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Abstract— In recent years, time series motif discovery has emerged as perhaps the 

most important primitive for many analytical tasks, including clustering, classification, 

rule discovery, segmentation, and summarization. In parallel, it has long been known 

that Dynamic Time Warping (DTW) is superior to other similarity measures such as 

Euclidean Distance under most settings. However, due to the computational complexity 

of both DTW and motif discovery, virtually no research efforts have been directed at 

combining these two ideas. The current best mechanisms to address their lethargy 

appear to be mutually incompatible. In this work, we present the first efficient, scalable 

and exact method to find time series motifs under DTW. Our method automatically 

performs the best trade-off of time-to-compute versus tightness-of-lower-bounds for a 

novel hierarchy of lower bounds that we introduce. As we shall show through extensive 

experiments, our algorithm prunes up to 99.99% of the DTW computations under 

realistic settings and is up to three to four orders of magnitude faster than the brute force 

search. This allows us to discover DTW motifs in massive datasets for the first time. 

As we will show, in many domains, DTW-based motifs represent semantically 

meaningful conserved behavior that would escape our attention using all existing 

Euclidean distance-based methods. 
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1 INTRODUCTION 

Time series motif discovery— the unearthing of locally conserved behavior in a long 

time series — has emerged as one of the most important time series primitives in the 

last decade [1]. In recent years, there has been significant progress in the scalability of 

motif discovery, but essentially all algorithms use the Euclidean Distance (ED) [5][18]. 

This is somewhat surprising, because in parallel, the community seems to have 



  

converged on the understanding that the Dynamic Time Warping (DTW) is superior in 

most domains, at least for the tasks of clustering, classification, and similarity search 

[15][22][23][30]. Could DTW also be superior to ED for motif discovery? To preview 

our answer to this question, consider Fig. 1, which shows the top-1 motif discovered in 

a household electrical power demand dataset, using the Euclidean distance [19]. 

 

Fig. 1 The top-1 Euclidean distance motif discovered in a one-month long electrical power demand 

dataset. 

We have no obvious reasons to discount this motif. It clearly shows the highly 

conserved behavior of relatively low demand for power for about ¾ of an hour, 

followed by a high sustained demand. Note that the Euclidean distance is robust to the 

short “blip” that appears in just the blue time series (from the duration, shape and watts 

drawn, this pattern almost certainly represents an electrical kettle). 

However, now let us consider Fig. 2, which shows a different pair of subsequences from 

the same dataset. 

 

Fig. 2 A pair of subsequences from household electrical power demand data. The pattern 

corresponds to (A) short run of discharge pump to empty any liquid in the machine, (B) pumping 

water into reservoir, (C) spraying water over dishes (D) pumping out water. 

In retrospect, we would surely have preferred to have discovered this pair of motifs as 

the top-1 motif. The complexity of the pattern that is conserved points to a common 

mechanism. In fact, this is the case. This pattern corresponds to a particular program 

from a dishwasher. Why was this pattern not discovered by the classic motif discovery 

algorithm? Fig. 3 offers a visual explanation. 
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Fig. 3 A pair of subsequences from household electrical power demand data. The pattern corresponds 

to (A) short run of discharge pump to empty any liquid in the machine, (B) pumping water into 

reservoir, (C) spraying water over dishes (D) pumping out water. 

As shown with the gray hatch-lines between the bottom pair of subsequences in Fig. 3, 

DTW’s ability to non-linearly match features that may be out of phase allows it to report 

a much smaller distance for subsequences that are semantically similar, but have local 

regions that are out-of-phase [15][17][31].  

As we will show, given the ability to find motifs under DTW, examples like the one 

above are replete in diverse domains such as industry, medicine, and human/animal 

behavior. Given that there is a large body of literature on both motif discovery 

[1][5][16][17][18][28][31][32][37][38] and Dynamic Time Warping (and it variants) 

[6][11][15][21][22][23][24][26][27][29][30], why are there essentially no DTW-based 

motif discovery tools?  

We believe that the following explains this omission. Both motif discovery and DTW 

comparisons are famously computationally demanding [1][15]. Recent years have seen 

significant progress for both, especially the Matrix Profile for the former [37], but the 

main speed-up techniques for each are not obviously combinable. 

In this work we introduce a novel algorithm that makes DTW motif discovery tenable 

for large datasets for the first time. We call our algorithm SWAMP, Scalable Warping 

Aware Matrix Profile. This is something of a misnomer, since we attempt to avoid 
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computing most of the true DTW Matrix Profile by instead computing much cheaper 

upper/lower bounding Matrix Profiles.  

We claim the following contributions for our work: 

1. We show, for the first time, that there exists conserved structure in real-world 

time series that can be found with DTW motifs, but not with classic Euclidean 

distance motifs [18][32]. It was not clear that this had to be the case, as [18] and 

others had argued for the diminished utility of DTW for motif discovery (all-to-

all search), relative to its known utility for similarity search (one-to-all search)1. 

2. We introduce SWAMP, the first exact algorithm for DTW motif discovery that 

significantly outperforms brute force search by two or more orders of 

magnitude.  

3. Our algorithmic approach uses a novel “adaptive hierarchy of lower bounds” 

methodology that may be useful for other problems. 

The rest of the paper is organized as follows. In Section 2, we present the formal 

definitions and background, before outlining our approach in Section 3. Section 4 

contains an extensive experimental evaluation. Section 5 provides a case study on using 

SWAMP in classification. Finally, we offer conclusions and directions for future work 

in Section Error! Reference source not found.. 

2 BACKGROUND AND RELATED WORK 

2.1 Time Series Notation 

We begin by introducing the necessary definitions and fundamental concepts, 

beginning with the definition of a Time Series: 

Definition 1: A Time Series T = t1, t2, …, tn is a sequence of n real values.  

Our distance measures quantify the distance between two time series based on local 

subsections called subsequences: 

 

1 In brief, the argument is this: Recall that cDTW is constrained by a parameter w, the maximum amount of warping 

allowed, and that as w approaches zero, cDTW degenerates to the Euclidean distance. It has been shown that the 

best setting for w decreases as the number of comparisons increase (see Figure 6 of [12]). For similarity search, 

there are 𝑂(𝑛) comparisons, but for motif search there are 𝑂(𝑛2) comparisons, favoring a small value for w, perhaps 

approaching zero. 



  

Definition 2: A subsequence 𝐓𝑖,𝐿  is a contiguous subset of values with length L 

starting from position i in time series T; the subsequence 𝐓𝑖,𝐿 is in form 𝐓𝑖,𝐿 = ti, ti+1, 

…, ti+L-1 where (1 ≤  𝑖 ≤  𝑛 –  𝐿 +  1)  and L is a user-defined subsequence length with 

value in range of 4 ≤ 𝐿 ≤ |𝐓|. 

Here we allow L to be as short as four, although that value is pathologically short for 

almost any domain [22]. 

The nearest neighbor of a subsequence is the subsequence that has the smallest distance 

to it. The closest pairs of these neighbors are called the time series motifs. 

Definition 3: A motif is the most similar subsequence pair of a time series. Formally, 

𝐓𝑎,𝐿 and 𝐓𝑏,𝐿  is the motif pair iff  𝑑𝑖𝑠𝑡(𝐓𝑎,𝐿 , 𝐓𝑏,𝐿 ) ≤ 𝑑𝑖𝑠𝑡(𝐓𝑖,𝐿 , 𝐓𝑗,𝐿 )  ∀ 𝑖, 𝑗 ∈ [1,2, … , 𝑛 − 𝐿 +

1],, where 𝑎 ≠ 𝑏 and 𝑖 ≠ 𝑗, and 𝑑𝑖𝑠𝑡 is a distance measure. 

One can observe that the potential best matches to a subsequence (other than itself) tend 

to be the subsequences beginning immediately before or after the subsequence. 

However, we clearly want to exclude such redundant “near self matches”. Intuitively, 

any definition of motif should exclude the possibility of counting such trivial matches. 

Definition 4: Given a time series T, containing a subsequence 𝐓𝑖,𝐿  beginning at 

position i and a subsequence 𝐓𝑗,𝐿 beginning at j, we say that 𝐓𝑗,𝐿 is a trivial match to 

𝐓𝑖,𝐿 if  𝑗 ≤ 𝑖 + 𝐿 − 1. 

Following [3] we use a vector called the Matrix Profile (MP) to represent the distances 

between all subsequences and their nearest neighbors. 

Definition 5: A Matrix Profile (MP) of time series T is a vector of distances between 

each subsequence 𝐓𝑖,𝐿 and its nearest neighbor (closest match) in time series T. 

The classic Matrix Profile definition assumes Euclidean distance measure which 

computes the distance between the ith point in one subsequence with the ith point in the 

other (see Fig. 4.left). However, as shown in Fig. 4.center, the non-linear DTW 

alignment allows a more intuitive distance that matches similar shapes even if they are 

locally out of phase. For brevity, we omit a formal definition of the (increasingly well-

known) DTW, instead referring the interested reader to [23][15][22]. 

Similarity search under DTW can be demanding in terms of CPU time. One way to 

address this problem is to use a lower bound to help prune sequences that could not 



  

possibly be a best match [22]. While there exist dozens of lower bounds in the literature, 

in our work we use a generalization of the LBKeogh [15][22]. 

Definition 6: The LBKeogh lower bound between a time series Q and another time 

series T, given a warping window size w, is defined as the distance from the closest 

of the upper and lower envelopes around Q, to T. Formally: 

𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝑄, 𝑇) =  √∑ {
  (𝑡𝑖 − 𝑈𝑖)

2      𝑖𝑓 𝑡𝑖 > 𝑈𝑖  

(𝑡𝑖 − 𝐿𝑖)
2      𝑖𝑓 𝑡𝑖 < 𝐿𝑖

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 
Eq. 1 

 

Where the upper envelope (𝑈𝑖) and lower envelope (𝐿𝑖) of Q are defined as: 

 

𝑈𝑖 = max (𝑞𝑖−𝑤, 𝑞𝑖−𝑤+1, … , 𝑞𝑖+𝑤) 

𝐿𝑖 = min (𝑞𝑖−𝑤 , 𝑞𝑖−𝑤+1, … , 𝑞𝑖+𝑤) 

 

Eq. 2 

 

Fig. 4 illustrates this definition. 

