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ABSTRACT
The long term operation of physical systems inevitably leads to
their wearing out, and may cause degradations in performance or
the unexpected failure of the entire system. To reduce the pos-
sibility of such unanticipated failures, the system must be moni-
tored for tell-tale symptoms of degradation that are suggestive of
imminent failure. In this work, we introduce a novel time series
analysis technique that allows the decomposition of the time series
into trend and fluctuation components, providing the monitoring
software with actionable information about the changes of the sys-
tem’s behavior over time. We analyze the underlying problem and
formulate it to a Quadratic Programming (QP) problem that can
be solved with existing QP-solvers. However, when the profiling
resolution is high, as generally required by real-world applications,
such a decomposition becomes intractable to general QP-solvers.
To speed up the problem solving, we further transform the prob-
lem and present a novel QP formulation, Non-negative QP, for the
problem and demonstrate a tractable solution that bypasses the use
of slow general QP-solvers. We demonstrate our ideas on both syn-
thetic and real datasets, showing that our method allows us to accu-
rately extract the degradation phenomenon of time series. We fur-
ther demonstrate the generality of our ideas by applying them be-
yond classic machine prognostics to problems in identifying the in-
fluence of news events on currency exchange rates and stock prices.
We fully implement our profiling system and deploy it into several
physical systems, such as chemical plants and nuclear power plants,
and it greatly helps detect the degradation phenomenon, and diag-
nose the corresponding components.

1. INTRODUCTION
The long term operation of physical systems causes degradation

of their components. Degradations, such as wearing out or aging 1,
lead to condition changes expressed in deviations in mean values,

∗Work done during an internship at NEC Laboratories America,
Princeton.
1We use terms degradation and aging interchangeably in this paper.
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amplitudes or frequencies in the sensed signals of the system, and
are an unavoidable property of any system. However, well-timed
detection and profiling of an aging phenomenon or trend help avoid
consequences and problems it may cause and are crucial tasks in
the modern machinery. It is important to note, if one component
of a system fails, it may lead to the stoppage of the whole system,
and, as already well known, even short interruption in production
process may cause huge money waste and serious business related
issues [9].

The problem of trend analysis and extraction in time series has
attracted significant attention recently, and a plethora of methods
have been designed [4,14]. However, the proposed schemes mainly
focus on extracting general trend behavior from time series, and
none of them specifically addresses the aging detection and profil-
ing without any prior knowledge of the time series properties (i.e.,
seasonality, level of noise, etc.).

The aging phenomenon profiling is a critical task in detection and
analysis of the degradation behavior in time series obtained from
sensors on machinery. Such a problem is complicated because a
system is usually operated with strong patterns. The aging behavior
is usually invisible due to high noise and operational signals, and
thus is too small to be detected. Figure 1 shows an example of a
one-year-long time series collected from a pipe of a chemical plant.
A component inside the pipe started wearing out at the beginning of
January 2013, and another started at the beginning of March. This
leads to the degradation of the whole pipe. Such aging phenomenon
is too tiny to be captured by human eyes but may cause damage to
the whole system.

Collected Time Series 

Aging Phenomenon 

Figure 1: Example of time series showing aging (long-term degra-
dation) phenomenon.

To resolve this issue, in this paper, we aim to provide a time se-
ries analysis technique that accurately extracts the aging phenom-
ena of given time series, analyzes the aging behavior, and ranks its
severity. We observe that in physical systems, the aging usually is
generated in long-term and incremental fashions, such as buildups
or component wear out, and thus, naturally, the aging behavior



can be modeled as a monotonic signal. Moreover, for systems
under normal operations, the long-term operational signal should
be stationary. For example, it does not make sense if a system is
normally operated to always increase/decrease temperature, water
flow, or pressure for five years, although the instant value can fluc-
tuate at different time points. Under such observations, we want to
develop an aging profiling engine that decomposes the given time
series into two components - a monotonic aging trend that captures
all the degradation phenomena in the time series and a fluctuation
term that represents the normal operational signals and noises. In
decomposition, we analyze the aging trend to profile its changes
and evolutions including the slope and the shape that indicates the
severity and starting point of the degradation.

More particularly, we formulate the aging extraction problem as
an optimization problem. Its objective function consists of two
parts: (1) Minimizing the reconstruction error to ensure an accu-
rate profiling, and (2) Ensuring flatness of the fluctuation term over
time so that the aging trend captures as much degradation signal as
it can. Under such objectives, the solution must also satisfy two
constraints: (1) the extracted aging trend needs to be monotonic
to satisfy the nature of the component wearing out, and (2) all the
extracted signals need to be real valued and non-negative. We an-
alyze the formulated objective function and convert this problem
statement to a Quadratic Programming (QP) formulation [11] that
can be solved with existing well-known solvers. However, when
the profiling resolution is high, as generally required by real-world
applications, such a problem becomes intractable to general QP-
solvers. To further speed up the problem solving, we propose a ma-
trix transformation technique to simplify the constraints and reduce
the number of constraints from two to one – only non-negativity
constraint. We convert the problem to a Non-negative QP problem
and solve it much more efficiently using iterative updates [21]. We
show that, using the optimization techniques proposed in this pa-
per, the solution of the problem is tractable, and thus applicable to
large-scale time series profiling.

