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ABSTRACT 

The research community seems to have converged in agreement 

that for time series classification problems, Dynamic Time 

Warping (DTW), based nearest-neighbor classifiers are 

exceptionally hard to beat. Obtaining the best performance from 

DTW requires setting its only parameter, the warping window 

width (w). This is typically set by cross validation in the training 

stage. However, for clustering, by definition we do not have access 

to such labeled data. This issue seems to have been largely ignored 

in the literature, with many practitioners simply assuming that “the 

larger the better” for the value of w, and using as large a value of 

w as computational resources permit. In this work we show that this 

is a naive approach which in most circumstances produces inferior 

clusterings. To address this problem, we introduce a novel semi-

supervised technique that allows us to set the best value of w. 

Unlike virtually all other semi-supervised techniques, our ideas are 

completely independent of the clustering algorithm used, and can 

be utilized to improve time series clustering under partitional, 

hierarchical, spectral or density-based clustering. Our approach 

requires very little human intervention; moreover, we show that in 

many cases, true human annotation efforts can be replaced with 

automatically-generated “pseudo” supervision information. We 

demonstrate our technique by testing with more than one hundred 

publicly available datasets. 
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1. INTRODUCTION 
A fundamental task in time series data mining is clustering. 

Clustering may be useful in its own right as an exploratory tool, and 

it is a subroutine in many higher-level algorithms such as rule-

finding, semantic segmentation, anomaly detection, visualization 

and data editing [16]. Most research efforts to improve time series 

clustering have either proposed new algorithms 

[4][11][12][28][30], or new distance measures [15]. The latter is 

somewhat surprising, since the community seems to have long ago 

converged on the belief that the Dynamic Time Warping (DTW) 

distance measure is very hard to beat for classification [8][17], and 

it is not clear why its superiority would not extend to clustering. 

We believe that the main reason DTW is not considered the “go-

to” solution for clustering is because its single parameter, the 

amount of allowable warping (w), critically affects the quality of 

the returned clusters, regardless of the clustering algorithm used. 

This is not an issue for classification, where the best value for w 

can be learned by cross validation. This sensitivity to w for 

clustering is illustrated in Figure 1, which shows how changing the 

warping window width (w) affects the quality of clustering on three 

randomly chosen datasets.  

 

Figure 1: The Rand-Index vs. the warping window width for 

three datasets, using density-based clustering [21]. 

The figure shows that changing w can affect different datasets in 

radically different ways. For the Two Patterns dataset, increasing 

the amount of warping steadily improves the quality of the 

clustering until it converges at a perfect clustering with w = 9. In 

contrast, for Swedish Leaf, increasing w reduces the quality of 

clustering from a very impressive (for a 15-class problem) Rand-

Index of 0.87 to a stunningly low score of 0.32 at w = 10%. This is 

all the more surprising given that allowing some warping slightly 

improves the classification accuracy in this dataset [8]. 

These results tell us that a practitioner who blindly uses Euclidean 

distance (i.e. w = 0%) will do very badly on some datasets. 

Likewise, another practitioner, perhaps motivated by the 

observation that DTW generally helps in classification problems, 

and who simply clusters with a hard-coded value of w set at 10%, 

will do very poorly on some datasets [15]. 

The Coffee dataset is unusual in being virtually unaffected by the 

value of w (in Figure 1 it is 0.48 when w = 0 and 0.49 everywhere 

else) but even here is it possible to make a poor decision. The time 

taken to compute DTW with a w = 0% (denoted hereafter as 

cDTW0) is perhaps four orders of magnitude less than the time to 

compute cDTW100. Thus unnecessary large values of w have a huge 

computational burden that produces no improvement.  

Given these observations, we are now in a position to state the 

problem we wish to solve: 

Problem Statement: Given an unlabeled time series dataset D; 

find the value of w that maximizes the clustering quality. Where 

ties exist, report the smallest such w. 
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There are many measures of clustering quality; however, measures 

based on sum-of-squares residual error do not allow meaningful 

comparisons between clusterings with different values of w. Here 

we wish to optimize the objective “correctness” of the clustering. 

Normally we will never have access to this ground-truth (by 

definition); however, for the datasets we consider in this work, we 

do have class labels that allow us to do a post-hoc analysis. 

How can we choose the best value w in the absence of class labels? 

One possibility is to use semi-supervised clustering 

[1][2][3][7][26]. Here we ask the user to annotate a fraction of the 

data (typically in the form of must-link/cannot-link constraints), 

and we attempt to exploit these annotations to guide the clustering 

algorithm.  

One reason why semi-supervised clustering has not had a large 

impact is its inefficiency. Suppose we have a mere 1,415 items to 

cluster. This gives us just over one million pairs of time series we 

could ask the user to annotate. However, it may be that the vast 

majority of such annotations will be irrelevant, since all the 

clusterings in the search space agree (or all disagree) with a 

particular user annotation. Thus, in order to be sure that we get 

enough actionable annotations to guide the search in the clustering 

space, we must ask the user to annotate many hundreds or 

thousands of objects. This is clearly undesirable as the user may be 

unwilling or unable to provide such effort. 

In this work we introduce a novel semi-supervised clustering 

method for time series that does all the clustering up-front and only 

then asks for user input. This allows us to ask the user to annotate 

only informative pairs. Our proposed method offers the following 

advantages: 

 Our approach is completely independent of the clustering 

algorithm. We are only learning the best w for a particular 

dataset; therefore, we can produce the final clustering using 

essentially1 any partitional, hierarchical, spectral or density-

based clustering. 

 The annotations are solicited after the clustering has been 

performed. This means that we only ask the user to annotate 

pairs that matter. In contrast, almost all other semi-supervised 

clustering algorithms require the labels up-front, often asking 

the user to annotate pairs that will make no difference in all 

the clusterings considered. Our algorithm is maximally 

respectful of the cost of human effort. 