 

Fig. 4 For two time series Q and T: left) Their Euclidean Distance. center) Their DTW distance. 

right) Their LBKeogh distance. 

For computationally demanding tasks, even the lower bound computation may take a 

lot of time. Thus, we plan to exploit a “spectrum” of lower bounds as we explain in 

Section 3.1, each of which makes a different compromise of fidelity versus tightness.  

To create this spectrum, we exploit our ability to perform various computations on the 

reduced dimensionality data. More concretely, we can perform downsampling using 

the Piecewise Aggregate Approximation (PAA) [34]. 

Definition 7: The PAA of time series T of length n can be calculated by dividing T 

into k equal-sized windows and computing the mean value of data within each 

window. The vector of these values is the PAA representation of the time series.  

It is convenient to express the compression rate of a PAA approximation as “D to 1”, 

or 𝐷: 1, where D = n/k. This notation can be visualized as shown in Fig. 5. 
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Fig. 5 A time series Q, downsampled using PAA to two different compression rates. left) 4:1 right) 

16:1 

Given that we can downsample time series, we can also generalize LBKeogh to such 

downsampled data, with LBKeoghD:1 (𝐷 ≥ 1): 

Definition 8: The downsampled lowerbound LBKeoghD:1(Q,T) between a time series 

Q and another time series T is defined as the distance from the closest of the 

downsampled upper and lower envelopes around Q, to the downsampled T. Formally: 

𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐷: 1(𝑄, 𝑇) =  √∑ {
  (𝑡_𝐷𝑖 − 𝑈_𝐷𝑖)

2      𝑖𝑓 𝑡_𝐷𝑖 > 𝑈_𝐷𝑖  

(𝑡_𝐷𝑖 − 𝐿_𝐷𝑖)
2      𝑖𝑓 𝑡_𝐷𝑖 < 𝐿_𝐷𝑖

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 

 

Eq. 3 

 

Where 𝑇_𝐷 = PAA (T, D), 𝑈_𝐷 = PAA (U𝑄 , D), 𝑎𝑛𝑑   𝐿_𝐷 = PAA (L𝑄 , D). 

 

Fig. 6 illustrates this definition. 

 

Fig. 6 An illustration of parametrized LBKeogh. Three possible settings that make different 

trade-offs on the spectrum of time-to-compute vs. tightness of lower bound. The special case 

of LBKeogh1:1 is the classic lower bound also shown in Figure 4, and used extensively in the 

community [9][15][16]. 

Given these downsampled lower bounds, we can still use the LBKeogh distance, but we 

need to scale the distance by √n/𝐷 to generate a tighter, yet still admissible lower 

bound. The proof of this variation of the lower bound appears in a slightly different 

context in [39]. To see why it is needed, refer to Fig. 6.right. Here each gray hatch-line 

represents the aggregate distance for 16 datapoints. If we only counted each line once, 

we would have a very weak lower bound. It seems that we could scale each line’s 

contribution by 16 (or more generally, D), but then we would not have an admissible 
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bound. It can be shown that √n/𝐷  is the optimally tight admissible scaling factor 

[36][39].  

To see how the parameterization affects the tightness of the lower bound, we selected 

256 random pairs from the electrical demand dataset (see Fig. 14) and computed both 

their true distance and the lower bound distances at the dimensionalities shown in Fig. 

6. The results are shown in Fig. 7. 

Note that while our examples use powers of two for both the original and reduced 

dimensionality, PAA and our parametrized lower bounds are defined in the more 

general case [34]. 

 

Fig. 7 An illustration of the tightness of the parametrized LBKeogh. The tightness for each pair is 

inversely proportional to orthogonal distance to the diagonal line. For one randomly selected point, 

we show how this changes (inset). 

2.2 Related Work 

There is a huge body of literature on DTW [22] and on motif discovery [1][17][18][31]. 

However, there are very few papers on the intersection of these ideas. 

In [20] the authors introduce “A fast method for motif discovery in large time series 

database under dynamic time warping”. However, this method does not produce the 

top motifs as we have defined them in definition 3. It is perhaps better seen as a 

clustering algorithm that produces centroids that could be considered “motifs”. 

Likewise, Lagun et. al. created an algorithm to explore cursor movement data [16]. The 

algorithm discovers “common motifs” and does use the DTW distance, but once again, 

it is better seen as a clustering algorithm that produces centroids that could be 

considered motifs. These papers speak to the utility of both motif discovery and to the 

use of DTW.  However, these works do not offer us actionable insights for the task-at-

hand. 
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Finally, a recent paper uses DTW and reports results for “Motif Discovery” [40]. 

However, this paper is simply doing what the community commonly calls “range 

queries”, not motif discovery. 

To the best of our knowledge, there is only one research effort that finds exact motifs 

under DTW [28]. This method creates a full DTW Matrix Profile but optimizes its 

creation by exploiting many of the techniques used by the UCR-Suite [22]. These 

optimizations produce a ten-fold improvement over a naïve brute force implementation. 

We also avail ourselves of these optimizations; however, we achieve a much more 

dramatic speed up by not computing the full DTW Matrix Profile, but rather computing 

as little of it as possible, in order to admissibly discover just the top DTW motifs. 

The reader may wonder if we could replace exact DTW with one of the “fast 

approximations” to it, such as FastDTW [25]. Recent works suggest that these 

approximations are actually not faster than the carefully optimized exact DTW [35]. 

Moreover, all such work is empirical, there are no bounds on how bad the 

approximation can be [35]. Thus, we do not see this as a promising avenue for 

acceleration.  

3 OBSERVATIONS AND ALGORITHMS 

Before introducing our algorithm in detail, we will take the time to outline the intuition 

behind our approach.  In Fig. 8 we show a time series and its DTW MP. 

 

Fig. 8 A time series and its DTW MP. The lowest points of the DTW MP are the locations of the 

top-1 DTW motifs. 

The two lowest points (they must have tied values by definition [37]) correspond to the 

top-1 DTW motif. Thus, while we have solved our task-at-hand, this brute force 

computation of the DTW MP required 𝑂(𝑛2𝑚2) time. 

There are some optimizations (which we use) including early abandoning, using the 

squared distance, etc. (see [19] and [22]). However, these only shave off small constant 
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factors. It is possible to index DTW. However, that only helps to accelerate future ad-

hoc similarity search queries. Here, the time required to build the index would only 

dramatically increase the time above. 

Note that the Euclidean distance is an upper bound for the DTW. Moreover, there are 

perhaps a few dozen known lower bounds to DTW, including the LBKeogh [15]. In Fig. 

9 we revisit the data shown in Fig. 8 to include the MPs for these two additional 

measures. Note that they “squeeze” the DTW MP from above and below. 

 

Fig. 9 A time series and its ED MP, its DTW MP and its LBKeogh1:1MP. Note that the lowest 

values in the ED MP (denoted with the horizontal dashed line) are an upper bound on the values 

of the top DTW motif. 

This figure suggests an immediate improvement to the brute force algorithm. The 

lowest value of the ED MP is an upper bound on the value of the top-1 DTW motif. 

Thus, before we compute the DTW MP, we could first compute the ED MP and use its 

smallest value to initialize the best-so-far value for the DTW MP search algorithm. This 

has two exploitable consequences. It would speed up the brute force algorithm, because 

the effectiveness of early abandoning is improved if you can find a good best-so-far 

early on. However, there is a much more consequential observation. Any region in the 

time series for which the lower bound is greater than the best-so-far can be admissibly 

pruned from the search space.  

Note that this pruning can dramatically accelerate our search. For example, suppose 

that the fraction p of the time series is pruned from consideration as the location of the 

best motif. We then only have to compute (1 − 𝑝)2 of the possible pairs of 

subsequences.  Moreover, this ratio can only get better, as we find good matches that 

further drive the best-so-far down. 

In fact, as we shall see, on real datasets this pruning can be so effective that instead of 

doing 𝑂(𝑛2) invocations of DTW, we only need to do a small constant number. This 
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reduces the time complexity to find the top-1 DTW motifs from 𝑂(𝑛2𝑚2), to the 

𝑂(𝑛2𝑚) time required to compute the lower bound. Because m can be in the range, of 

say, one hundred to ten thousand (see the insect example in Fig. 12), this offers a 

significant speedup. Nevertheless, it is natural to ask if we can further improve on this. 

Let us revisit Fig. 9. Note that in some locations, the lower bound is much greater than 

the best-so-far. This suggests an opportunity. In general, it is often the case that there 

are multiple lower bounds for a distance measure, which produce different tradeoffs on 

the spectrum of time-to-compute versus average tightness. Thus, instead of always 

using the tightest lower bound available to us everywhere, it would be better to use 

faster “just tight enough” lower bounds wherever possible. As we shall see, this is 

exactly what SWAMP does. 

3.1 Creating a Spectrum of Lower Bounds 

As noted above, our SWAMP algorithm depends on the availability of multiple lower 

bounds that make different tradeoffs on the spectrum of tightness versus speed of 

execution.  

It is not meaningful to measure the tightness of lower bounds on a single pair of time 

series, as the idiosyncrasies of the particular pair of subsequences may favor different 

lower bounds. Instead, it is common to measure the tightness of a lower bound by 

averaging over many pairs of randomly chosen time series [23].  