We design two scoring functions to give an aging score and a
confidence score to analyze the extracted aging component of the
time series. Based on such scores, our aging profiling engine re-
ports the result of decomposition with a ranking of the aging sever-
ity and the corresponding confidence level of the extraction, which
can assist the domain experts to further diagnose the system.

We demonstrate our ideas on both synthetic and real data, show-
ing that our method allows us to accurately divorce the trend and
the shape of rapidly arriving time series. We further demonstrate
the generality of our ideas by applying them beyond classic ma-
chine prognostics to problems in identifying the influence of news
events on currency exchange rates. We fully implement our aging
profiling system and deploy it into several physical systems, such as
a chemical plant and a nuclear power plant in Japan, which greatly
helps detect the aging phenomenon and diagnose the corresponding
components.

To summarize, in this paper we make the following three contri-
butions:

• We formulate an objective function for extracting trend and
fluctuation terms and build a model to transit the aging pro-
filing requirements into mathematical formulation;

• We demonstrate that the problem is a convex problem, convert
it to a QP formulation, and provide a fast optimization tech-
nique to solve the problem with Non-negative QP formulation;

• We fully develop the system and deploy it into several real-
world complex systems.

The rest of the paper is organized as follows. In Section 2 we pro-
vide our detailed scheme and problem formulation. Section 3 gives
optimization techniques to efficiently solve our problem. Section 4
presents the conducted experiments. The related work is presented
in Section 5. We conclude this paper in Section 6.

2. THE AGING PROFILING ALGORITHM
In this section, we describe our approach for aging profiling in

time series data. First, we present the formal definition of the prob-
lem. Then, we form the objective function and formulate it to a
Quadratic Programming Problem, a subclass of the convex prob-
lems whose optimal solution can be obtained with existing solvers.
After that, we present the scoring functions to rank the aging sever-
ity of the input time series and the confidence level of out system.

2.1 Problem Statement
In physical and other complex systems, the monitored signals

(time series) generally are a mixture of aging phenomena, system
operational signals, and noises. Our goal is to extract and profile the
aging components/phenomena/signals out of the given time series.
The aging extraction problem can be defined as follows: given an
input time series of length T , s ∈ RT×1, we want to decompose it
into the following terms:

s = xa + xf (1)

where xa is the aging term and xf is the fluctuation term. Illustra-
tion of the desired decomposition is presented in Figure 2.

Aging term Fluctuation term 

Monotonic  
function 

Non-monotonic function  
with zero-mean shift Clear separation 

Original Time Series 

Figure 2: The desired decomposition of a time series to extract the
aging trend: the clear separation of the two components – the aging
trend and the fluctuation term.

We require the trend component to be monotonic – either non-
increasing or non-decreasing 2, and the fluctuation term to be flat,
i.e., stationary, to make sure it does not interfere with the aging
trend. Having this problem statement, we formulate our problem
into an objective function optimization in the following section.

2.2 Quadratic Programming Formulation
To ensure that the trend xa is monotonic, we can simply write

the constraint of the objective function as

xa(t) ≤ (or ≥)xa(t+ 1). (2)

To make the fluctuation term stationary and do not have the mean
change over the time, we segment the time series, and ensure the
mean value difference of each segment to be as small as possible.
More specifically, given a time series, we partition it into K seg-
ments, each having mean value mk, k = 1, 2, ...,K. Then, we
minimize the difference between mean values of each pair of the
segments to ensure flatness of the fluctuation term over time as:

min
K∑

i,j=1

(mi −mj)
2Wij (3)

2For other aging behaviors, such as frequency or variance change,
they can always be transformed to value change and modeled as
monotonic signals.



Here W is a weight matrix, each entry Wij of which specifies the
weight we want to assign in order to minimize the mean difference
between the segment pair mi and mj . If W is set to be all 1’s,
then all the segments have equal weight. In practice, to ensure the
long-term mean change being minimized, we can increase weights
when the distance of the segment pair increases (e.g., linear growth
of the weight based on the distance between segmentsmi andmj).
In this way, the farther the two segments are apart from each other,
the more weight is given to minimize their mean difference.