 Because of the above, our approach requires very few 

annotations; in many cases, sixteen or fewer.  

 While we mostly envisage asking a human for annotation, at 

least in some situations these annotations may be gleaned by 

examining side-information or statistical tests. Our framework 

can exploit such information.  

 Our approach works for both single and multi-dimensional 

time series.  

 Finally, as we shall demonstrate, our approach is very 

accurate, and robust to mistakes made by the annotator.  

The rest of the paper is organized as follows. In Section 2 we review 

background and related work, before introducing our algorithm in 

Section 3. In Section 4 we carry out an extensive empirical 

evaluation with more than 100 time series datasets before offering 

conclusions and directions for future work in Section 5. 

                                                                 
1 “essentially” because some clustering algorithms are not defined (or loose 

certain guarantees) for non-metric distance measures. 

2. BACKGROUND AND RELATED WORK 
We begin by reviewing background material on DTW, then 

background material on semi-supervised learning, before 

discussing the most closely-related work. 

2.1 Dynamic Time Warping  
DTW is a distance measure that originated from within the speech 

recognition community. Recent work strongly suggests that DTW 

is the best distance measure for many data mining problems [8].  In 

[17], authors state: “after an exhaustive literature search of more 

than 800 papers, we are not aware of any distance measure that 

has been shown to outperform DTW by a statistically significant 

amount,” and very recent independent work has empirically 

confirmed this with exhaustive experiments [15]. 

As illustrated in Figure 2.left, DTW allows a one-to-many mapping 

between data points, thus enabling meaningful comparison between 

two time series that have similar shapes but are locally out of phase. 

To find the warping path W, we construct the distance matrix 

between the two time series Q and C. Each element (i, j) in this 

matrix is the Euclidean distance between the point 𝑖𝑡ℎ of Q and 𝑗𝑡ℎ 

of C. The warping path W is a set of contiguous matrix elements 

that defines the alignment between Q and C. The 𝑘𝑡ℎ element of W 

is defined as 𝑤𝑘= (𝑖,𝑗)𝑘
.  

The warping path is subject to several conditions: to start and finish 

in diagonally opposite corner cells of the matrix, the subsequent 

steps must be in the adjacent cells, and all the cells in the warping 

path must be monotonically spaced in time. This DTW is called 

unconstrained DTW. Among all the warping paths possible, we are 

only interested in the path that minimizes the differences between 

the two time series.  

𝐷𝑇𝑊(𝑄, 𝐶) =  𝑚𝑖𝑛 {√∑ 𝑤𝑘.

𝐾

𝑘=1
 

Constrained DTW is a variant that imposes a limit on how much 

the warping path can deviate from the diagonal. This limit is known 

as the warping window width (w). For example, in Figure 2.right 

the warping path cannot visit the grayed out cells.  

 

Figure 2: left) The unconstrained warping path for time series 

Q and C. Such warping paths are allowed to pass through any 

cell of the matrix.  right) We can choose to constrain the 

warping path to avoid passing through cells that are far from 

the diagonal. 
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Constrained DTW helps to avoid pathological mappings between 

two time series, when one point in a first time series is mapped to 

too many points in the other time series. For example, DTW should 

be able to map a short heartbeat to a longer heartbeat, but it would 

never make sense to map a single heartbeat to ten heartbeats. In 

addition, the constraints have the beneficial side effect of reducing 

the computation cost by narrowing down the search for qualified 

paths. A typical constraint is the Sakoe-Chiba Band, which 

expresses w as a percentage the time series length. We denote DTW 

with a constraint of w as cDTWw. 

The Euclidean distance between the two time series is the special 

case of DTW when the w is set to 0, enforcing a one-to-one 

mapping between data points. It is denoted as cDTW0. 

Unconstrained DTW is denoted as cDTW100. This review is 

necessarily brief; we refer the interested reader to [8][22] and the 

references therein for more details.   

2.2 Correcting a Common Misunderstanding 
Before proceeding we must ward off a possible misunderstanding, 

and make an original and important observation. To help us do so 

we will create a synthetic dataset which we will call Single Plateau 

(SP). This dataset (like all others in this paper) is available at [31]. 

Each item in the dataset consists of a vector of 500 random numbers 

taken from a standard Gaussian. In addition, to each exemplar we 

add a “plateau” of height 100 and with a length randomly chosen 

in the range five to twenty. If the plateau’s location is between 1 to 

200 it is in class A, if it is between 300 and 500 it is in class B. The 

plateau never appears in the middle of the time series; Figure 3 

shows some examples from each class.   

If we cluster this dataset with cDTW0, we obtain the random 

clustering shown in Figure 3.left. This is not surprising, as this is 

clearly a dataset that needs a warping-invariant distance measure.  

If we re-cluster using cDTW10 we obtain a clustering that correctly 

separates the two classes (in Figure 3.center). Thus far, these 

observations agree with the community’s intuition. However, what 

happens when we cluster using cDTW100? We again obtain a 

clustering that appears random (Figure 3.right). 

 

Figure 3: Hierarchical clustering result for the SP dataset. 

Exemplars in Class A are numbered 1 to 5 and shown in red. 

Exemplars in Class B are numbered 6 to 10 and shown in blue. 

left) Clustering with cDTW0 middle) Clustering with cDTW10 

right) Clustering with cDTW100 . 

This idea, that “a little warping is a good thing, but too much 

warping is a bad thing” is known (although perhaps 

underappreciated [20]) for time series classification [6]; however, 

we believe that this is the first explicit demonstration of the effect 

for clustering (Figures 7, 12 and 13 show examples for real 

datasets). Note that for classification, the luxury of labeled training 

data suggests a way to learn the appropriate amount of warping, a 

possibility we are denied in the unsupervised case of clustering that 

is the focus of this research.  

This observation prevents us from considering a simple (although 

computationally expensive) solution to the task at hand: simply 

performing clustering under completely unconstrained warping. 