𝑡𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝐴, 𝐵) =
𝐿𝐵(𝐴, 𝐵)

𝐷𝑇𝑊(𝐴, 𝐵)
 

 

Eq. 4 

 

In Fig. 10 we average over six million pairs of random-walk for each setting. 



  

 

Fig. 10 A spectrum of lower bounds for DTW plotted with time (note the log scale) versus 

tightness. Recall that DTW is a lower bound to itself, thus occupies the top right corner. 

It is important to ward off a possible misunderstanding. If we computed the entire 

LBKeogh1:1 and found that it aggressively pruned off all but one pair of subsequences 

(the true top-1 motif), then we would achieve a speedup of about 28.6μs/1.84μs = 15.5. 

This 15-fold speed would be impressive, but it appears to be the upper bound on speed-

up. However, as hinted at above, we hope to prune off many of the LBKeogh1:1 

computations themselves, with the much cheaper LBKeogh2:1 calculations. Moreover, 

we plan to do this iteratively, using cheaper (but weaker) lower bounds to prune off as 

many as possible more expensive (but stronger) lower bounds. 

Note that the red dashed line in Fig. 10 forms a Pareto frontier [20]. If there is any lower 

bound that is above the red line at any point, we should use it. We have investigated the 

dozens of alternative lower bounds, but we did not discover better performing bounds. 

There are two main classes of lower bounds: 

• Lower bounds such as LBKimFL that are 𝑂(1) should in principle be on the 

Pareto frontier to the right of LBKeogh32:1. However, their 𝑂(1)time complexity 

assumes that the two time series are already normalized. If we are forced to 

normalize, these bounds are pushed to the interior of the frontier (however, as 

we will later show, the LBKimFL can be used in a later phase of the algorithm, 

when the normalization is “free”, because it is computed for another purpose). 
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• There are at least a dozen lower bounds that are variants of the LBKeogh, 

including LBImproved, LBEnhanced, LBNew, LBRotation, LBHust, LBEn, etc. 

[13][22][12]. All of these exploit LBKeogh, plus some additional information to 

produce a tighter lower bound. However, in all cases we found that the 

additional time required to exploit the “additional information” did not pay for 

itself. We would have been better off spending that extra time to compute the 

LBKeogh at a higher level. However, we note that in some cases a clever 

implementation insight might fix this overhead. 

Note that while we did not discover any other lower bounds to help for the task at hand, 

this does not say anything about the utility of these bounds for other tasks. LBKimFL 

has been shown to be useful for in-memory similarity search [22], and the more 

expensive lower bounds are useful for disk-based indexing [15]. 

3.2 Introducing SWAMP 

For notational simplicity we consider the task of finding the top-1 motif under DTW 

for a given value of w. The generalizations to top-K motifs or range motifs are trivial 

[37]. 

We can best think of SWAMP as a two-phase algorithm. In Phase I it uses a single 

upper bound, and an adaptive hierarchy of lower bounds to prune off as many of the 

candidate time series subsequences as possible (candidate for being one the best DTW 

motif pair). Then, in Phase II, any surviving pairs of subsequences are searched with a 

highly optimized “brute force” search algorithm. The algorithm in Table 3 formalizes 

SWAMP which includes subroutines that compute Phase I and Phase II. 

3.2.1 Phase I of SWAMP 

We start by reviewing the two exploitable facts that we previewed in Fig. 9.  

• The ED MP is the upper bound for LBKeoghMP. 

• The LBKeoghMP is the lower bound for DTW MP. 

Based on these observations, we know that any section of LBKeoghMP (i.e. 

LBKeogh1:1MP) that is greater than the minimum of ED MP (we consider that as the 

best-so-far), could not contain the best motif and can therefore be pruned. We can 

compute the DTW score for the region suggested by the lowest value of the pruned 



  

LBKeogh1:1MP. If the score is lower than the minimum of ED MP, we can further lower 

the best-so-far. In this case, we can further reduce the number of DTW tests.  

This basic strategy gains speedup, replacing most of the expensive DTW calculations 

with cheaper lower bound calculations. However, while computing LBKeogh1:1MP is 

much faster than full DTW, it is still computationally expensive. Nevertheless, as we 

discussed in the previous section, we may not need to compute the full LBKeogh1:1MP 

to find the best motifs. Instead, we can apply the above strategy on a hierarchy of 

cheaper downsampled LBKeoghMP. The algorithm in Table 1 formalizes this process. 

Table 1. ComputeDSMP: Hierarchically computes the downsampled lower 

bound Matrix Profile and prunes off the unpromising locations. 

  Procedure: ComputeDSMP(T,L,w) 

  Input: time series T, subsequence length L, warping window size w  

  Output: expanded LBKeoghD:1 values LBMP, expanded LBKeoghD:1 indexes LB_index, pruned   

locations of time series pruned, candidate motif distance best-so-far 

1 ED_mp ← ComputeMatrixProfile(T,L)                                         // Using SCRIMP [25] 

2 ED_motif_idx ← argmin(ED_mp) 

3 best-so-far ← dtw_distance(ED_motif_idx) 

4 D ← L 

5 pruned(:) ← false  

6 while D>0:                                                      // iterate over increasing fine approximations 

7      [LBMP,LB_index] ← LBKeoghDSMP(T,L,D,pruned)             // See Table 2 

8      LB_motif_dist, LB_motif_idx ← min(LBMP) 

9      if LB_motif_dist < best-so-far: 

10          best-so-far ← LB_motif_dist 

11          pruned(LBMP > best-so-far) ← true 

12      endif 

13      D ← floor(D/2)   // next iteration will be twice as fine 

14 endwhile 

In line 1 we compute the classic Matrix Profile for the time series T with the given 

subsequence length L. This is needed to provide the upper bound of the distance 

between the DTW motifs we will discover. Using this Matrix Profile, we find the ED 

motifs, i.e. the pair of lowest values [37][38]. We then measure the distance between 

those motifs using the DTW distance rather than the ED distance, in order to initialize 

the best-so-far distance (lines 2-3).  

Starting with a downsampling factor equal to the subsequence length (line 4), we first 

compute a very cheap lower bound for the entire time series using the algorithm in 

Table 2. If the DTW distance for the region suggested by the lowest value of this lower 

bound is smaller than the best-so-far, we update the best-so-far. For regions where it is 



  

too weak to prune, we selectively compute a tighter bound and repeat the same process. 

The algorithm ends after it has explored the highest resolution (i.e. D = 1) (lines 6-12).  

Note that when computing lower bounds at any resolution level, we take the pruned-off 

locations at the lower levels into account, meaning that we do not compute a lower 

bound for those regions. The lower bound computation process is described Table 2. 

Table 2. LBKeoghDSMP: Computes the LBKeoghMP for the downsampled 

time series. 

  Procedure LBKeoghDSMP(T,L,D,pruned) 

  Input: time series T, Subsequence length L, Downsampling factor D, pruned locations of the time 

series pruned 

  Output: expanded LBKeoghD:1 values LBMP, expanded LBKeoghD:1 indexes LB_index 

1 pruned_D ← paa (pruned, T_D) 

2 L_D ← L × floor(length(T_D)/length(T)) 

3 MP_D, LB_index ← LBKeogh(T_D, L_D, pruned_D) 

4 LBMP ← interpolate(MP_D, floor(length(T) / length(T_D))) 

5 LBMP ← sqrt(length(T) / length(T_D)) × LBMP 

6 T_D ← paa (T, D) 

Lines 1 and 2 downsample both the time series and the Boolean vector specifying the 

pruned and non-pruned locations. Line 3 scales downs the subsequence length relative 

to the downsampling rate. Lines 4-6 compute the downsampled lower bound 

LBKeoghD:1, expand it to the size of the complete lower bound and scale up the result 

by the downsampling factor. 

3.2.2 Phase II of SWAMP 

Let us review the situation at the end of Phase I. From the original set of 𝑛 –  𝐿 +  1 

candidate time series subsequences that might have contained the top-1 motif, we 

pruned many (hopefully the vast majority) of them into a much smaller set c, of 

remaining candidates. 

Globally, we know: 

1. A best-so-far value, which is an upper bound on the value of the top-1 motif. 

We also know which pair from c is responsible for producing that low value.  

Locally, for each subsequence, we know: 

2. A DTW lower bound value on its distance to its nearest neighbor. 

3. The location of its nearest neighbor in the lower bound space, which may or 

may not also be its DTW nearest neighbor. 



  

We now need to process the set of candidates c to find the true top-1 motif, or it the 

current best-so-far refers to the top-1 motif, confirm that fact by pruning every other 

possible candidate. 

Note that even if we processed all 𝑂(𝑐2) pairwise comparisons randomly, there is still 

the possibility of pruning more candidates. In particular, every time the best-so-far 

value decreases, we can use the information in ‘3’ above to prune additional candidates 

in c, whose lower whose lower bounds now exceed the newly decreased best-so-far 

value. 

As shown in Table 3 we can see this search as a classic nested loop, in which the outer 

loop considers each candidate in c, finding its DTW nearest neighbor (non-trivial 

match) in c. 

Given our stated strategy of trying to drive the best-so-far down as fast as possible, the 

optimal ordering for our search is obvious. In the outer loop we should start with a 

candidate that is one of the true DTW motif pair, and the inner loop we should start 

with the other subsequence of that motif pair. Clearly, we cannot do this, since that 

assumes we already know what we are actually trying to compute. However, we can 

approximate this optimal ordering quite well. On average, the true DTW distance is 

highly correlated with its lower bound (see Fig. 9). Thus, we should order the outer loop 

in increasing order of the lower bounds provided by LBKeogh1:1 in the last iteration of 

Phase I (line 2). 

For the inner loop, for the very first iteration we consider the candidate’s nearest 

neighbor in lower bound space and replace it with its immediate neighbor (4-7). After 

this first comparison, the subsequent iterations can be done in any order. The algorithm 

in Table 3 formalizes these observations. 