We formulate the objective function of the optimization problem
as minimizing the reconstruction error ‖s− xa − xf‖2 and ensur-
ing flatness of the fluctuation term over time (Equation (3)), which
is subject to the following constraints: (1) monotonicity constraint
and (2) non-negativity constraint. The monotonicity constraint can
be represented using Equation (2). The non-negativity constraint
means that the extracted aging trend and fluctuation term must have
only non-negative values. It assumes that the original time series
has only non-negative values as well, but if it is not the case it can
be easily shifted up by summing up the original values with the
absolute value of the minimum (negative) value of the time series.
Combining this with Equations (2) and (3), the whole objective
function can be written the following way:

min ‖s− xa − xf‖2 +

K∑
i,j=1

(mi −mj)
2Wij

s.t. xa(t) ≤ (or ≥)xa(t+ 1), ∀t=1,2,...,T−1

xa ≥ 0,xf ≥ 0

(4)

However, Equation (4) cannot be solved in the form presented
above. We now transform it to a Quadratic Programming formula-
tion whose optimal solution can be obtained. We begin with rewrit-
ing Equation (3), the flatness objective. For each of the segments
mi, we define an indicator vector ei as follows:

ei = [0, 0, ..., 0︸ ︷︷ ︸
1st seg

, 0, 0, ..., 0︸ ︷︷ ︸
2nd seg

, ...,
1

l
,

1

l
, ...,

1

l︸ ︷︷ ︸
ith seg

, 0, 0, ..., 0︸ ︷︷ ︸
Kth seg

, ]>, (5)

where l is the length of the segment. We let

E = [e1, e2, ..., eK ]>,

and then such flatness objective (Equation (3)) can be written as

minx>f

(
E>LE

)
xf (6)

where L = D−W and D = diag(W · 1).
After that, in Equation (4), we replace the original form of the

flatness objective with its new form in Equation (6) and obtain the
following formulation:

min ‖s− xa − xf‖2 + λ · x>f
(
E>LE

)
xf

s.t. xa(t) ≤ xa(t+ 1), ∀t=1,2,...,T−1

xa ≥ 0,xf ≥ 0.

(7)

Then, we rewrite Equation (2), the monotonicity constraint. We
define x = [x>a ,x

>
f ]>, E2 = [I, I], E1 = [0, I], where I is a

T × T identity matrix. We define matrices B and C as follows:

B =


1 −1

1 −1
..
1 −1

 ,C = [B, 0T−1×T−1]

Under such a definition, the monotonicity constraint can be written
as

Cx ≥ 0, (8)

and the non-negative constraints can be written as

x ≥ 0. (9)

We further rewrite the objective function in Equation (7) and obtain
its form as follows:

min x>
(
E>2 E2 + λE>1 E

>LEE1

)
x− 2(E>2 s)

>x

s.t. Cx ≥ 0

x ≥ 0

(10)

Now, the Equation (10) has a form of a Quadratic Programming
optimization problem. Later in Section 3 we propose an efficient
optimization method to solve this problem.

2.3 Scores of Aging Severity and Confidence
We decompose a given time series into the aging part (trend) and

the fluctuation part. During the decomposition, the reconstruction
error is introduced, and thus, the confidence of such decomposition
must depend on the value of the error. We use scores to assess the
severity of the aging as well as the confidence our tool provides.
Essentially, the aging score can be described by the slope of the
aging trend, while the confidence score depends on the closeness
of the slope of the extracted aging trend to the slope of the original
time series. We tune two sigmoid functions to quantify the two
scores. For the aging score, we use the slope of the extracted aging
trend as the input of the sigmoid function, that gives a value from
0 (no aging expressed) to 1 (severe aging). For confidence score,
we use the difference ratio between the slope of the original time
series and the slope of the extracted aging trend, i.e., (ori._slope−
ext._slope)/ori._slope, as the input. The higher the ratio is, the
lower the confidence score will be. The two scoring functions can
be flexibly tuned according to different application requirements.
For example, for five-year monitoring of a physical system, we can
pre-tune aging score to give 0 for zero-slope aging trend, while
giving 1 when the slope is greater than 0.015, as shown in Figure
3(a). The confidence score function can be tuned so that it scores 1
when the ratio is 0, while it scores 0 when the ratio is close to 1, as
shown in Figure 3(b).
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Figure 3: Aging score and confidence score sigmoid functions

To summarize, the design of the aging profiling system is illus-
trated in Figure 4.

3. SOLVING PROBLEM (10) EFFICIENTLY
We formulate the underlying aging profiling problem to a QP

problem. However, the general QP-solvers are used for a wide
range of purposes and are considerably slow, especially for large
time series (e.g., more than 1000 data points). Essentially, find-
ing a solution for a time series of 1000 data points is equivalent to
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+

Figure 4: The system overview. A time series is decomposed into
the aging and fluctuation terms. Based on the aging term we obtain
the aging score (ranking) and the confidence score for it.

solving a system of equations with 1000 variables, which is very
computationally costly, and thus, is not tractable.