It might also be imagined that we could discover the best warping 

window width for a given data type, and simply use that setting for 

all future datasets from the domain. For example, we might imagine 

that for gesture recognition cDTW5 is generally best, but for 

heartbeat classification cDTW13 is generally best. 

However, we can dash such a hope with the following observation: 

the best value for w also depends on the size of the dataset being 

clustered. To see this, we can cluster increasing large instances of 

the SP dataset. For each size, we search over all possible values of 

w and record the value that maximizes the Rand-Index. Figure 4 

shows the results, averaged over 1,000 runs.  

 
Figure 4: The optimal value of w vs. the dataset size for Single 

Plateau dataset.   

The fact that the best value of w depends on both the data size and 

the data structure bodes ill for any attempt to learn a fixed one-time 

domain dependent value for it. Note that this size vs. best curve for 

w is itself different for different datasets.  

2.3 Semi-Supervised Learning 
The semi-supervised learning (SSL) paradigm has drawn 

significant attention in the data mining and machine learning 

communities in the last decade, due to its demonstrated utility in 

many practical applications [1][3][7][26]. Existing methods for 

semi-supervised clustering are generally classified as constraint-

based or distance-based.  

Constraint-based methods rely on user-provided constraints to 

guide the algorithm towards a more accurate data partitioning. This 

can be done in several (non-exclusive) ways:   

 Enforcing constraints during the clustering process itself [26]. 

This requires modification of the clustering algorithm. 

 Modifying the objective function for evaluating candidate 

clusterings and rewarding solutions that satisfy the most 

constraints. For example, [7] modifies the fitness function of 

a genetic search algorithm that optimizes clusterings.  

 Seeding the clustering using the labeled examples to provide 

the initial seed clusters [3], mitigating the fact that some 

clustering algorithms are sensitive to the initialization.   

In distance-based approaches, an off-the-shelf clustering algorithm 

is used; however, the underlying distance measure is trained to 

satisfy the given constraints. For example, a weighted string-edit 

distance measure could be given the constraint that the words 

“bare” and “bore” must-link, but “bare” and “care” cannot-

1

2

3

4

8

9

10

5

6

7 1

3

2

4

5

6

7

8

9

10

1

3

7

2

5

4

6

8

9

10

4 40 80
2

4

6

8

10

12

B
e
s
t 

W
a
rp

in
g
 W

in
d
o
w

 

Dataset size



 

 

link, allowing the algorithm to suitably weigh the substitution cost 

in the edit distance lookup table to reflect the fact that while vowels 

are often confused, consonants rarely are [5]. 

Our proposed algorithm does not fit neatly into any category above.  

First, our approach is completely agnostic to the clustering 

algorithm used. Second, we do not specify the constraints before 

the clusterings are performed, but only after the fact. This provides 

our approach with a significant advantage. If we ask the user to 

provide constraints before clustering, either by her choices, or our 

randomly choosing pairs to be labeled, she may label objects of no 

utility. That is to say, she may label objects as must-link that would 

have been linked by any clustering in our search space in any case. 

Conversely, she may label objects as cannot-link, which would 

have never been linked by any clustering that our search algorithm 

would have considered. By waiting until after all the clustering 

have been performed, we can ensure that annotations we ask the 

user for are truly informative.  

2.4 Related Work 
Zhou et al. recently introduced a paper entitled “Enhancing time 

series clustering by incorporating multiple distance measures with 

semi-supervised learning” [30]. However, the method is perhaps 

better seen as ensemble-based method for time series clustering. 

The method has many parameters (at least four: α, β,p,w), and it is 

not clear how they affect the performance. They only test on twelve 

of the datasets we consider here, but in every case do not perform 

as well as our proposed approach. For example, for Trace they 

obtain a best Normalized Mutual Information (NMI) score of 0.813 

whereas, as we will show in Section 4, we can easily obtain a near-

perfect NMI of 0.97, without any human annotation.   

Beyond this effort, we are not aware of any other work similar to 

our approach for semi-supervised learning for time series 

clustering. The general field of semi-supervised time series 

clustering is vast; we refer the reader to [19] and the references 

therein. We further briefly review some of the most recent, high-

visibility efforts in time series clustering in Section 4.4, before 

direct empirical comparisons to our proposed algorithm.   

3. OUR APPROACH 
Without loss of generality we will use Rand-Index in this work, 

both as the internal scoring function we optimize, and for the 

external post-hoc analysis of the effectiveness of our ideas. The 

Rand-Index penalizes both false positive and false negative 

decisions during clustering, and is thus impossible to optimize in a 

trivial way. There are some proposed variants including the 

Adjusted Rand-Index [24]; however, the classic Rand-Index [18] is 

widely accepted and used. Moreover, at least internally, we are only 

interested in relative improvements in clustering quality. 

3.1 Clustering Algorithm 
At the risk of redundancy we again emphasize that we are not 

proposing a clustering algorithm in this work. We are proposing a 

post-hoc measure that will allow us to score candidate clusterings 

created with different DTW parameters. Nevertheless, we must use 

some clustering algorithm. Without loss of generality we use the 

TADpole algorithm of [4], which is a specialization of the Density 

Peaks algorithm of [21] for DTW. This algorithm is suited to DTW 

because it does not require metric properties, and is particularly 

amenable to optimization by exploiting both upper and lower 

bounds to DTW [4].   

However, it is important to note that TADpole is just the clustering 

algorithm we use to predict w. Having done so, we could, in 

principle, use any clustering algorithm (Partitional, hierarchical, 

spectral or density-based clustering) with the newly-learned w. As 

it happens, the results using the TADpole algorithm are so good we 

do not consider this option below for simplicity.  

3.2 Choosing Constraints  
As we noted above, the fact that we only need to see the constraints 

after the clusterings have been performed gives us a unique 

opportunity to optimize the precious resource of user time and 

attention. 