Table 3. SWAMP: Discovers the top-1 DTW motifs. 

  Procedure SWAMP(T,L,w) 

  Input: time series T, Subsequence length L, warping window size w 

  Output: candidate motif distance best-so-far, motif pair locations motif_pair 

1 [LBMP, pruned, best-so-far, LB_index] ← ComputeDSMP(T,L,w)          //Table 1 

2 [candids,candids_index] ← sorted(LBMP)                                               // begin Phase II 

3 for  i=1:length(candids):    

4      candid_idx ← candids_index[i] 

5      if   pruned[candid_idx]  

6            continue 

7      endif 



  

8      neigh_idx ← candid_idx + L: length(candids) 

9      swap(neigh_idx[1], neigh_idx[LB_index[candid_idx]]) 

10      for  j=1:length(neigh_idx)   

11           if  pruned[neigh_idx[j]] 

12              continue 

13           endif 

14           a ← T[candid_idx : candid_idx + L-1] 

15           b ← T[neigh_idx[j] : neigh_idx[j] + L-1] 

16           if  LBKimFL(a,b) >= best-so-far  

17              continue 

18           elseif LBKeogh(a,b) >= best-so-far  

19                    continue 

20           endif 

21           dist ← dtw_distance(a, b, w, best-so-far) 

22           if  dist < best-so-far 

23              best-so-far ← dist 

24              motif_pair ← [candid_idx, neigh_idx] 

25              pruned(candid_idx(candids >= best-so-far)) ← true 

26           endif 

27      endfor 

Note that we have added four further optimizations into the inner loop. We use a cheap 

but weak lower bound LBKimFL to prune some subsequences (line 12). For those pairs 

that survive, we use a tighter but more expensive lower bound LBKeogh1:1 (line 13). 

Moreover, we use the early abandoning version of LBKeogh, as introduced in [22]. 

Finally, if all previous attempts at pruning fail, and we are forced to do DTW, we 

compute the early abandoning version of DTW, which was also introduced in [22] (line 

14). If any candidates survive that step, we update the best-so-far and prune the 

remaining unpromising subsequences (line 15-18). 

Revisiting LBKeogh1:1 in this phase is worth clarifying. We do already know the 

LBKeogh1:1 distance to each candidate’s nearest neighbor (from Phase I), but not to all 

its neighbors. Therefore, it is possible that with another round of lower bound 

computation for the remaining pairs, we can potentially have more prunings 

3.3 A Visual Intuition of SWAMP 

We conclude our introduction of SWAMP with a visual intuition and review. In a test 

that previews the experiment shown later in Fig. 14, we searched for the top DTW motif 

of length 400, in an electrical demand dataset of length 20,000, using a warping window 

of 16. We carefully recorded what elements of the SWAMP algorithm are responsible 

for processing (pruning or computing) what fraction of the candidate pairs of 

subsequences. Fig. 11 shows the results. 



  

This trace shows that at least in this case, only a vanishing small percentage of 

candidates survive to Phase II, where increasingly expensive computations are used to 

prune them, except for just 0.0204% of the candidates, which actually need full DTW. 

The figure also shows the utility of our hierarchy of lower bounds approach. For 

example, LBKeogh2:1 pruned 65.71% of the candidates. Had we not used our hierarchical 

approach, then LBKeogh1:1 would also have pruned them, but would have taken about 

four times longer. In general, this figure suggests that every element of our algorithm 

is responsible for some speedup. 

 

Fig. 11 For the power demand dataset (see Fig. 14), there are 184,348,801 pairwise subsequences 

that could be the top motif, which need to be pruned or compared. From top to bottom we see the 

progress of SWAMP in processing these candidate pairs. Numbers may not sum exactly to 100%, 

due to rounding for presentation. 

 

3.4 Complexity Analysis 

The Euclidean distance MP algorithms such as SCRIMP [38] have identical best-case 

and worst-case times, independent of the data. In contrast the performance of SWAMP 

does depend on the data. For example, if given pure random data (not random-walk, 

which is actually an ideal case) and a large value for w, the lower bounds become very 

weak. In essence, they report a lower bound of zero for almost all comparisons. In this 

case, the time complexity of SWAMP is the same as brute force search, 𝑂(𝑛2𝑚2)  time. 

This is because after no pruning in Phase I, it will be forced to do 𝑂(𝑛2) comparisons 

that take 𝑂(𝑚2) time. 
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• LBKeogh1:1 pruned an additional 24.49%, 
taking 71.26% of the overall time

• LBKeogh2:1 pruned an additional 65.71%, 
taking 19.79% of the overall time

• LBKeogh5:1 pruned 9.76%, taking 
3.297% of the overall time

• LBKeogh20:1 pruned nothing, 
taking 0.11% of the overall time

• ED MP is computed (does not prune) 
taking 0.0055% of overall time

Only 0.038% of candidate pairs survive to phase 
II (not plotted, as they are not visible at this 
scale). The entire time spent in Phase II is less 
than 0.0001% of the overall time.

• LBKimFL pruned 0.074%

• LBKeogh1:1 pruned 0.024%

• 0.019% are early abandoned during DTW

• Only 0.0204% of all candidate pairwise 
computations needed full DTW 

Phase I pruned 99.962%



  

Of course, such a dataset is unlikely to yield interesting motifs anyway. It is reasonable 

to ask what the time complexity is for datasets that are likely to yield semantically 

meaningful motifs, such as those shown in Section 4. For those datasets, we were able 

to prune at least 99.9% of all DTW calculations in Phase I alone. If we pessimistically 

assume that only the finest level of pruning (that is, LBKeogh1:1) in Phase I actually did 

any pruning, then we have reduced the complexity to 𝑂(𝑛2𝑚). This is the same as the 

best time complexity known for Euclidean distance motif discovery before 2016 [18]. 

However, let us revisit our pessimistic assumption. Suppose that 99% of the pruning 

came from a coarser lower bound, let us say LBKeoghD:1, then the time complexity 

reduces to 𝑂(𝑛2𝑚 𝐷2)⁄ . In real word datasets it is often the case that a coarser lower 

bound can prune the majority of DTW calculations. For example, for the dataset shown 

in Figure 16, when D is 4 it still prunes off 82.7% of the DTW calculations. Because m 

is often approximately 𝐷2 , this means that the time complexity can be 

effectively 𝑂(𝑛2), which is the same time complexity of SCRIMP [38] and the other 

state-of-the-art Euclidean motif discovery algorithms. This may seem unintuitive but 

recall that in order to find the closest pair of subsequences, SCRIMP computes the exact 

distance of every pair of subsequences. In contrast, SWAMP tries to compute as few 

exact distances as possible, preferring to prune virtually everything if possible. 

In terms of space complexity SWAMP only requires an inconsequential 𝑂(𝑛) space 

overhead. 

4 EMPRICAL EVALUATION 

We begin by stating our experimental philosophy. We have designed all experiments 

such that they are easily reproducible. To this end, we have built a webpage that 

contains all datasets, code and random number seeds used in this work, together with 

spreadsheets which contain the raw numbers [41]. This philosophy extends to all the 

examples in the previous section.  

4.1 Examples of DTW Motifs 

Before conducting more formal experiments, we will take the time to show some 

examples of DTW motifs we have discovered in various datasets, in order to sharpen 

the readers’ appreciation of the utility of DTW in motif discovery. 



  

Entomologists use an apparatus called an electrical penetration graph (EPG) to study 

the behavior of sap-sucking insects [33]. It is known anecdotally [33], and by the use 

of classic motif discovery [18], that some such behaviors are often highly conserved at 

a time scale of 1 to 5 seconds. However, is there any behavior conserved at a longer 

time scale? As shown in Fig. 12.bottom.left, if we used the Euclidean distance, we might 

say “no”. While the two patterns in the motif are vaguely similar, we might attribute 

this to random chance. 

 

Fig. 12 top) About 34 minutes of EPG data collected from an Asian citrus psyllid (ACP) that was 

feeding on a Troyer citrange (Sweet Orange) [21]. bottom) The top-1 ED motif (left) and the top-1 

DTW motif (right). 

However, if we simply use the DTW distance, we discover an unexpectedly well-

conserved long motif, corresponding to feeding behavior known as phloem ingestion 

[33]. 

Exploring such datasets rapidly gives one an appreciation as to how brittle the 

Euclidean distance can be. Consider the experiment on a different individual from the 

same insect species show in Fig. 13. 

1 204,800

Asian citrus psyllid
(Diaphorina citri) 

34.13 minutes

Top-1 ED-Motif (100 seconds) Top-1 DTW-Motif (100 seconds)



  

 

Fig. 13 top) The top-1 ED and DTW motifs discovered in seven-hour segment EPG data collected 

from an ACP [21]. bottom) A zoom-in of the DTW motif visually explains why ED has difficulty 

finding the same motif as DTW.   

As before, we cannot directly fault the ED. It does return a pair of subsequences that 

are similar, although somewhat “boring and degenerate”. However, an entomologist 

would surely prefer to see the DTW motif, which contains examples of a probing 

behavior [33]. To understand why ED could not discover these, in Fig. 13.bottom we 

show the alignment both methods have on the sections corresponding to the behavior. 

ED, with its one-to-one alignment, cannot avoid mapping some peaks to valleys, 

incurring a large distance. In contrast, the flexibility of DTW allows it to map peak-to-

peak and valley-to-valley, allowing the discovery of these semantically identical 

behaviors. 

In Fig. 2 we showed a motif we discovered in consumer electrical-demand telemetry. 

However, for visual clarity we chose a very simple example, the data was from a single 

outlet that was attached to the dishwasher. In Fig. 14 we consider a much more complex 

and difficult example; we examine the entire household demand, which includes the 

combination of refrigeration, cooking devices, laundry machines, entertainment 

devices, etc. 