In this section, we aim to reduce the computational cost and pro-
vide a tractable solution for reasonably long time series. Our idea
is to further rewrite the QP formulation in Equation (10) to elimi-
nate the monotonicity constraint and only keep the non-negativity
constraint to make the problem much easier to solve.

3.1 Non-negative Formulation
We observe that monotonicity constraint expresses the fact that

the difference between two neighboring elements is non-negative
3. Based on the observation, we introduce a transition variable x̄a,
and change the problem statement to the following way: instead
of using xa as a part of the variables, we can use the following
surrogate x̄a as the variable, which satisfies the equality

xa(1) = x̄a(1)

xa(2) = x̄a(1) + x̄a(2)

...

xa(k) = x̄a(1) + x̄a(2) + ...+ x̄a(k).

In other words, the first element in x̄a is equal to the first element
of xa, and the remaining elements in x̄a represent the difference
between two neighboring elements of xa.

The relationship between xa and x̄a can be written in the follow-
ing way:

xa = ∆x̄a (11)

where ∆ = ∆− if the trend is nonincreasing, while ∆ = ∆+ if
the trend is nondecreasing

∆− =


1
1 1
1 1 1
...
1 1 1 ... 1

 (12)

∆+ =


1
1 −1
1 −1 −1
...
1 −1 −1 ... −1

 (13)

An example of a trend xa and its difference values x̄a is illus-
trated in Figure 5.

We let x̄ = [x̄>a x>f ]>. By using this transform, we can merge
the monotonicity constraint Cx ≥ 0 in Equation (8) and non-

3In case of nonincreasing sequence every preceding element is
greater or equal to the following, and in case of nondecreasing se-
quence, vice versa, each following element is greater or equal to
the preceding one.
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Figure 5: Aging trend xa and its difference values x̄a

negative constraint x ≥ 0 in Equation (9) to just one constraint:

x̄ ≥ 0. (14)

We let Ē2 = [∆ I]. The original QP problem in Equation (10) can
be written in the following form with the only one constraint:

min x̄>
(
Ē>2 Ē2 + λE>1 E

>LEE1

)
x̄− 2(Ē>2 s)

>x̄

s.t. x̄ ≥ 0
(15)

We further define

Q =
(
Ē>2 Ē2 + λE>1 E

>LEE1

)
c = Ē>2 s,

(16)

then the problem can be written as a simple non-negative QP prob-
lem:

min x̄>Qx̄− 2c>x̄

s.t. x̄ ≥ 0
(17)

After solving Equation (17), the obtained aging trend xa can be
recovered with x̄a as it is shown in E. q. (11). The next section
shows that indeed such a non-negative QP problem can be solved
much more efficiently than a general QP problem.

3.2 Avoiding General QP-solver
The advantage of using the non-negative QP formulation is that

it makes the structure simpler, since non-negativity constraints are
much easier to handle than linear inequality constraints. Typically
they lead to closed-form iterations that can be computed very effi-
ciently. For example, the multiplicative update studied in [21] can
be used to obtain the solution. Let Q+ and Q− be defined as

Q+
ij =

{
Qij , Qij ≥ 0
0, otherwise

Q−ij =

{
|Qij |, Qij < 0

0, otherwise
(18)

Then, the update can be written as

x̄i+1 ← x̄i

[
−ci +

√
c2i + 4(Q+x̄)i(Q−x̄)i

(2Q+x̄)i

]
, (19)

where xi is the vector x obtained after i iterations.
A good initialization can improve convergence. One can use
|(Q−1c)| suggested in [21] as the starting solution. To compute
Q−1, one can use low-rank approximation techniques which is lin-
ear complexity.

This avoids using general QP-solvers that are typically designed
for general purpose formulations with both linear and nonlinear
constraints, and thus, makes the solving process much more ef-
ficient. A comprehensive comparison between solving efficiency
using general QP-solvers and the proposed method is later shown
in Section 4.1.3.

3.3 Formal Algorithm Definition
The formal presentation of our algorithm for time series decom-

position can be found in Algorithm 1.