For every possible pair of time series in our dataset, we can build a 

constraint vector based on whether the pair are correctly clustered 

or not. A candidate constraint can be seen as a binary vector C 

whose length is the number of values of w we are considering. A 

‘0’ at the ith position in C indicates the pair of time series was not 

correctly clustered under DTWi, whereas a ‘1’ indicates it was 

correctly clustered.    

In Figure 5 we can see four candidate constraints. Constraint (A) is 

vacillating, and is probably of little use to us. We can interpret it as 

“voting” for a w value of 2 or 3 or 6 or 8, etc. Such constraints are 

very rare and probably indicate a “hybrid” object just on the cusp 

of two distinct clusters.  

Constraints (B) and (C) are always/never satisfied respectively. It 

is easy to see that it is pointless to show such constraints to the user, 

as they “vote” equally for all values of w. In most datasets we 

consider, the majority (often the vast majority) of constraints are 

these two types. With a little introspection, it is comforting that 

most constraints are non-volatile, as it suggests that the most of the 

objects being clustered are really in stable clusters. If all constraints 

were highly volatile, it is hard to imagine any clustering we could 

select is meaningful in any sense.  

In contrast to the above, constraint (D) seems like an ideal 

constraint. It can be interpreted as: “A value for w that is between 

zero to six is not enough, but anything seven or above works.” 

 

Figure 5: Four representative constraints. (A) represents a 

vacillating constraint, (B) an always satisfied constraint, (C) a 

never satisfied constraint, (D) an ideal constraint. 

These observations inform our algorithm design. Constant 

constraints (types (B) and (C)) should be discarded. Of the 

remainders, “simple” constraints are most likely to be informative. 

We can measure their simplicity by counting the number of sign 

changes as we “slide” across the vector. For constraint (A) this 

yields a value of 12, but for (D) the simplicity score is just 1.  
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Our algorithm for finding the set of constraints we will ask the user 

to evaluate is presented in Table 1.  

Table 1: Algorithm for Finding the Constraint Set 

 Input: set of candidate constraints, max number of 

constraints to get annotated 

Output: UA, the set of user annotations  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

constraints  sort_by(constraints, simplicity) 

index   1 

while empty(Constraints) AND loopCount < max 

  UAindex  get_user_annotation(Constraints(index)) 

  ans  get_user_willingness(‘Do Another? Y or N’) 

  if ans = ‘Y’ 

      index    index  + 1 

 else 

      index    infinity       // break out of loop 

 end 

end 

We begin in line 1 by sorting the constraints, simplest first 

(breaking ties randomly). At this point, we enter a loop, and while 

we have some constraints left to annotate, and we have not reached 

our preset maximum limit, and the user is willing, we will show the 

two relevant time series to the user and get her must-link/cannot-

link annotation. 

Figure 6 shows some examples of time series from the Trace dataset 

that are shown to the user. We hope to avail of the user’s domain 

knowledge, intuitions and pattern recognition ability. For Figure 

6.left the user may realize that while the two time series are 

superficially different, most of the difference can be explained by 

warping the time axis. We would therefore expect the user would 

annotate this as “must-link.” 

In contrast, for Figure 6.right, we hope the user would recognize 

that in spite of similarity of the two time series (they have a 

relatively small Euclidean distance), one time series is missing the 

short peak that seem to characterize the other sequence. 

 

Figure 6: Examples of pairs of time series presented to user for 

annotation. left)  Here the correct label is must-link. right) Here 

the user should ideally choose cannot-link. 

Naturally, we desire that our algorithm is insensitive to occasional 

annotation mistakes. We consider this issue in Section 4.2. One 

helpful idea would be to add a third option “skip this annotation” 

to the list of possibilities offered. For simplicity we ignore this 

possibility in this work. 

We can see the “anytime” nature of the algorithm by examining the 

predictions we make for w as we obtain increasing numbers of user 

annotations. Figure 7 show such an example for several datasets. 

Note that in both cases the “shape” of our prediction vector seems 

to converge to the shape of the ground truth Rand-Index curve after 

just sixteen user annotations. However it is important to note that 

this is not necessary for our algorithm to be successful. All we 

actually require is that the prediction of the best setting for w agrees 

with the ground truth. Recall that this prediction is the location of 

the maximum value, ties broken by choosing the smallest value.  

 

Figure 7: For two datasets HandOutlines and MoteStrain: The 

ground truth Rand-Index (colored/bold line). The prediction 

vectors (light/gray lines) learned after 1 to 16 user annotations 

allow us to estimate w (arrows). The shapes of the prediction 

vectors reflects the ratio of constraints satisfied (correctly 

linked or not linked) at each w. 

3.3 Pseudo User Annotation   
As the results in Figure 7 suggest, and we will later confirm with 

an extensive empirical analysis, we can typically learn a good value 

for w with just a handful of user-interactions. Nevertheless, one 

might imagine that there are occasions where user annotations may 

be essentially impossible or especially expensive to obtain. Can we 

do anything in such situations?  

A similar problem arises in information retrieval, where user 

feedback is known to improve the effectiveness of search, yet users 

are reluctant to give explicit feedback. The information retrieval 

community has addressed this by creating algorithms to give 

automatically generated pseudo-relevance feedback [14]. 

The ambition of these approaches is limited. No one claims that 

pseudo-relevance feedback is as useful as real human feedback (if 

it was, the community would abandon any effort to elicit expensive 

human feedback). It suffices that it is significantly better than doing 

nothing. In this spirit, we present a technique to learn w from 

pseudo annotations. 

The basic idea is simple. Before we perform any clusterings, we 

randomly sample objects from the dataset. For each object O, we 

create a copy of it that we denote Ō. We add some warping to Ō, 

and place it into the dataset with the (pseudo) constraint must-

link(O, Ō). The intuition is that because we know that object Ō is 

just a minor variant of O, we can safely assume that had Ō occurred 

naturally, it would have been in the same cluster as O, and our must-

link constraint was warranted.  At this point the list of “user 

annotations” is just like those produced by Table 1.  

