalogs. Finding these small events is of particular 
significance in the seismology domain as they have a direct 
impact on studies of seismic triggering, short-term earthquake 
forecasting, foreshock and aftershock behaviors, etc. [4]. 

In some cases, seismologists apply more sensitive detection 
methods to ‘mine’ these smaller events from the continuous 
waveform data. One recent example [20], used query search 
(‘matched filtering’ in the terminology used by seismologists) 
to identify an order of magnitude more small events than had 
been detected using traditional methods in southern California. 
Such efforts show the power of a more sophisticated approach, 
although this improvement in sensitivity is not without cost – 
in the southern California case, the necessary computation 
required many hundreds of thousands of GPU hours [20]. 
Another limitation is that such methods use queries (‘template 
waveforms’ in seismology) from the existing seismic catalog in 
order to search for more events, leaving the possibility of a 
remaining population of undetected earthquakes for which 
there are no appropriate queries in the catalog. 

We argue that LAMP is a potential solution for sensitive, 
rapid and inexpensive real-time seismic event detection. A 
common sample rate for local earthquake detection is 100 Hz, 
which is in the range of sample rates for which LAMP can 
produce the MP for the stream of seismic data in real-time, even 
on a relatively inexpensive device. 

Note that there are many machine learning-based methods 
that have been proposed for earthquake event detection in 
recent years [21][30]. These methods are usually trained using 
existing catalogs, and are based on classified earthquake-noise 
training data sets. The training data set in this case might pass 
on the insensitivity of the catalogs to the models. LAMP is 
trained using the exact MP calculated from one year of data. 
The MP for one year of data is very sensitive to earthquake 
occurrence and can increase the number of event detections by 
~16 times [34]. Rather than the binary classification of 
earthquake and non-earthquake (noise), LAMP weights 
waveforms based on a range of MP values (e.g. ~0.5 to 1), 
based on their similarity to other events. 

Here we test LAMP for a real seismic waveform data set 
and compare the results with the existing catalog of 
earthquakes. We use a data set from a sensitive, low-noise, 
borehole seismic station (station name ‘VCAB’, network ID 
‘BP’) near Parkfield in central California, close to a segment of 
the San Andreas fault where earthquakes occur frequently. 
TABLE 4: COMPARISON OF DETECTION RATES OF VARIOUS TYPES OF 
SEISMIC EVENTS FOR VARIOUS DETECTION THRESHOLDS 
 Threshold W0 

(%) 
W1 
(%) 

W2 
(%) 

W3 
(%) 

W4 
(%) 

Total 
(%) 

“False” 
Positives (%) 

conservative 0.95 76 37 34 27 15 61 0.56 
:: 0.90 89 65 60 54 32 79 1.77 
:: 0.85 95 80 76 70 42 89 3.94 

liberal 0.8 98 90 88 83 47 94 7.75 

We train a neural network LAMP model using a 20 percent 
contiguous sample of this exact MP that we obtain from the 



author of [34] for 580 days (2003-11-28 to 2005-07-09) of 
20Hz seismic data. We then use LAMP to estimate the MP for 
5.5 years of data (from 2005-07-10 to 2011-01-01) for the same 
seismic station. The total inference time for this dataset of 
around 4 billion datapoints was approximately 20 minutes using 
the large batch inference configuration from TABLE 2 on a 
single GPU. By extrapolating the performance of [34]’s exact 
GPU implementation to 4 billion datapoints, this is a speedup 
of over four orders of magnitude. 

We then use four different thresholds of 0.8, 0.85, 0.9 and 
0.95 for detecting motifs. The smaller values are more liberal 
(sensitive), and more likely to include some false positives. 

Then in TABLE 4 we compare our detection with earthquake 
information that we obtained from the Northern California 
Seismic Network (NCSN) catalog [17]. Here we use two 
different catalogs to validate the LAMP outputs. The first 
catalog contains events whose seismic signals have been 
observed and picked at the station of interest, either by human 
analysts or by event detection algorithms (e.g., the STA/LTA 
method). These seismic signal observations are reported with 
five different weights based on confidence (W0 to W4, from 
‘very strong detection’ to ‘weak detection’). In this work, we 
refer to this catalog as the ‘event-station catalog’. The second 
catalog contains all detected earthquakes, whether or not they 
were observed at this station, and we refer to it as the ‘event-
only catalog’. In this 5.5-year period, there were 9546 events in 
the event-station catalog and 26255 in the event-only catalog. 
Note that the event-station catalog is a subset of the event-only 
catalog. 