Algorithm 1 The aging profiling algorithm
Notations:

s: intput time series of lenght T
xa: aging trend (array of length T )
xf : fluctuation term (array of length T )
x̄a: difference values of aging trend xa
x: concatenation of aging trend and fluctuation term, x = xa + xf
x̄: concatenation of x̄a and xf

∆: transform matrix from x̄a to xa
ε: small value used as an algorithm stopping criterion

1: Check the slope of s
2: if slope is negative then
3: ∆ = ∆−

4: else
5: ∆ = ∆+

6: end if
7: Compute Q, c
8: x̄a = |(Q−1c)|
9: fold = 0, difference = Infinity

10: while difference > ε do
11: Compute x̄ by (19)
12: fnew = x̄>Qx̄− 2c>x̄
13: difference = |(fold − fnew|)
14: fold = fnew

15: end while
16: x̄a = x̄[1 : T ], xf = x̄[(T + 1) : 2T ]
17: xa = ∆x̄a
18: return xa, xf

In the algorithm, the first step is to check the slope of the input
time series and decide if ∆+ or ∆− should be used. Then, the
next step in line 7 is to compute Q and c according to the Equation
(16). In line 8, we assign initial value of x̄a to be |(Q−1c)|. After
that, we execute the iterative updates until the difference between
objective function values becomes less than ε, e.g., 0.001. In line
16, we split the x̄a into its two components - the aging trend differ-
ence values and the fluctuation term, and recover the aging trend by
multiplying ∆ by x̄a in line 17. The algorithm returns the extracted
aging trend and the fluctuation term.

4. EXPERIMENTS
We have fully developed our aging profiling system and deployed

it into several physical systems, such as chemical plants and nuclear
power plants in Japan. In this section, we first evaluate the aging
profiling accuracy, computational complexity, and the intuition of
the parameter tunning of the scheme by applying it to synthetic
datasets with different properties. Then, we demonstrate the good
profiling and diagnosis performance by applying it to the real-world
data collected from one of the systems it is deployed in. Finally,
we further demonstrate the generality of our scheme by applying
it beyond classic machine prognostics to problems in identifying
the influence of news events on currency exchange rates and stock
prices.

4.1 Synthetic Data with Different Properties
We generate synthetic data that covers time series with different

properties in trend, seasonality, and noise. For trend component,
we generate three types of aging trends: no trend, linear trend, and
nonlinear trend. Figure 6 summarizes trends that are used in the
synthetic data generation. Essentially, to generate a linear trend, we
applied the slope in the whole length of time series. For a nonlinear
trend, its first half is a flat line (no trend), and the non-linear curve
starts in the middle of the time series. We intentionally generate the
nonlinear trend this way to test whether our scheme can detect the
starting point of the aging. Moreover, all the generated trends are

very small (can be seen from their slope values) in order to ensure
that the aging trend is not obvious or visible by eyes.
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Figure 6: Trends used in synthetic data generation

The fluctuation terms are built according to the following scheme:

• sine wave: sin(aπt), a = [1/16, 1/8, 1/4, 1/2, 1],

• noise: b ∗ rand(0, 1), b = [1/4, 1/2, 1, 2, 4],

• combination of noise and sine wave: sin(aπt)+b∗rand(0, 1).

Combinations of possible trends and fluctuations give nine fami-
lies of time series, presented in Figure 7. In total, we generated 385
synthetic time series, each containing 5000 points. The next section
explains parameter setup for the experiments and their justification.
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Figure 7: Synthetic Data Examples

4.1.1 Robustness to Different Parameter Values
As a careful reader could notice, our model has several parame-

ters, namely λ, K, and W. λ balances the minimization weights
between reconstruction error and flatness of the fluctuation term.
K control the resolution of the flatness of the fluctuation term. W
adjusts the weights in the fluctuation term and can be set to linearly
increase depending on the distance between the pairwised segments
(e.g., 1, 2, 3, . . . ).

To evaluate the effect of different parameter values, we list a
range of values for each parameter and try all the combinations
to all the synthetic time series. In Table 1, for each time series, we
record the best and worst profiling accuracies that are the minimum
and the maximum values of the distances between the estimated
and actual trends normalized by the time series length. As we can
observe, the difference between the reconstruction results is not
significant. Thus, our system is not sensitive to the values of the
parameters. In practice, based on our extensive experiments, we
suggest to set λ = 0.1 and K = 5.



Table 1: Best and Worst Reconstruction Results

Family Slope (C) Best Worst Difference
Linear 0 0 0.0094 0.0094
Linear 5.0E-04 0.0005 0.0081 0.0077
Linear 1.0E-03 0.0007 0.0076 0.0068
Linear 1.5E-03 0.0009 0.0077 0.0068
Linear 2.0E-03 0.0011 0.0093 0.0082
Linear 2.5E-03 0.0014 0.0116 0.0102

Quadratic 4.8E-05 0.0002 0.0095 0.0092
Quadratic 2.4E-04 0.0009 0.0093 0.0083
Quadratic 4.8E-04 0.0015 0.0090 0.0075
Quadratic 2.4E-03 0.0040 0.0135 0.0095
Quadratic 4.8E-03 0.0048 0.0183 0.0135

4.1.2 Aging Profiling Accuracy
To evaluate the decomposition quality, we compute the Euclidean

distances between the extracted and actual trends. We compare our
method with Singular Spectrum Analysis (SSA), Moving Average
(MA), and Wavelet. Table 2 presents the results of the comparison.