This idea seems to have a tautological paradox to it. It seems that if 

add w amount of warping to the dataset, we will discover w warping 

in that dataset. However, this is not the case.   

A good value for w depends not only on the intrinsic variability of 

the time axis and on the size of the dataset, but on the time series 

shapes themselves. We can illustrate the latter point with a simple 

experiment. We created two near identical datasets, Slim Plateau 

and Broad Plateau, which, as their names hint, differ only in the 

width of the plateau. In both datasets, one class has a plateau in the 

first half and the other class has a plateau in the second half. As we 

look that the leftmost column of Figure 8 we can see that both 

variants cluster well under cDTW0 (i.e. Euclidean distance). What 

0 2750 275

Please Annotate

1) cannot-link

2) must-linkPlease Annotate

1) cannot-link

2) must-link

1

0.5

0 10 20

Rand-Index

HandOutlines

0 10 20

MoteStrain

Rand-Index
1

0.5Optimal w
Optimal w

After one user annotation

After two user annotations

After four user annotations
After four user annotations

After sixteen user annotations

After eight user annotations

After one user annotation

After eight user annotations

After two user annotations

After sixteen user annotations

Increasing values of w Increasing values of w



 

 

would happen if we added an identical amount of random warping 

to both datasets and clustered again them using cDTW0? 

 

Figure 8: Warping affects different datasets differently under 

hierarchical clustering. top) The clustering of the Slim Plateau 

dataset is very brittle to the presence of warping in the time 

axis. bottom) In contrast, the Broad Plateau dataset is extremely 

robust to identical levels  of warping. 

As we can see in the rightmost column of Figure 8, the clustering 

of Slim Plateau becomes essentially random, whereas Broad 

Plateau is basically unaffected.  

The take-away message from this experiment is as follows. In this 

pathological case we can measure exactly how much warping is in 

a dataset, because we placed it there. But even in this case, we 

cannot use the amount of warping added to guide the choice of w. 

Even with a lot of warping in the time axis, the best value of w 

could still be as low as zero, depending on the time series shapes 

(and, on the dataset size, cf. Section 2.2).  

Table 2 outlines algorithm for generating pseudo constraints.  

Table 2: Algorithm for finding the pseudo constraint set 

 Input:  D, the dataset to be clustered 

Input:  M, the amount of warping to add 

Output: Dnew, a new version of dataset D 

Output: PA, the set of pseudo annotations for Dnew 

1 

2 

3 

4 

5 

Dnew  random_shuffle(D)  

for i = 1 in steps of 2 to numberOfInstances(Dnew)  

 Dnewi+1 = add_random_warping(Di)    // See Table 3  

 PA(i+1)/2 = set_constraint(Dnewi+1,Dnewi,’must-link’) 

end 

In line 1 we ensure that the data does not have any arbitrary 

structure in its ordering. In line 2 we enter a loop which replaces 

every second data object with a warped version of the data object 

that preceded it. Since these two objects differ only by the existence 

of some warping, we annotate them as ‘must-link’. Note that this 

algorithm produces a new dataset Dnew which is the same size as 

D. This is important as the size of the dataset affects the best setting 

for w (recall Figure 4). The algorithm also outputs PA, a set of 

pseudo annotations for Dnew. PA is essentially identical to UA 

produced in Table 1, except its annotations are produced without 

human interventions. Figure 9 shows some examples of time series 

with warping added, and for concreteness Table 3 contains the 

actual Matlab code used to add warping. We call this variant of our 

ideas the PUA (Pseudo User Annotation) algorithm. 

 

Figure 9: From top to bottom: Increasingly warped versions of 

a sine wave. The red/bold curve is the original and the blue/fine 

curves are the ones with warping added.  

Table 3: Code to add warping to a time series 

function [warped_T] = add_warping_one_time_series(T,p)       

 i = randperm(length(T)); 

 i = sort(i(1:end-floor(length(T) * p))); 

 warped_T = smooth(resample(T(i),length(T),length(i)),1); 

end 

How well does this idea work, compared to using true human 

annotations? The human annotations are constraints between two 

real data objects, which is undoubtedly advantageous. However, 

we typically only have a tiny fraction of D annotated this way. In 

contrast, every item in Dnew has an annotation, which provides this 

approach with an advantage, should we choose to use them all.  

Figure 10 shows how this idea works with Trace and Two Patterns.  

Here we use 64 out of 1,824 pseudo constraints available for Two 

Patterns to reach the correct w = 8. Using all 27 constraints 

available for Trace, we arrive at w = 15, which gives a Rand-Index 

of 0.991 (the optimal is 1.0 at w = 7). 

  

Figure 10: Trace and Two Patterns’ prediction vectors using 

pseudo constraints provided by the PUA algorithm. 

The reader may wonder how much warping we should use to obtain 

good pseudo constraints. The good news is that it makes almost no 

difference. In this particular case, we tried all warping amounts 

from 5% to 90% in 5% intervals. We found that for Two Patterns, 

any warping amount in the range 5 – 65% allows us to estimate the 

correct w. 

3.4 Further Reducing Human Effort  
There are a handful of techniques we could use to reduce the 

number of annotations given by the user, many such ideas can be 

borrowed directly from the information retrieval community [14]. 

For example, suppose the user decides {7,11} must-link, and that 

{11,27} must-link, then there is little point in asking her opinion on 

{7,27} since she will surely also label this pair as must-link (by 

transitivity). We do not consider such optimizations here for 
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brevity, and because, as we will demonstrate, the simplest version 

of our ideas is already very competitive.  