We list our true positive detection rates for four different 
MP thresholds and for different event-station weighted events 
in TABLE 4. In general, for the event-station catalog we detect 
94 percent of all events and 98 percent of the W0 events using 
a threshold of 0.8. For the thresholds of 0.95, 0.9 and 0.85 we 
have a true positive rate of 76, 89 and 95 percent for strong 
detected events (weighed 0). This indicates that we had a very 
high true positive rates with respect to the event-station catalog.  
Fig. 10  shows an example of a detected event waveform and 
the predicted MP for that event.  

 
Fig. 10: a) Example of an event from the event-station catalog detected by 
LAMP. b) Example of an event detected by LAMP that was not in the event-
station catalog but was in the event catalog. 

One interesting thing that we observe by experimenting 
with LAMP on this data set is that when using the 0.9 threshold 
we detect 1962 events from the event-only catalog that are not 
in the event-station catalog. This could be because these events 
occur far from the station, and thus produce weak seismic 
signals that a human analyst or the STA/LTA method could not 
identify, but have sufficiently similar characteristics to other 

events that LAMP could identify. Fig. 10.b is one example of 
such an event.  

After removing these ~2k events plus the true positives from 
the event-station catalog, we end up with 48454 detected motifs 
that are not associated with any catalog events (i.e. not in either 
catalog; our “false” positives from TABLE 4). By visually 
inspecting these detected motifs, we group them into four 
categories:  

i) Earthquake waveforms for events missed by the 
catalog (Fig. 11.a). 

ii) Station glitches (Fig. 11.b), which can be caused by 
voltage surges or the electromagnetic radiation from a 
lightning strike.   

iii) Station artifacts, such as internal instrument calibration 
pulses (Fig. 11.c).  

iv) Harmonic noise, possibly related to human activity or 
surface processes (Fig. 11.d). For example, a gust of 
wind or earthmoving equipment.  

Clearly type (i) is the most exciting for seismologists, 
allowing them to populate their models and catalogs with 
additional examples that are currently missing. 

Type (ii) and (iii) motifs can be easily removed from the 
data set by applying a simple query search using one of these 
instrumental errors as a query. Note that future LAMP models 
could be trained to ignore those signals. Type (iv) motifs can 
potentially be investigated by using LAMP on several stations 
to constrain their locations, which may be diagnostic of the 
source (e.g. a source located in the ocean might be caused by 
ocean waves and storms; a source located at the land surface 
could be weather or human-mediated).  

Approximately 5% of the motifs discovered do not fit into 
this classification and are currently being investigated. 

 
Fig. 11: Examples of various non-catalog events detected by LAMP. a) 
Earthquake not in any catalog b) Station glitches c) Station artifacts d) 
Harmonic noise. 

C. Case Study in Entomology  
Across the world, there are hundreds of species of insects 

that feed by ingesting plant fluids. Some of these insects can 
cause damage to their host plants by transmitting pathogens. As 
a concrete example, the Asian citrus psyllid (Diaphorina citri) 
shown in Fig. 12.left is a vector of the pathogen causing 
huánglóngbìng (citrus greening disease), which has already 
caused billions of dollars of damage to Florida’s citrus industry 
in recent years, and is poised to do more damage worldwide. To 
design effective interventions, entomologists worldwide are 
attempting to understand the feeding behavior of such insects. 
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As Fig. 12 hints at, one of the most important tools used to study 
such insects is an EPG apparatus, which records the insects 
behavior as a one-dimensional time series [28].   

 
Fig. 12: left) Fifty seconds of data collected from an EPG apparatus (center), 
which measures the changes in resistance as an insect interacts with a host plant. 
This data comes from a psyllid (right). 

Dozens of labs worldwide collect such data, but to the best 
of our knowledge, all analytics are conducted in post-hoc batch 
sessions, missing the opportunity to test hypotheses in real time. 
For example, a recent paper suggests that the Asian citrus psyllid 
changes its behavior in response to some “combination of long 
and short wavelengths” [19]. Other research has suggested that 
various cocktails of volatile organic compounds can modify 
their behavior [2]. With such a huge search space of optical and 
semiochemicals parameters progress in designing interventions 
has been slow. Researchers have resorted to making a single 
change each session then adjusting the intervention for next 
day’s session. However, if we could measure the behavior the 
insects in real-time, the entomologists could adaptively tune the 
optical and/or chemical mixture to optimize its effectiveness. 
Below we will show that LAMP makes this possible. 

We consider a dataset of insect behavior that records an Asian 
citrus psyllid feeding on a Citrus natsudaidai (a type of orange). 
We took the first seven hours of data (2,500,000 datapoints), and 
using the annotations of [28], we created two classes: 

Class A: Xylem Ingestion/Stylet Passage (181 min) 
Class B: Non-Probing (235 min) 
Note that as the data snippets shown in Fig. 1 and Fig. 12 

hint at, the data here is very complex and noisy. Moreover, each 
class is polymorphic: A features two different stages of a feeding 
behavior and class B is something of a “catch-all” [28]. For our 
testing data we consider 1,013 minutes of data, collected from 
the same insect in a later session. The class balance in that 
session happens to be almost equal, whereas the class balance in 
the training data is more skewed, at about five to one.  