Top-1 ED-Motif 
(4 seconds)

Top-1 DTW-Motif 
(4 seconds)

Peak to valley Valley to peak
Peak to peak Valley to valley

Area of detail below



  

 

Fig. 14 top) The electrical power demand of a UK house over 18.5 days [13].  bottom) The top-1 ED 

motif (left) and the top-1 DTW motif (right) for an eight-hour query length. 

As before, it is hard to fault the ED motif. It tells us that sometimes there is a relatively 

long lull in demand, followed by a sharp increase. However, the DTW motif tells us 

much more. There is a highly conserved pattern, that surely has some semantic 

meaning. Based on its timing (in the middle of the night) we suspect the following. 

Most power providers in England use a differential tariff to encourage users to shift 

power-hungry processes to run during the night, using off-peak electricity [8]. For many 

people, there are few options, unless they have high thermal mass heaters (i.e. 

underfloor heating). However, many modern European washing machines support the 

use of programable timers, so many people run their machines at night. The DTW-motif 

is surely a wash cycle. 

One of the most common uses of motif discovery is in analyzing human behavior. It is 

natural to ask if DTW motifs are helpful in that context. To avoid the conflict of interest 

of producing our own new datasets to test this, we simply examined the human behavior 

datasets in the UCI machine learning repository [4]. Fig. 15 shows one sample 

experiment. 

 

Fig. 15 top) A time series created by tracking the left-hand of a volunteer, using the Kinect system 

[6]. bottom) The top-1 ED motif (left) and the top-1 DTW motif (right) are very different. The ED 

motif corresponds to the rest position before two different gestures; however, the DTW motif is a 

repeated gesture. 

Eight Hours (400 datapoints) Eight Hours (400 datapoints)

REFIT: House 5 Aggregate (18.5 days)

Velocity of 
left hand

(y coordinate)

58 seconds

5.3 seconds (160 datapoints) 5.3 seconds (160 datapoints)



  

As this figure hints at, DTW is often able to find repeated structure that defeats the 

Euclidean distance.  

In Fig. 16 we performed a similar experiment using a different sensor (gyroscope), 

physically mounted on the body. Note that the amount of warping visible in Fig. 

16.bottom.left is very small, but once again, it is enough to defeat the Euclidean 

distance.  

Note that if we review the motifs discovered by ED in Fig. 1, Fig. 14, Fig. 15 and Fig. 

16 they are all very similar, in spite of coming from different domains. Moreover, they 

are all “simple”. 

 

Fig. 16 top) A time series created by a hip-worn gyroscope [4]. bottom) The top-1 ED motif (left) 

and the top-1 DTW motif (right) are very different. The ED motif corresponds to two transitions 

(lie-to-sit and sit-to-stand), the DTW motif corresponds to periods of walking-

downstairs. 

This “simplicity bias” was observed in [5], which suggests a technique to bias the 

results away from simple motifs. However, it is not clear we can bias towards warped 

patterns.   

4.2 An Example of DTW Motif Join 

One of the useful implications of framing our hunt for DTW motifs as a Matrix Profile 

problem is that we can avail ourselves of the wealth of expanded definitions for the 

Matrix Profile [5][37][38]. In particular, here we show the utility of conducting time 

series joins. The Matrix Profile is defined for all types of joins. For example, classic 

motif discovery can be seen as a self-join. Here we are interested in a full-outer-join, 

equivalent to simply concatenating the two time series of interest, and running SWAMP 

on the result.  

To demonstrate the utility of motif joins, we consider a dataset of cricket umpire signals. 

A carefully processed and contrived version of this dataset appears in the UCR Archive 

[6]. However, the dataset shown in Fig. 17 was recorded in the same session, but in 

natural uninterrupted sequences. We took the full z-axis right-hand acceleration time 

160 seconds

5.1 seconds (256 datapoints) 5.1 seconds (256 datapoints)

Hip-mounted gyroscope

(yaw coordinate)



  

series from two participants and joined them. Because this is a full-outer-join, it is 

possible that subsequences from one person could join with themselves. That is exactly 

what happened with the ED motif, joining Graeme’s sign for “noball” with his (only 

superficially similar) sign for “six”. 

 

Fig. 17 top) A dataset consisting of Graeme signaling, followed by Alex signaling cricket umpire 

signs. bottom.left) The top-1 ED motif joins the sign for “noball” with the sign for “six”. 

bottom.right) the top-1 DTW motif joins two signs for “six”, one each performed by Alex and 

Graeme. 

In contrast, the DTW motif joins examples of the sign for a “six”, in spite of the fact 

that Alex signs it more leisurely than Graeme.  

In passing, we foreshadow the scalability results in Section 4.4 by noting that for this 

experiment, 99.8562% of all candidate motif pairs were pruned in Phase I, and that by 

the end of Phase II, 99.999692% of all candidate motif pairs were pruned. Thus, only 

0.000308% of the possible DTW comparisons needed to be made.  

4.3 DTW Motifs Create Testable Hypotheses 

We continue our examples with a case study that hints at one of the major uses of motif 

discovery, finding interesting hypothesis to explore. In Fig. 18 we show the results of 

DTW motif discovery on a dataset obtained by attaching a sensor to a wild penguin. 

The discovered motif is highly conserved (except for a little warping that defeats the 

ED), suggesting that it has some semantic meaning. However, what is that meaning? 

We do not know. However, if we plot the data with the simultaneous pressure reading, 

we see that this behavior seems to happen just as the swimming bird returns to the 

surface for a brief gulp of air before diving again. Testing this hypothesis on other 

datasets reveals it to be almost always true. However, understating the 

meaning/mechanism is ongoing work. 

five seconds five seconds

one minute

Graeme   Alex→

Top ED-Motif Top DTW-Motif



  

 

Fig. 18 top) Telemetry from a wild penguin hunting at sea. bottom) A zoom-in of the region that 

happens to contain the top-1 DTW motif (the ED motif is shown at [28] and is not obviously 

interesting). By aligning the motifs with a recording of pressure (red line) we find tentative meaning 

of the motifs. 

4.4 Scalability of SWAMP 

To demonstrate the scalability of SWAMP we revisited the experiments shown in Fig. 

12, Fig. 14 and Fig. 16. We computed the time needed for brute force search. We 

measured the time needed for SWAMP. Finally, we also computed the time needed to 

find the best Euclidean motif, using the highly optimized state-of-the-art SCRIMP 

algorithm [38]. This comparison is unfair to us, as SCRIMP is returning a different, and 

much easier-to-compute answer than our algorithm. However, it offers what is surely 

an upper bound on the speedup that can be obtained. Fig. 19 shows the results. 

 

Fig. 19 The times required by three algorithms to find motifs in the three examples shown in Fig. 14, 

Fig. 16, and Fig. 12. Note that the bars are normalized by slowest performing algorithm, i.e. brute 

force search. 

22-second zoom-in of 3.6-minute dataset

Brief return to 

the surface

Brief return to the 

surface
Penguin on water surface

Penguin below water surface

Zoomed-in region shown below 3.6 minutes of Magellanic Penguin acceleration in Z-axis (surge)

Asian citrus psyllid: : DTW Brute Force Search 1,410,000ms

Hip-worn gyroscope: DTW Brute Force Search 9,686,975ms

Electrical power demand: DTW Brute Force Search 108,341,790ms 

0 Time normalized by slowest algorithm 1

SWAMP (DTW Motif) 29,280.4ms

SCRIMP (ED Motifs) 1,191ms

SWAMP (DTW Motif) 269.9ms

SCRIMP (ED Motifs) 335ms

SWAMP (DTW Motif) 720.6ms

SCRIMP (ED Motifs) 45ms



  

The results can be summarized as follows. SWAMP is two to three orders of magnitude 

faster than brute force search, and an order of magnitude slower than the fastest 

Euclidean motif algorithm. 

These experiments also offer us a chance to do a lesion study. We spent considerable 

effort motivating the need for a spectrum of lower bounds in Phase I of our algorithm 

(Table 1, lines 6-13). Suppose instead we only use the highest resolution, LBKeogh1:1. 

The returned answer would clearly be the same, but how would this affect speed? We 

tested this, discovering that the time needed increased by 187%, 1,028% and 113% 

respectively, showing that the “use the cheapest lower bound you can” approach really 

does help. 

Finally, we compared to [28], which is the only other exact algorithm for finding DTW 

motifs. On the three datasets above this algorithm was slower by 17,274%, 185,511% 

and 13,857% respectively.  

Given the utility of our algorithm for several data mining tasks, we chose to conduct 

additional detailed experiments which we discuss in the following. Fig. 20 shows the 

time to compute and pruning rate for motif discovery with fixed subsequence length 

400, fixed warping window size 16 and increasingly long time series. The time series 

in question is an extended version of the household electrical power demand dataset we 

used in Section 4.1.  

 

Fig. 20 Time to compute SWAMP increases as we increase the length of the time series. However, since we 

have pruning rate of almost 100% in every case, the increase would be tolerable for very large datasets. 

Clearly, the time to compute SWAMP would increase as we increase the length of the 

time series. However, as shown in Fig. 20.right, the pruning rate remains as high as 1 

for all lengths, meaning that we avoid computing most of the true DTW Matrix Profile 
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even for very large datasets. With a dataset as large as 1,000,000 data points, the time 

to compute SWAMP is as low as eight minutes as shown in Fig. 20.left. 

4.5 Objective Evidence of the Superiority of DTW over Euclidean Distance  

As shown in previous sections, DTW motif discovery can be used to spot conserved 

patterns in real datasets.  However, the comparison to Euclidean distance was mostly 

anecdotal. In this section we will compare the utility of DTW over Euclidean distance 

on a large-scale experiment with real and complex data.  