4. EMPIRICAL EVALUATION  
In order to ensure that our experiments are reproducible, we have 

built a website which contains all data/code/raw spreadsheets for 

the results, in addition to many experiments that are omitted here 

for brevity. Because we are testing on so many datasets, including 

all 85 available at [27] plus several more that we introducing with 

this work, we do not have the space to list all their names and 

characteristics. We have placed such a summary at [31]. 

At the risk of redundancy we restate that we are not introducing a 

new clustering algorithm, merely proposing a technique to choose 

among candidate clusterings that differ in the value of w used to 

create them. Nevertheless, in Section 4.4 we explicitly compare 

TADpole using learned warping window to five recent state-of-the-

art clustering algorithms. 

4.1 Preliminary Tests 
We denote our algorithm as cDTWss (DTW Semi-Supervised). We 

compare to two rivals, clustering with cDTW0 (Euclidean distance), 

and clustering with cDTW10. These two rival methods account for 

virtually the entire literature, for example [9] uses cDTW0 and [15] 

uses cDTW10. A surprisingly large number of papers neglect to 

explicitly state what value of w was used. 

It is important to state that the only difference between our approach 

and the two rival methods is the access to the labeled constraints. 

Otherwise the underlying clustering algorithm, TADpole [4], is 

identical for all approaches, and completely deterministic [21]. 

Thus, any improvements obtained can be completely attributed 

solely to our ideas.  

We can measure success as follows. For each dataset we compute 

the maximum Rand-Index obtainable under any setting of w from 

0 to 20% (as our result shows, and in agreement with the literature, 

most datasets do not require w greater than 10% [20]). For example, 

in Figure 1 the maximum Rand-Index is 1.0 for Two Patterns and 

0.89 for Swedish Leaf. We can then compute a score, the ratio of 

the Rand-Index achieved by an approach over this optimal 

achievable value. The closer this ratio is to 1.0 the better; we call 

an approach a success if its score is 0.99 or higher.  

We begin by considering the utility of our approach if given just 

sixteen labels; this is about the amount a person can annotate in one 

minute. With sixteen labeled constraints we achieve success of 46 

out of 102 datasets, with cDTW0 and cDTW10 achieving 34 and 31 

respectively. If we double the number of constraints to thirty-two, 

we extend our success to 50 datasets. Recall that thirty-two 

annotations requires only a few minutes of user effort, and typically 

represents less than 0.0001% of the labeled pairs.  

In spite of this significant improvement over the state-of-the-art, it 

is natural to wonder about the cases we did not score within 0.99 of 

optimal. In some cases we just missed out. For example, using 

thirty-two constraints on the TwoLeadECG, Cricket_Y, 

NonInvasiveFatalECG_2, and 50words datasets, we got within at 

least 0.98 of optimal.  

However, in some cases we do achieve significantly worse than 

optimal. Essentially, all such cases can be attributed to very small 

datasets (or small, relative to the number of clusters). As shown in 

Figure 11, this tends to result in clusterings that are very unstable 

to small changes in w. The fact that small datasets have poor 

stability when clustered is well known [25], and the issue is 

orthogonal to our contributions. In essence, we feel that if the best 

value of w is poorly defined and unstable, it may be impossible for 

any algorithm to learn w. Nevertheless, even in such datasets we do 

not do worse than the lower scoring of out two rivals 

 

Figure 11: The Rand-Index vs. the warping window width for 

three small datasets. Contrast the variability of the curves with 

the relatively smooth curves shown in Figure 1. 

4.2 Robustness to Incorrect Constraints  
The experiments in the previous section assumed that all the 

constraints the user gave are correct. However, this assumption 

may be unwarranted in many circumstances. That is to say, our 

annotator may indicate that two items cannot-link, when in fact they 

are in the same class, and really must-link, or vice versa. To 

investigate the robustness of our approach we revisit some of the 

experiments above, this time randomly inverting some fraction of 

the constraints to be incorrect. 

As we can see in Figure 12, for at least ItalyPowerDemand and 

MiddlePhalanxOutlineAgeGroup datasets, we can achieve near 

perfect results even if a significant fraction of the constraints are 

incorrect. Among the 16 pairs of time series chosen for annotation, 

we single out the must-link pairs and randomly change the label of 

some pairs from this list to cannot-link. We then observe the mean 

best w predicted averaged over ten runs. We find it is consistently 

0 for ItalyPowerDemand dataset and 1 for 

MiddlePhalanxOutineAgeGroup, which agrees with the objective 

ground truth. 

 
Figure 12: Robustness to incorrect constraints. In each case, 16 

pairs of time series are presented for annotation. The annotator 

may wrongly label a pair that should have been must-link as 

cannot-link and vice versa. Our algorithm is robust to these 

mistakes.  

As a practical matter, any system used to garner user feedback 

should allow three choices (not just two) to the user, cannot-

link, must-link and I-don’t-know, which would further enhance 

robustness by giving the user a chance to simply skip over difficult 

or ambiguous cases. 

4.3 Handling the Multi-Dimensional Case 
Thus far we have only considered single dimensional time series; 

however, the proliferation of sensors from sources such as wearable 
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devices means that there is increasing interest in multi-dimensional 

time series data [22]. Fortunately, there is nothing in our approach 

that makes any assumption about dimensionality, so we can 

immediately apply our ideas to the multi-dimensional case. A 

recent paper notes that there are (at least) two ways that DTW can 

be generalized to the multi-dimensional case, for simplicity we use 

DTWI [22]. 

In Figure 13 we consider the 4,480 object, three-dimensional 

UWave dataset [13] which has become something of a benchmark 

for gesture recognition in the last five years. We also consider the 

Handwriting Accelerometer using all three dimensions available. 

Even though all dimensions are not necessary for this task (and in 

fact can introduce noise to the clusters), we only wish to illustrate 

that our algorithm can correctly predict a good value for w. 

 
Figure 13: Three-dimensional uWave and Handwriting 

Accelerometer datasets clustered with DTWI. 