Table 2: Euclidean distance between actual and extracted trends

Family Slope (C) Ours SSA SMA Wavelets
Linear 0 0.0004 0.0036 0.0158 0.0112
Linear 5.0E-04 0.0005 0.0034 0.0157 0.0112
Linear 1.0E-03 0.0008 0.0034 0.0160 0.0115
Linear 1.5E-03 0.0010 0.0034 0.0160 0.0116
Linear 2.0E-03 0.0012 0.0036 0.0158 0.0117
Linear 2.5E-03 0.0015 0.0035 0.0157 0.0119

Quadratic 4.8E-05 0.0004 0.0033 0.0157 0.0111
Quadratic 2.4E-04 0.0010 0.0035 0.0158 0.0111
Quadratic 4.8E-04 0.0017 0.0037 0.0158 0.0111
Quadratic 2.4E-03 0.0070 0.0055 0.0159 0.0124
Quadratic 4.8E-03 0.0099 0.0068 0.0161 0.0146

From this table we can see that our method performs best among
the majority of the compared schemes with the smallest error be-
tween the extracted trend and the ground-truth trend. Especially
when the slope is small and the aging phenomenon is tiny, our
method performs about 10 times better SSA and 30 betters than
SMA and Wavelets. Moreover, although in two cases our method
gets higher error than SSA, the aging trend extracted by our scheme
is monotonic and satisfies the nature of the aging behavior, while
SSA, SMA or Wavelets does not have such advantage as they have
no monotonic constraint in extracting the trend. A comparison of
extracted slopes with our method and actual trends is shown in Fig-
ure 8, which demonstrates how the extracted trends correspond to
the actual trends.

In addition, Figure 9 demonstrates an example of outputs from
our tool. From this figure, we can see our profiling scheme accu-
rately detects and profiles the aging shape of the input time series.

4.1.3 Computational Complexity
Any algorithm that utilizes iterative updates opens a question on

how fast it converges upon a solution. This answer depends on
the choice of ε that satisfies the accuracy of the results and gives a
reasonable speed of computation. For all our experiments we fixed
ε value to be 0.001, and set the initial values for the solution to be
|(Q−1c)|. Figure 10 shows the average converge speed for time
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Figure 8: The slopes of the actual and extracted trends

series with 300 data points. From this figure, we can see that the
algorithm converges within about 60 iterations.
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Figure 10: Convergence speed for time series length of 300 data
points

To compare the efficiency of the original formulation solved with
QP-solvers and the optimized non-negative QP formulation with it-
erative updates (named No QP-solver), we run load tests for differ-
ent length of time series and plot the execution time for time series
with length from 500 to 5000 in Figure 11. The running time is
based on a PC with CPU i7-920 3.0GHz with 8 cores 4. From this
figure, it is obvious to see that our approach outperforms general
QP-solver based technique, and its speed is about 30 times faster
than general QP-solvers. Please note that, since our goal is to cap-
ture long-term degradations in physical systems, we do not need a
very fine granularity and usually 2000 points is enough for 5-years
of monitoring data.
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Figure 11: Solution time for QP-solver and without QP-solver

4.1.4 Aging Trend Ranking and Confidence Score
We use sigmoid functions to define the aging and confidence

scores shown in Figure 3(a) and (b). The aging scores of time se-
ries with different slopes of trends are shown in Figure 12. From
this figure, we can see that the aging score computed based on the
4The algorithm can be easily parallelized along multiple time se-
ries, as there is no need of memory sharing between different time
series.
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(a) No Aging, Sine
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(b) Linear Aging, Sine
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(c) Noninear Aging, Sine
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(d) No Aging, Noise
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(e) Linear Aging, Noise
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(f) Nonlinear Aging, Noise
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(g) No Aging, Sine+Noise
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(h) Linear Aging, Sine+Noise
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(i) Nonlinear Aging, Sine+Noise

Figure 9: The examples of graphical output of our tool. The left column is a set of time series without aging; the center column is a set of
time series with linear trends; the right column is for the time series with quadratic trends starting from the middle. In each plot, the first row
shows the original time series (in black), its reconstructed curve, and its actual trend (in red). The second row shows the actual (in red) and
extracted (in black). The bottom row shows the reconstruction error of the whole time series.

extracted aging trend highly correlates with the slope value of the
actual aging trend.
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Figure 12: Aging Score Values

Similarly, the confidence scores presented in Figure 13 show the
closeness of the slopes of the original time series and the extracted
trend. From this figure we can see that when the slope of the actual
trend is greater than 0.001, our scheme can have a confidence score
higher than 0.99.