In Fig. 21, we show an example of a “sentence” created by concatenating words spelled 

out by the eye movements of an individual modeling Locked-In Syndrome [9]. The 

participants learn a code to translate words into a sequence of eye-movements, in which 

the eye traces along the eight cardinal directions of the compass (and “blinking” as 

a special character). For example, the word “moth” (ガ) can be communicated the 

sequence: “left right down left upper-right lower-left blinking”. 

These eye movements can be tracked with an inexpensive apparatus and can then be 

used to transcribe movement-to-text.   

 

Fig. 21 A time series corresponding to a sentence (in Japanese) spelled out by the eye movements of an individual 

modeling Locked-In Syndrome. Only vertical axis is shown. Each colored box shows one word. All words have 

been rescaled to exactly the same length, to facilitate comparison to Euclidean distance. 

To compare the accuracy of DTW and Euclidean distance on the task of discovering 

conserved structure, we propose the following experiment. From a vocabulary of 150 

words, each of which was performed three times by a single individual, we randomly 

create a sentence that has exactly one repeated word. As shown in Fig. 21, because the 

default position of the eye at the beginning and end of word is straight ahead, we can 

concatenate words without producing any obvious artifacts in-between them. 

We generated sentences consisting of 8, 16, 32 and 64 words. We performed one 

hundred runs of motif discovery on these time series using both ED (using the Matrix 

~ 30 seconds



  

Profile [37][38]) and DTW (using SWAMP with w = 24).  While all words are of length 

600 (possible including a relatively constant prefix and suffix, because the participant 

was in a relaxed state of looking straight ahead), we wanted to avoid given the 

algorithm’s this exact value, so for every experiment we gave both ED and DTW a 

random subsequence length between 540 and 660.  Fig. 22 shows the motif discovery 

success rates for different algorithms.  

 

Fig. 22 SWAMP(red) with a warping window size 24 performs better than both ED MP(blue) and the default 

rate(yellow) in finding the correct motifs on different settings.    

Both ED and DTW work much better than the default rate (random guessing in 

proportion to the prior probability of events). However, DTW is clearly superior to 

both.  

Let use briefly consider the sources of error. Because each time series is generated by 

concatenating words without any pause or noises in between, we might create 

“artificial” repeated words. For example, suppose the unique words we embedded 

happened to include “wombat”, “mangos” and “batman”. When embedded into a 

sentence they could form: …wombatmangosbatman…, making an accidental motif 

of “batman”, which really has only one occurrence. This issue is more likely in the 

domain under consideration, which has a cardinality of just nine distinct symbols.  Fig. 

23 shows one such example of a spurious word we discovered.  
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Fig. 23 The suffix and prefix of two words concatenated to each other (red) is similar to the suffix and prefix of 

two other words concatenated to each other (green). These two words have been mistaken with the semantic 

motifs (showed by the red circle). 

As shown in Fig. 24, another reason why SWAMP can fail here is simply because we 

are only using the X-axis time series. This motivates the need for multidimensional 

DTW motif discovery. The issues in generalizing to multidimensional DTW are subtle 

(should we allow each dimension to warp independently, or force them to warp in 

synchronicity? See [27]), however they are orthogonal to SWAMP’s speed-up 

mechanisms.  

 

Fig. 24 Two different words that are more similar (red and green) than the embedded motifs (showed by the red 

circle) when considering only the vertical axis. 

Finally, we should note that even the research effort that produced this dataset, and 

introduced a custom classification model that included information from the shape of 

the time series, and linguistic information (which we ignore), only manage to achieve 

a 81.2% classification accuracy, so some error seems intrinsic to this domain. 

4.6 Discussion   

We conclude with a discussion that will help practitioners decide if they should use 

DTW or ED when searching for motifs, and also help them decide on a warping window 

size. Note that the second question really subsumes the first, as in the special case of w 

= 0, DTW is logically identical to ED.  

In some domains there is a Zeitgeber2, an external stimulus that synchronizes processes. 

In nature, this can be daily, lunar or annual cycles. In culture, this can include the 

 

2 German for “time-giver”, Zeitgeber is normally only used for biological processes, here we extend the meaning to 

social and cultural processes 

Semantic motifs

~ 192 seconds

Semantic motifs

~ 192 seconds



  

weekly cycles of the typical nine-to-five constraints of the western workday. For 

example, Fig. 25.left shows pedestrian traffic outside a train station in Melbourne for 

two randomly chosen weeks. There are differences between two weeks, but they can 

mostly be explained by changes in volume at a given time. For example, a school 

holiday reducing lunch time traffic on Monday. Likewise, some physical devices 

(mostly solid state) can produce highly regular outputs. Of course, these distinctions 

may not be hard and fast. A pacemaker may give an otherwise erratic pulse rate a 

metronome-like regularity. Such “Zeitgeber time series” will rarely benefit from DTW. 

 

Fig. 25 Two pairs of time series subsequences with seven peaks, aligned with DTW. For the foot 

traffic dataset, the DTW alignment is almost linear, essentially the Euclidean Distance. In contrast, 

respiration data has highly non-linear alignment. 

In contrast, as Fig. 25.right hints at, many biological signals can have similar shapes 

but develop at varying rates of time. This is also true of many physical processes. For 

example, the motif shown in Fig. 14.bottom.right was created by an integrated circuit 

(IC) controlling a device. One might imagine that the IC would produce perfect timing. 

However, it is at the mercy of the varying water pressure and water temperature in the 

house.   

4.7 SWAMP Variants 

In the last forty years there have been many modifications or extensions of DTW 

proposed. A twenty year old classic reference lists dozens of variants [26], and the pace 

of research has greatly accelerated since then [11][15][27][29]. We believe that the 

SWAMP algorithm can support most or all variants of DTW. Moreover, there may be 

reasons to use some of these variants, not least because they may be faster. In the 

following section we discuss this idea.  

4.7.1 Itakura Constraint on Warping Path 

Virtually all works on DTW define a global constraint which determines how far the 

warping path is allowed to deviate from the diagonal. Up to this point, we have used 

Melbourne Foot Traffic: Seven Days Respiration: Seven Breaths 



  

the Sakoe-Chiba constraint [21], which is the most commonly used variant by the data 

mining community [6][15][22][28][29][30]. However, there exists other constraints 

including the Itakura parallelogram [24]. Fig. 26 illustrates the two schemes. 

 

Fig. 26 Global constraints limit the scope of the warping path to the grey areas. The two most common 

constraints are left) Sakoe-Chiba band, and right) Itakura parallelogram. w is a term defining allowed range of 

warping for a given point in a sequence. 

As we will show below, there are two reasons to expect that the Itakura parallelogram 

could be faster than Sakoe-Chiba band for motif discovery. However, if we are to 

advocate the Itakura parallelogram, we must first address the quality of results it can 

return. It seems to be generally believed by the data mining community that the Itakura 

constraint is inferior to the Sakoe-Chiba band. For example, a recent head-to-head 

comparison of the two methods on eighty-five datasets finds “…although the Itakura 

parallelogram is generally inferior to the Sakoe-Chiba band...” The clustering 

experiment shown in Fig. 27.top.panel seems to confirm this. 

w =



  

 

Fig. 27 top.panel) Three data objects, A, B and C, clustered using either the Sakoe-Chiba band or the Itakura 

constraint produce essentially identical results. However, if we replace C with D, which is almost identical, but 

just slightly circularly shifted (see bottom.panel) the Sakoe-Chiba band is largely unaffected, but the Itakura 

constraint produces an unintuitive clustering, grouping  C and A together, and considering D as the outlier. 

However, these results are based solely upon data from the UCR archive [6]. Most of 

these datasets consist of individual exemplars extracted from a longer time series. For 

example, individual heartbeats extracted from an electrocardiogram. Sometimes, these 

individual heartbeats, gait cycles or gestures are not perfectly extracted, and may have 

small artifacts at their beginning or end. This is modeled by the data object D shown in 

Fig. 27. 

This issue is compounded by the fact that most heartbeats extraction algorithms, and 

gait-cycle extraction algorithms tend to define the beginning point of a cycle at the most 

dynamic locations of the cycle. For heartbeats this is the peak of the R-wave, and for 

gait it is (typically) the heel strike. Both warping methods can tolerate differences 

between two time series that happen towards the middle of the time series, but as we 

get closer to either of the ends, the narrowing apex of the parallelogram mean that any 

differences are more keenly felt by the Itakura approach. The issues caused by these 

small artifacts at the Prefix and Suffix of a time series have been noted before in a 

Sakoe-Chiba Band, w = 8 Itakura Parallelogram, w = 8

Sakoe-Chiba Band, w = 8 Itakura Parallelogram, w = 8

Compare
A) “Outlier”

C) Absolute value of 
sine with random noise

B) Absolute value of sine 
with random noise

D) Same as “C” and “B”, 
but with a small circular 
phase shift



  

classification context [29], and techniques have been suggested to solve this problem. 

However, this issue is largely irrelevant if we generalize from the (somewhat unnatural) 

UCR-contrived classification setting and consider subsequence similarity search or 

motif discovery. In such case we are implicitly or explicitly “sliding the subsequences 

against each other” and reporting the smallest distance. Thus, global misalignment of 

patterns (as opposed to local misalignments addressed by DTW itself) are not an issue.  

To summarize, while the community may be correct to (slightly) prefer Sakoe-Chiba 

band over the Itakura constraint for classification of extracted time series snippets [11] 

this preference does not seem to have implications for motif discovery from long 

streams. Moreover, as we explain below, the Itakura approach can produce tighter lower 

bounds, hence speeding up our algorithm.  

4.7.2 Exploiting the Itakura Speed up Part I: Tighter Lower Bounds 

Recall that we defined the upper and lower envelopes enclosing a time series Q in Eq. 

2.Error! Reference source not found. In this equation w is the band or the maximum 

allowed range of warping. In the case of Sakoe-Chiba, w is independent of the index i 

of the time series. However, for Itakura it is a function of i. Fig. 28 shows the envelopes 

created for the time series Q using the two schemes.   