While there are just over one million possible pairwise constraints, 

our algorithm can find the optimal w with just sixteen annotations. 

Note that here the amount of warping is critical, with too much or 

too little giving poor results. This fact might go some way to 

explaining the puzzlingly diversity of accuracy claims made for this 

dataset in the literature. Unfortunately, most papers do not 

explicitly state the value of w used, but the three most common 

settings, cDTW0 , cDTW10  and cDTW100, are all suboptimal to 

widely differing degrees. 

4.4 Comparisons to Rival Methods 
In this section we have two related aims. The first is to satisfy our 

obligation of comparing to other clustering methods in the literature 

(in spite of the fact we are not introducing a new clustering 

algorithm). Our second aim is higher-level. We wish to 

demonstrate that finding a good value for w generally produces 

improvements that dwarf all other choices, including the choice of 

the clustering algorithm. 

Concretely, in this section we offer some evidence to support the 

following claim: 

The effect of choosing the correct value of w is critical, and 

generally dwarfs any effect of the choice of clustering algorithm. 

This can also be stated as the essentially equivalent claim: 

Any discussion of the “best” clustering algorithm for time series 

is premature unless the best value of w has been decided. 

This claim is important because some published research has 

claimed improvements in creating a clustering algorithm, or in 

designing an alternative distance measure, with only slight 

improvements demonstrated in accuracy. We believe that in many 

                                                                 
2 For conditional entropy, smaller is better, with 0.0 being perfect. 

cases, a better (but not necessarily best) choice of w would have 

radically changed the outcome in favor of DTW with any “off-the-

shelf” clustering algorithm. Our claim largely contradicts recent 

claims such as “…the choice of algorithm, .., is as critical as the 

choice of distance measure” [15].  

We reiterate that we are only offering some evidence to support this 

claim. A more forceful demonstration (that is rigorously fair to all 

cited work) would require more space than is available here.   

In a recent paper [15] the authors introduces k-Shape, a system that 

combines a novel time series clustering algorithm and a novel 

distance measure (Shape-Based Distance (SBD)), that are designed 

to work in conjunction with each other. They perform an 

extraordinary comprehensive empirical comparison of the 

proposed method with all the major clustering algorithms and 

distance measures.  For DTW they do recognize that the value of w 

can make a difference; they compare two possibilities (cDTW5 and 

cDTW10) and conclude that “SBD is a very competitive distance 

measure ... and achieves similar results to both constraint and 

unconstraint versions of DTW.”  

However, simply choosing a better value of w typically makes 

improvements that dwarf the claimed improvements of the SDB 

algorithm. For example, for the Trace dataset they compare five 

clustering algorithms that use DTW vs. the same five clustering 

algorithms using SBD. The former achieves Rand-Indexes of 

{0.87, 0.75, 0.75, 0.83, 0.77} and the latter achieves Rand-Indexes 

of {0.87, 0.87, 0.87, 0.83, 0.87}, suggesting an advantage for SBD. 

However, using the exact same split of the Trace data, we can 

significantly beat all these approaches without any human 

intervention, as our PUA algorithm can achieve 0.99. 

We have similarly large margins improvements for most datasets, 

for example for Two Patterns, [15] has the DTW based algorithms 

achieving Rand-Indexes of {0.87, 0.59, 0.62, 0.97, 0.65}, and SBD 

variants achieving {0.25, 0.54, 0.64, 0.67, 0.66} but PUA learns 

that cDTW8 is the best setting and achieves a perfect 1.0. 

Similarly, in a recent paper [12] the authors introduce a clustering 

method called CLDS (complex-valued linear dynamical systems), 

and claim that the “approach produces significant improvement in 

clustering quality, 1.5 to 5 times better than well-known 

competitors on real motion capture sequences.” The method 

involves several layers of complicated sub-procedures, so we refer 

the interested reader to the original paper. The authors demonstrate 

the utility of their work on the publicly available MOCAPANG-

Subject-35, right-foot-marker dataset. The evaluation method is 

based on the conditional entropy2, and they manage to score 0.1015, 

while cDTW100 using K-Means scores significantly worse at 

0.4229, about the same as random guessing.  

In revisiting this experiment we noted that the authors acknowledge 

that “the original motion sequences have different lengths; we trim 

them with equal duration.” But note that this manipulation is only 

needed for their proposed method; cDTW can handle sequences of 

different lengths. When we re-ran the experiments, we found that 

cDTW20 gives a perfect conditional entropy of 0 using K-Means. 

TADpole achieves the same superior score for any w from 11 to 20. 

As before, the correct value of w makes a difference; for example, 

TADpole, if forced to use cDTW10, scores a slightly worse 0.142. 

Note that we are not claiming the work proposed in [12] is without 

merit. We are simply pointing out that at least on the datasets the 

original authors used to validate the method, cDTW, using any 
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reasonable choice for w with an off-the-shelf clustering method, 

can be very competitive. 

A recently published work measures the accuracy of eleven 

carefully-optimized clustering algorithms on the Trace dataset, of 

which eight use DTW as the distance measure [11]. The Rand-

Indexes of these methods are {0.87, 0.76, 0.86, 0.86, 0.91, 0.86, 

0.86, 0.87, 0.87, 0.84, 0.75}. However, as noted above, using the 

exact same split of the Trace data, we can significantly beat all 

these approaches without any human intervention, as our PUA 

algorithm can achieve 0.99.   

Another recently published time series clustering technique called 

YADING is shown to “provide theoretical proof which... 

...guarantees YADING’s high performance” [9]. However, these 

guarantees are only with respect to Euclidean distance. The only 

publicly available real dataset they test on is StarLightCurves, 

where they obtain a Normalized Mutual Information (NMI) score 

of 0.60. However, as shown in Figure 14, with 16 constraints given 

by the user, we find cDTW1 to be a good choice and achieve a NMI 

of 0.79, significantly better (Omitted for brevity: in fact, any 

number of constraints above four also works this well). 