4.2 Case Studies with Real-World Data
In this section, we evaluate the profiling performance of our

method using real-world datasets collected from different markets:
(1) multi-variant time series collected from sensors in a manufac-
ture system of a chemical plant, (2) time series from current ex-
change rate between Russian Rubles and Ukrainian Hryvnias, and
(3) time series from the US stock price of Apple Inc.
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Figure 13: Confidence Score Values

4.2.1 Degradation in Manufacturing Systems
We deploy our profiling system to 8 chemical plants, and col-

lect time series that contain more than 2000 sensors. The sensors
are distributed to monitor pressures, temperatures, water flows and
sound frequencies of the system. The data has more than 20,000
points, which includes 6 years of monitoring of the system to make
sure it captures aging behavior, if any. Since we only focus on long-
term behavior, we sample 800 points for each time series and index
them using integers from 1 to 800.

After deployment, we run our system on all the collected time
series and list the top 9 sensors, showing both strong aging behavior
and confidence score, in Table 3. We also plot their original time
series and extracted aging curves in Figure 14. From this figure, we
can see that the system parts start to have aging behavior at around



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Aging profiling of a chemical plant. (a)-(c), (d)-(f), (g)-(i) show aging behavior start at around 80th, 290th, 580th points,
respectively. Each figure contains the original time series (upper) and the extracted aging curve (lower).

Table 3: Top 9 sensors with highest aging scores

Sensor Name Aging score Confidence score
a 0.99 0.99
b 0.99 0.94
c 0.99 0.92
d 1.00 0.96
e 0.99 0.98
f 0.99 0.99
g 0.99 0.99
h 1 0.99
i 0.99 0.99

80th, 290th, 580th points. This is confirmed with domain experts
that operate the systems. At around these three points, the pipes of
the system that the 9 sensors are monitoring start to have buildups,
and the quality of product starts to decrease. This shows our aging
profiling engine can accurately profile the aging behavior of the
system and observe aging phenomena that cannot be captured by
eyes or simple statics.

4.2.2 Currency Exchange Rates
Although this paper mostly considers aging trends expressed in

physical systems, our techniques are not limited to this domain

and can be applied in many scenarios with long term monotonic
changes.

Particularly, we demonstrate how our approach may be used to
detect certain events that had influence on the currency exchange
rates. Note that we are not claiming applicability of our techniques
to the general currency exchange rates monitoring, however, in case
of special circumstances our techniques are helpful to detect cer-
tain events. Recent events in Ukraine [3] led to a significant de-
crease of Russian and Ukrainian currencies - Russian Rubles and
Ukrainian Hryvnias. Significant changes in the trend appeared in
the beginning of 2014 when an unrest started in Ukraine. Figure 15
demonstrates exchange rates between the United States Dollar and
aforementioned currencies. Our maximum slope change happens at
exactly the same time as that event happens. We obtained currency
exchange data from [1] and retrieved the relevant time frame.

4.2.3 Stock Prices
Another application our approach can find is the profiling of long

term stock prices. This tracking may be useful to observe changes
in a given company success and also to monitor if anything partic-
ular happens at some certain time. There are many web resources
that provide the information on stock and share prices. For this
case study we used data obtained from Yahoo Finance [2] web site
and investigated the changes in stock prices of Apple Inc. Figure 16
demonstrates stock prices of Apple Inc. during last 5 years. We can
see that the fastest slope change of the trend happened in Novem-
ber 2011 - about the time where iPhone 4S was released, which is
detected by our scheme.
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Figure 15: Currency Exchange Rates with USD

2009 2010 2011 2012 2013 2014

10
0

40
0

70
0

T
im

e 
S

er
ie

s

2011−11−10

2009 2010 2011 2012 2013 2014

10
0

40
0

70
0

Tr
en

d Max slope change, 1.432

2009 2010 2011 2012 2013 2014

0
10

0
25

0

F
lu

ct
ua

tio
ns

Figure 16: Apple Stock Prices

5. RELATED WORK
In this section, we discuss related work that has been done in

two directions: in time series decomposition and in prediction and
analysis of technical system failures.

5.1 Time Series Decomposition Techniques
The time series research, especially trend extraction, has attracted

significant efforts in recent decades. In this section, we highlight
some relevant techniques and refer an interested reader to a recent
survey [4] and therein.

One of the simplest approaches to determine if a time series has a
trend is a null hypothesis testing for its presence/absence (H0 = no
change/shift between two time segments) [16]. The other approach
is smoothing or filtering [14, 20]. It can be done using different

techniques, including wavelets [12] and the centered moving aver-
age that allows getting mean values of a time series in each certain
period of time, thus, detecting any systematic change. Another in-
tuitive possibility for trend extraction is fitting a linear or higher
level model to the time series data [6]. The common way of fitting
a model is a method of least squares [7].