 

Fig. 28 An illustration of the envelopes U and L, created for time series Q (shown in red), using left) the Sakoe-

Chiba band and right) the Itakura parallelogram. 

We defined the lower bounding function between the time series T and Q, i.e. 

LBKeogh(T,Q), in Eq. 1. The example in Fig. 4 shows the lower bound generated using 

the Sakoe-Chiba band. Fig. 29 illustrates the lower bounds generated using the Sakoe-

Chiba and Itakura for the same time series in Fig. 4.  
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Fig. 29 An illustration of the lower bounding function LBKeogh(Q,T). Time series Q (shown in red), is enclosed 

in the bounding envelope of U and L using left) the Sakoe-Chiba band and right) the Itakura parallelogram. 

Since the tightness of the bounds is proportional to the area filled with the gray hatch 

lines, we can see that in this example the Itakura parallelogram provides a tighter bound 

than the Sakoe-Chiba band.  

The reader will appreciate that with equal w in these two cases, the parallelogram 

always produces a tighter lower bound. It is suggestive of a significant speed up. 

However, it is not necessary the case. Recall that for the SWAMP algorithm, the speed 

depends upon both tightness of lower bounds and the value best-so-far. If the best-so-

far is small, the algorithm can prune more efficiently. While the Itakura parallelogram 

has a tighter lower bound, the motif distance under the Itakura parallelogram can be 

higher, if there is significant warping near the beginning or end of the motif. If that is 

the case, the final best-so-far will not be as low as in the Sakoe-Chiba case. It is not 

obvious how these competing factors will affect the final result, but a brief review of 

some previous results gives us hope. Consider again the DTW motifs discovered in Fig. 

2, Fig. 13, Fig. 14 and Fig. 15. In each case the warping variability is concentrated in 

the center of the subsequence. This means that the Itakura and Sakoe-Chiba distances 

will be almost identical, but as noted above, the Itakura parallelogram will have a much 

tighter lower bound. To compare the speed-up using the Itakura band against the Sakoe-

Chiba for our algorithm, we repeated our experiments for three datasets described in 

Fig. 19, this time using Itakura constraint. The discovered motifs in every case remained 

essentially the same. However, the time needed to compute SWAMP changed as 

follows: On the three datasets in Fig. 14 and Fig. 16 and Fig. 12 the Itakura 

parallelogram was faster by 80%, 9% and 80%.  

4.7.3 Exploiting the Itakura Speed up Part II: Earlier Early-Abandoning 

While the results in the previous section suggest that Itakura is more efficient than 

Sakoe-Chiba in some datasets, there is still another observation that we can exploit.   
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Normally when we want to compute the lower bound the LBKeogh lower bound, we do 

it in a left-to-right order. However, if we want to early abandon as early as possible, we 

should do it in order of largest (in expectation) value first. This way, the incrementality 

computed error grows as fast as possible, and as soon as it exceeds the best-so-far we 

can abandon.  

 For the Sakoe-Chiba, every point on the subsequences has the same expected 

contribution, hence our use of simple left to right. However, as Fig. 29 shows, Itakura 

parallelogram tends to have most of its lower bound contribution at either end, where 

the envelopes are thinner. This suggests following heuristic: sort the indices in the 

ascending order of their distance between lower and upper envelopes and compute the 

lower bound in that order. This means visiting the endpoints of the sequence first and 

then moving towards the middle points. To be clear, instead of scanning the indices of 

Eq. 3 in the order 1, 2, 3,.. ,L-1, L, we visit them in the order 1, L, 2, L-1, 3, L-2,.., L/2. 

As before, as soon as the distance between the endpoints of two sequences is higher 

than the best-so-far, we can stop the lower bound calculation as shown in Fig. 30.   

 

Fig. 30 An illustration of early abandoning of LBKeogh using Itakura constraint. We have a best-so-far value of 

bsf. After incrementally summing the first fourteen (of sixty four) individual contributions to the lower bound 

(seven on each endpoint) we have exceeded bsf, thus it is pointless to continue the calculation [14]. 

To see what difference this optimization makes, without regard to implementation 

dependent details of a language, we revisited Phase II of the experiment shown in Fig. 

14. We measured at what point the early abandoning could actually abandon for all 

comparisons in Phase II. Fig. 31 shows the results. 
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Fig. 31 The distribution of early abandoning offsets for all comparisons in Phase II of the experiment in Fig. 14. 

The distribution is spread out over the whole range of values with the left to right ordering (red), while it is 

mostly skewed to the beginning offsets with the optimized ordering (blue). 

Note that in the act of sorting the indices we have been able to shift the early abandoning 

to the most beginning offsets, cutting the number of all point-wise comparisons to 

almost half the length of the sequence, as shown in Fig. 31. However, without the 

optimized ordering, the distribution would be spread out over the whole range of values 

from zero to the full length of the sequence. 

We refer the interested readers to the companion website [41] where we have made 

available all the source codes for this algorithm to download and execute. 

5 A CASE STUDY IN USING SWAMP TO SUPPORT A CLASSIFICATION 
TASK 

We conclude this work by showing how SWAMP can be used to help build a time series 

classification algorithm. There are literally hundreds of time series classification 

algorithms in the literature [1]. However, the vast majority of them only consider the 

UCR archive datasets or similar data sources, which have had individual examples 

carefully extracted, normalized and processed. As [7] and others have recently noted, 

these works largely bypass the real difficulty of creating a practical time series 

classifier. We argue that the key question is how we can extract high quality exemplars 

from noisy and weakly labeled data, and estimate a distance threshold. The latter issue 

is typically glossed over by researchers that rely on the UCR archive datasets to 
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motivate and test their contributions. For example, one of the most famous datasets in 

the UCR archive is Gun/Point, which tasks us with the problem of discriminating 

between aiming a gun, and merely pointing with a finger. It is obvious that in any 

practical situation, most of the time, an individual is doing neither action. This suggests 

that there should be a third, highly polymorphic class, neither, with a very high prior 

probability. It is not clear how most proposed methods would general to this more 

realistic setting.  

Here we present an end-to-end example of how SWAMP can be used to build a 

classifier. This is meant to be a demonstration; a more rigorous evaluation is beyond 

the scope of this paper. For simplicity, we will confine our attention to a single time 

series, the Z-axis gyroscope on the right wrist. However, generalization to 

multidimensional data is straightforward. 

We consider the OPPORTUNITY Activity Recognition Dataset [2]. This activity 

recognition environment and scenario has been designed to generate many activity 

primitives in a realistic setting. Subjects operated in a room simulating a studio flat with 

furniture and kitchen. The subjects were monitored using body-worn sensors. In 

addition, various items and utensils also had sensors, some binary (such as door 

open/closed) and some real-valued acceleration values (including the cup). It can be 

helpful to transform these real-valued data into binary data, equivalent to “cup was 

moved”. 

The data creators “instructed users to follow a high-level script but leaving them free 

interpretation as how to achieve the high-level goals.” In one experiment they asked 

the user to perform a drill comprising of the following actions: 

1. Open then close the fridge 

2. Open then close the dishwasher 

3. Open then close 3 drawers (at different heights) 

4. Open then close door 1 

5. Open then close door 2 

6. Toggle the lights on then off 

7. Clean the table 

8. Drink while standing 

9. Drink while seated 

As Fig. 32 shows, even if we know this script, it can be difficult to semantically segment 

this data. Fortunately, we can use the sensors on the implements to at least weakly label 



  

this data. For example, if there is significant acceleration of the cup, this is suggestive 

of either the Drink-while-standing or Drink-while-seated class. 

However, there are two reasons why this does not completely solve our problem at 

hand. First, it is possible that the cup could move during other behaviors, especially 

Clean-the-table. Second, even if we are sure that the motion of the utensils is 

associated with a particular class, we cannot be sure exactly what part of the behavior 

is conserved. For example, it may be the case that some conserved motion before the 

cup is lifted is conserved (as the user reaches for it). It may also be the case that some 

motion during drinking is not well conserved. For example, perhaps the path from the 

table to the user’s lip is well conserved, but once at the lip, the level of the liquid in the 

cup specifies the amount of rotation needed to imbibe, thus that part of the behavior is 

not well conserved. To be clear, this is pure speculation on our part. However, most 

classification tasks surely have similar uncertainties. 

 

Fig. 32 A sequence of nine activities performed by the user in Opportunity Activity dataset.  

This motivates our approach. Even in this most familiar domain, we cannot tell from 

prior knowledge what part of a behavior is conserved. However, SWAMP can find the 

most conserved patterns in the time series. If these motifs happen to approximately line 

up with a weak label for a behavior, we can assume that the motif is likely to be a good 

prototype to recognize future occurrences of that behavior. Moreover, even if we have 

only two weak labels, we have at least a starting point to produce a threshold. The motif 

distance reflects the smallest match between two instances; as such it is clearly a lower 

bound to a good threshold value, but clearly it is at least the correct order of magnitude.   

Our experiments consist of two parts. The first part demonstrates use of SWAMP for 

intra-subject activity classification. We chose the motion data corresponding to the 

Right Wrist Inertial Measurement (RLA) Gyroscopic Z. Training was done on the first 

ten repetitions of the activity set. The first test was done on the remaining ten repetitions 

95 seconds  Top-1 DTW Motif .



  

in the same Drill 1 session. Fig. 33 shows the top motifs discovered from the training 

data. The input time series was of length 28,330 with a subsequence length of 300 

(chosen to reflect the approximate length of for Drink-while-standing) and a 

warping window of 4.  

 

Fig. 33 About sixteen minutes of the activity sequence associated with the first Drill session of the Opportunity 

dataset. The top DTW motifs was the pair [20102, 25575] and corresponds to Drink-while-standing, 

with a distance of 4.41. The best Euclidean distance motif was the pair [3867, 20098] with a distance of 6.93, 

which also corresponds to Drink-while-standing. 