We can use a combination of multiple LAMP models to 
create a nearest neighbor classifier. Given a representative 
dataset of class A (RA), another from class B (RB), and stream of 
EPG data (S), we can train two separate LAMP models. The first 
LAMP model, MA, is trained to approximate the RMP of S 
where matches can only occur in RA. The second model, MB, is 
trained to approximate the RMP of S where matches can only 
occur in RB. Given a new subsequence I from S, we can produce 
the output of MA and MB when they are shown I. We can then 
use the class represented by the model that generated the largest 
value as the label for I. Table 5 shows the results for EPG 
classification across all models. 
TABLE 5: COMPARISON OF EPG CLASSIFICATION RESULTS  
Method Accuracy (%) 
Exact RMP 97.7 
LAMP Diverse Motifs (K = 1600) 86.5 
LAMP Neural Network 97.8 
Direct Neural Network Classifier 99.2 

  Note that the neural network performs very slightly better 
than the exact RMP for the same task, but the difference is not 
statistically significant. Note also that we have trained a direct 
classifier using the same neural network used for LAMP but 
minimizing the binary cross entropy of the predicted labels 
versus the true labels. As expected, this classifier performs better 
than a LAMP NN-classifier, as LAMP is not trained directly for 
classification, However, LAMP remains competitive. 

 Fig. 13 shows how the accuracy of the diverse motifs method 
improves as K is increased. Note that the tradeoff between 
model size, efficiency, and accuracy is not always clear cut. 

 
Fig. 13: Effect on accuracy of varying the number of diverse motifs in the 
LAMP model. 

D. Case Study on Pedestrian Traffic 
The two previous case studies highlight the use of LAMP to 

predict high correlations, which are indicative of conserved 
structure. However, as we noted above, LAMP also predicts 
low correlations, which can be indicative of anomalies. To test 
the utility of LAMP in this context, we conducted the following 
experiment. As shown in Fig 14.top, we consider pedestrian 
traffic data from Bourke Street in Melbourne. We trained 
LAMP on 6.7 years of such data, beginning at 04/30/2009. For 
test data, we consider the following two years. While the test 
data surely has natural “anomalies” (usual weather/cultural 
events), to have some ground truth we embedded three 
synthetic anomalies: 
• Reversed: A week of data was flipped backwards. 
• Replaced: A week of data was replaced by a week of data 

from a different location in Melbourne (Southbank). 
• Diminished: We simulated a sensor that slowly began to 

undercount over a week. 
The first two anomalies are so subtle that they defy human 

inspection (Fig 14.top), and the third happens so slowly that 
examining only a few days at a time, it would be impossible to 
detect. Nevertheless, as Fig 14.bottom shows, a LAMP model 
with m = three days is able to correctly detect each of our three 
anomalies. 

 
Fig 14: top) About 2% of the Reversed test dataset with embedded anomaly 
highlighted. bottom: left to right) The MP predicted by LAMP on two years of 
data with: no anomaly, the Reversed anomaly, the Replaced anomaly, and the 
Diminished anomaly. All three anomalous datasets have a significant dip in the 
LAMP output at the appropriate location.  
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E. When can LAMP fail? 
The results above offer evidence that the LAMP framework 

can be useful in diverse settings, for diverse domains. 
Nevertheless, it is instructive to consider situations in which it 
can fail. LAMP very clearly can fail in the presence of concept 
drift, new motifs that have never been seen before may arise 
from new underlying processes, and something that was a motif 
before may become an anomaly in the future (and vice-versa).  

We defer a detailed discussion on retraining of LAMP to 
mitigate the effects of concept drift to future work. However, 
one simple way it can be done is to keep track of the last segment 
of observed data and use that to augment the representative 
dataset used to train LAMP. Every so often (or constantly in the 
background) we can retrain LAMP based on this augmented 
training data, and when the new model is ready, we can hot-swap 
the old model with the new and continue our inference. 

V. CONCLUSION 
We introduced LAMP, a flexible and generic framework that 

allow us to approximate the Matrix Profile values in the face of 
fast-moving streams. Because the Matrix Profile is at the heart 
of many time series algorithms for classification [23], motif 
discovery [29], anomaly detection [31], segmentation [10] etc.,  
LAMP allows such higher-level algorithms to be used in real-
time settings on fast moving streams that are currently untenable 
with the standard Matrix Profile. 
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