AutoRegressive Integrated Moving Average (ARIMA) is a model-
based technique that allows extracting trend and seasonal compo-
nents from the time series [5]. This approach can be used for both
modeling and forecasting, and it is especially useful when there is a
certain seasonal component like a yearly change in temperatures or
water levels. The drawback of this model is that, in case of absence
of domain information about the time series, the user must provide
the parameters that may be very subjective, and thus, leading to in-
adequate results. Therefore, model-based approaches, as it follows
from the name, are model sensitive and can be used when there is
available information about the model.

One of the parameter free decomposition techniques for time se-
ries is Singular Spectrum Analysis (SSA) [10]. SSA allows extrac-
tion of alleged trend, seasonal and noise components from time se-
ries. The name comes from singular decomposition of a matrix into
its spectrum of eigenvalues. The time series can be reconstructed
by regrouping different important components. The SSA method is
well-known and is used in a broad spectrum of domains [10]. How-
ever, it has some drawback that we are aiming to mitigate. We de-
fine the trend for aging behavior as a monotonic change, whereas,
SSA decomposition can return the trend component of arbitrary
shape that is not suitable for the problem at hand. In other words,
it cannot give clear interpretation of the obtained components, and
the trend and high-frequency components are not ensured to be sep-
arated.

Another method of time series decomposition is Independent
Component Analysis (ICA) [8]. This method allows decompos-
ing of a time series into several additive subparts assuming they
are statistically independent and have non-Gaussian distribution.
There are two possibilities of how to define the independence of
the extracted components. One of them is minimization of mu-
tual information and the other is maximization of negentropy (a
measure of distance to normality). This method has the drawback
similar to SSA for our problem application: it does not provide nec-
essary condition of trend monotonicity. Moreover, we assume that
the signal may change drastically over time, thus, cannot compose
the proper ICA set using pieces of different time segments.

5.2 Aging and Degradation Analysis
The problem of aging and performance degradation has attracted

significant attention in the research community because this aspect
is very important for virtually all technical systems [17, 19]. Here,
we discuss only some recent and relevant works.

Djurdjanovic et al. [9] proposed a comprehensive framework for
analysis and monitoring of the systems based on the time series
analysis. They were concerned more with methodology of the col-
lecting and analysis of the data than with the methods of decom-
posing time series and extracting necessary features. In contrast,
in this work we are solving a problem of aging behavior detection
that can be expressed as a monotonic change in some properties
(particularly, mean value of the time series over time).

The aging behavior also can be expressed in software systems
[13]. It was observed that long running software tends to be more
failure prone over time, and thus, generally, it is suggested to restart
the software systems. However, the definition of a time point when
the software must be restarted requires some investigation and re-
search. Authors of [13] demonstrated that the periodical restart



may not work well because the aging mostly depends on the sys-
tem workload. Thus, it is critical to analyze the aging behavior over
time to determine when the system must be restarted.

A similar claim that the scheduled maintenance does not always
help avoid the failures and degradation in performance is also pre-
sented in [22], in relation to the hardware systems. The work is con-
cerned with log-based predictive analysis in order to monitor the
conditions of the operating equipments and provide timely main-
tenance. The authors built a model in order to classify events and
collections of the events as "positive" or "negative" with respect to
the failure occurrence. After this, they used this model to predict if
the system had come or is coming to a degrading state. The method
deals with extracted features and not the shape of the time series.

For data centers failure monitoring, recently a probabilistic method
that takes into account network topology and ping data was pro-
posed [15]. This approach is domain specific and initially builds a
network model. In our work, as we mentioned above, we are aim-
ing to provide a general approach that could deal with any domain
and decompose the time series without usage of a model.

Incident diagnosis from a different prospective was proposed
in [18]. Authors presented an approach that allows finding cor-
relation between actual events and time series in order to diagnose
incidents. Their approach is able to match events with certain sub-
sequences of time series in order to give a real explanation of the
time series shape. However, this work is mostly concerned with
finding patterns in time series, whereas our method is dealing with
the whole length of time series in order to detect monotonic degra-
dation of an underlying system.
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6. CONCLUSIONS
In this paper, we profile the long-term degradation in time series

by decomposing them into aging and fluctuation components. We
formulate the underlying decomposition problem to an optimiza-
tion problem, and convert it to the Quadratic Programming (QP)
formulation whose optimal solution can be obtained. To efficiently
solve the formulated problem, we further transform it to a Non-
negative QP problem and propose a method to obtain its solution
with iterative updates, which is much faster than using general QP-
solvers. We implement and deploy our approach to various phys-
ical systems, and evaluate our algorithm with both synthetic and
real data. We demonstrate that the proposed approach can approxi-
mate the true aging trend with fine resolution (with slope coefficient
as small as 10−6), which greatly helps diagnose the corresponding
system components.
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