 
Figure 14: The Rand-Index vs. the warping window width for 

StarLightCurves. We predict w = 1, obtaining a Rand-Index of 

0.83, equivalent to a NMI of 0.79. 

Likewise, in an expanded tech report that augments the paper [10], 

the YADING method achieves a NMI of 0.61 on the 

CinC_ECG_torso dataset. However on this dataset, our algorithm 

discovers cDTW1 to be the best choice for w, and NMI of 0.66.  

Why did the authors of [9][10] dismiss DTW as a distance 

measure? They noted that DTW “is one order of magnitude slower 

than calculating [Euclidian distance],” and further noted that it 

only took them a brief 3.1 seconds to cluster this dataset. However, 

this dataset took several years to collect, and many days of careful 

human effort in preprocessing. Given that, the difference between 

taking 3.1 seconds or taking 30 seconds to do the clustering seems 

completely inconsequential (but see also Section 4.5). Of course, 

the authors are correct in noting that there is sometimes a need for 

great speed and scalability. However, in many domains the tradeoff 

between speed and accuracy will favor accuracy. For example, in 

the UCR Archive many datasets took hours, days or weeks to 

collect (InsectWingbeatSound, ElectricDevices, Fish, Phoneme, 

etc), so the few minutes needed to cluster them is negligible, if we 

are able to improve accuracy.  

Finally, a paper to appear in AAAI tests four algorithms for time 

series clustering, two of them based on DTW [29]. These 

algorithms give NMI scores of {0.53, 0.45, 0.54, 0.64} for the 

Trace dataset, but our PUA algorithm can achieve an almost perfect 

NMI of 0.97 (Rand-Index = 0.99) on this same dataset. 

These five examples strongly support our claim. Finding a good 

value for w (using our method, or any method) can produce 

improvements that make all other changes inconsequential.  

4.5 Scalability of our Algorithm 
At first blush our algorithm appears to require a significant 

overhead in time complexity, given that the Density Peaks 

algorithm [21] requires O(n2) calculations of cDTW, and we need 

to run this algorithm twenty-one times (for each warping window 

from 0 to 20). However, this is a pessimistic view. First, note that 

we use the TADPole version of the algorithm, which is a 

specialization of the Density Peaks algorithm for DTW that 

exploits the fact that we can compute tight upper and lower bounds 

for cDTWw for any value of w and use these bounds to prune off 

many computations. The TADpole algorithm is admissible, and 

able to prune 90%-plus of the cDTW calculations. 

In fact, we can do even better than this. Instead of doing twenty-

one independent clusterings, we can exploit the fact that for any 

two time series Q,C the value of cDTWw(Q,C) is a (very tight) 

lower bound for the value of cDTWw+1(Q,C). Thus we can perform 

the clusterings in order, from w = 0 to w = 20, at each stage using 

any cDTWw calculations actually made, as lower bounds in the next 

level. Thus, the time overhead for our ideas is only slightly more 

than a single highly optimized clustering.  

Finally we note that there is a wide variety of DTW 

implementations and the efficiency differences between good and 

bad implementations overshadow the small overhead of our 

approach. For example, a recently published paper that tests a 

DTW-based clustering on some of the datasets we consider, notes 

that “several experiments were unable to return results within 20 

days” [29]. However, we can cluster exactly these same datasets in 

at most minutes, at least 10,000 times faster. 

4.6 Nontransferability of the Best Setting for w 
We claimed in the introduction that the best setting of w for 

classification is generally no indicator of the best setting of w for 

clustering. Since this assumption has been explicitly made (but 

never tested) multiple times in the literature [15], we will take the 

time to show that it is unwarranted. In Figure 15 we show both the 

Rand-Index and the accuracy for two datasets.   

 
Figure 15: The Rand-Index (red/fine) and the classification 

accuracy (blue/bold) vs. the warping window width, for two 

representative datasets. 

In retrospect it is not surprising that these values are at best weakly 

related. For 1NN classification (the most commonly used 

classification technique in the literature [8][20]) only the distance 

between the unlabeled exemplar and it’s single nearest neighbor 

matters. However, for clustering, the mutual distance among small 

groups of objects matter. 

5. CONCLUSIONS AND FUTURE WORK 
In this work we have shown that w, the amount of warping allowed, 

is a critical parameter for clustering time series under the DTW 

distance. For most datasets, if this parameter is badly set, then 

nothing else matters; it will simply be impossible to produce a high 

0 5 10 15 20

After sixteen user annotations

Rand-Index
(the ground truth)

StarLightCurves

Optimal w

Increasing values of w

1

0.5

0 10 20
0.45

0.5

0.55

0.6

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0.2

0.4

0.6

0.8

R
a
n
d
 I
n
d
e
x

0 10 20
0.7

0.8

0.9

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0

0.5

1

R
a
n
d
 I
n
d
e
x

ToeSegmentation2 MiddlePhalanxTW

Increasing values of w Increasing values of w



 

 

quality clustering. We have further proposed the first semi-

supervised technique designed to discover the best value for w.  

Our paper has several other observations that are novel, or at least 

underappreciated. We have shown w depends not only on the data 

object shapes, but on the number data objects considered. This 

observation has been made for classification before, but not for 

clustering [20]. We have shown that the optimal setting for w for 

classification is not generally the optimal setting for clustering, an 

assumption that has appeared in the literature [15]. Finally, in the 

last decade, a handful of researchers have argued that warping 

constraints are a necessary evil, and that there are “cases where 

unconstrained warping is useful” [23], or that research should 

“focus on unconstrained DTW” [1]. While absence of evidence is 

not evidence of absence, the extensive nature of our experiments, 

which failed to find a single dataset which requires a value of w 

greater than 20%, suggests that these efforts are likely to be 

fruitless.  

Finally, we have released all our code and data [31], to allow others 

to confirm, extend and exploit our ideas. 
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