To classify the test data, we computed the DTW distance between the first top motif in 

the train data and each test subsequence as shown in Fig. 34. We then validated the 

matches against the weak labels associated with the time series as shown in Fig. 38. 

The weak labels were pre-processed before the classification. First, we z-normalized 

Gyroscope Z-axis. The results were set to binary values by using a threshold value of 

2.0. There are two events of drinking from cup in the dataset, Drinking-while-

standing and Drinking-while-seated. We manually removed activity for 

Drinking-while-seated which is visually straightforward. Finally, we activated 

all points within 2 seconds of activity (i.e. 60 samples). All locations where the distance 

is minimum on Fig. 34 correspond to the activity of Drink-while-standing 

which have been correctly classified using DTW as shown in Fig. 38. Here the default 

rate is just 9.8%. 

 

Fig. 34 DTW query distances (red) between the training set’s first top motif (blue) and the first test set (grey). 

This test demonstrates that even though an activity may be the top-1 motif for both 

DTW and ED, DTW outperforms ED when querying for all instances of such an 

activity. If there is a phase variation in this activity, ED will have difficulty, especially 
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if the motif is complex. In this first test, ED performs closely to DTW, but we speculate 

that intra-subject phase variations are minimal when performing a monotonized task 

like repeating a set of activities twenty times.  

 

Fig. 35 The intra-subject variability of the Drink-while-standing activity is well captured by both ED 

and DTW. However, DTW outperforms ED with no false positives. The reason that ED has some FP so close to 

TP in some cases is that it is matching with Drink-while-sitting rather than Drink-while 

standing. 

The second experiment uses the same training data as the first (i.e. first ten activity set 

repetitions of the right wrist time series in Drill 1), but now we consider inter-subject 

variability. The test data from the Drill 2 session also corresponds to the right wrist 

motion. Fig. 36 shows the test data and the DTW distances between the first top-1 motif 

in the train data and each test subsequence. Fig. 37 illustrates the classification results 

for this time series. 

 
Fig. 36 DTW query distances (red) between the training set’s first top motif and the second test set (grey). 

As Fig. 37 shows, the inter-subject variability of the Drink-while-standing 

activity is well captured by DTW. Out of twenty events on this time series, seventeen 

events have been correctly classified (i.e. true positives) while three events have been 

missed (i.e. false negatives). Compare it to the results from ED where only nine have 

been correctly classified. Note that here the default rate is just 11%. This test 

demonstrates that DTW queries using a motif of motion data can effectively be used as 

an activity classifier despite inter-subject variability. 
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Fig. 37 DTW correctly finds seventeen instances of the Drink-while-standing activity out of twenty 

events. However, ED discovered only nine correct instances. 

Without motif discovery, a reasonable idea would have been to assume that the 

beginning of the cup activation indicated the beginning of the pattern to extract in the 

Gyroscopic Z axis. We also tried this, using the same length query. Since there are 

twenty such locations in the training data, we tried all of them. The average result is 

15.7 true positives and 4.3 false positives. Recall that using SWAMP gave use 

seventeen true positives and three false positives. This suggests that the simple heuristic 

of using the most conserved pattern is a promising idea. 

While the above results are limited, they clearly show the utility of using motifs as a 

starting point in any attempt to build a time series classifier from the ground up. 

6 CONCLUSION AND FUTURE WORK 

We have introduced SWAMP, the first practical tool to find DTW-based motifs in large 

datasets. Moreover, we have shown that on many real datasets, DTW returns more 

meaningful motifs. 

SWAMP offers many avenues for improvement. The time the classic Matrix Profile 

algorithms takes depends only on n, thus it is possible to know how long it will take to 

find the motifs and build a perfectly accurate progress bar for an interactive tool. In 

contrast, the time required for SWAMP also depends on L, w and the data itself. We 

would like to be able to tell the user (at least approximately) how long our algorithm 

will take to finish.  

The time for brute force DTW motif discovery is completely dominated by the cost of 

computing DTW. However, SWAMP is dominated by the time computation of the 

lower bounds. There has been little effort to optimize the time needed to compute these 

bounds, because they are most commonly used for disk-based indexing, which is itself 

dominated by I/O costs. Thus, we suspect that lower bounds computation may be 



  

amiable to many further algorithmic and implementation optimizations.  Such 

optimizations could be trivially plugged into SWAMP to improve its performance. We 

also plan to explore the possibly of framing SWAMP as an anytime algorithm [38]. 
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REPRODUCIBILITY  

We have taken extraordinary steps to make sure that every experiment (including the 

figures and samples that proceed the official experimental Section) are easy to 

reproduce. To this end: 

• For experiments that have a stochastic element, we initialize with the same 

random number generator seed before each iteration. This ensures that a reader 

can exactly reproduce our output, independent of their platform.  

• Every data used in each figure or table is explicitly labeled with the name of the 

figure/table and archived at [41] in a universally readable ASCII plain text 

format, in addition to the. mat format that we use internally.  

• We have created a presentation that gives additional information about anything 

we did to create our final figures. For example, purely for aesthetic reasons, we 

“flipped” one of the dendrograms shown in Figure 3 upside down (without 

changing its topology or distances). The presentation reconciles the slight 

differences between the output of the code, and the final figures.  

• In addition to the main code, we have included all the minor code, including the 

code to produce dendrograms etc. 

For many experiments we choose to use time series and query lengths that are powers 

of two. This is not required for SWAMP but is a consideration for future researchers 

who may try to improve on our results with either DFT or DWT methods, both of which 

have their best cases when the data lengths are powers of two. 

As noted in the paper but reiterated here, in many works, the size of the warping window 

is often given as a percentage of the length of the time series [15][23], in this work we 

give it as an absolute number. One reason for this is because a given percentage may 

not evenly divide a time series length, and different rounding policies may affect the 

results. 

Were warranted, we presented some details in the paper very tersely. For example, we 

noted in the main text: 

Finally, we compared to [28], which is the only other exact algorithm for finding DTW 

motifs. On the three datasets above this algorithm was 17,274.76%, 185,511.97% and 

13,857.22% respectively.  



  

The details are a little sparse in that text. However: 

• The differences are so large that we hope the reader will understand our decision 

not to spend too much of the page limits here. 

• The full detailed results are available at [41], together with the full code and 

data needed to reproduce the results. 

Here we note that this comparison was completely fair. We used the exact same 

computer, same datasets, and same implementations of all common subroutines, 

including the various lower bounds, ED and DTW comparison algorithms, etc. 

Moreover, we further optimized the original algorithm extensively. The original 

algorithm finds both discords and motifs under DTW, but we made it faster by 

removing the need to find discords, and only requiring it to find the top-1 motif.  

Likewise, our comparison to brute-force search was rigorously fair. There are many 

ways to make a DTW-based algorithm perform poorly. For example, one could 

implement the rival method using the recursive version of DTW instead of the iterative 

version. The recursive version of DTW is one to two orders of magnitude slower than 

the iterative version. However, here we again used the exact same computer, same 

datasets, and most importantly same implementations of all common subroutines, 

including the various lower bounds, ED and DTW comparison algorithms. 



  

A REPRODUCIBILITY “ROSETTA STONE” 

As noted above, we have made all our code publicly available in perpetuity [41]. 

However, a reader may wish to implement and test our ideas on another platform. If we 

both agree on all distance measures, including the Euclidean distance, cDTW distance 

and parametrized lower bounds, then we can be virtually assured that all other steps 

will be in agreement. It may seem unlikely that we could disagree on such matters. 

However, our experience suggests otherwise. For example, we have seen the w 

parameter in cDTW interpreted as the total freedom to wander off the diagonal. In 

essence, that (mis)understanding will give only half the w value that we mean to 

communicate (and is more commonly understood [22]). Likewise, by default, some 

DTW programs normalize the distance by the path length. This makes only a very subtle 

difference when w is small, nevertheless it could cause our lower bounds to no longer 

be admissible. Thus, in order to make sure we agree on all measures in Table 4 we will 

create a pair of time series that the interested reader can literally cut-and-paste into their 

framework and compare results on all measures. 

Note that after we z-normalized these time series, we rounded them to have just two 

significant digits, in order to further facilitate a detailed forensic tracing of the 

computation. However, this rounding means that the two time series are no longer 

exactly z-normalized. All subsequent analysis assumes the exact values in Table 4. 

In Fig. 38 we show a visual intuition for the various measures that are key to this work. 

The Euclidean distance ED(Q,T) is 7.88098. 



  

 

Fig. 38 top to bottom) For the two time series listed in Table 1, a visual intuition that shows: the Euclidean 

distance, the cDTW, the classic LBKeogh lower bound, and the reduced dimensionality LBKeogh lower bound. 

Recall that in our implementation we perform the optimization of not using the squared 

root function (see section 4.1.1 of [22]). However, we ignore that optimization here. 

Using a value of eight for the warping parameter w, cDTW(Q,T) is 2.4240. The value 
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of Keogh’s classic lower bound, in our notation LBKeogh1:1(Q,T), is 1.5865. It important 

to recall that this function is not symmetric, in general LBKeogh1:1(Q,T) ≠ 

LBKeogh1:1(T,Q). Finally, Figure 21 illustrates the fourfold reduced lower bound, 

LBKeogh4:1(Q,T), which has a value of 0.4999.  

Note that LBKeogh4:1(Q,T) ≤ LBKeogh1:1(Q,T) ≤ cDTW(Q,T) ≤ ED(Q,T) as we should 

expect. 

Table 4. A pair of calibration time series 

T Q  
0.40 
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-0.80 
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Mean = -0.001562, STD = 1.0015055 Mean = 0.003125, STD = 1.002848 

 


