
Dear Students

Below is an anonymized sample of an eight-puzzle project report.

This was a very nice report, earning the student an A.

I am not claiming this report is perfect, or that it is the only way to do a high-quality project. It is simply an example of high-quality work.

Note that the student created the report in LaTex, in converting to MS word, we slightly messed up the very neat original formatting.

Minor points:
· The students output trace is neat, but not in the exact format I requested. So I took away some points!
· For every Figure or Table in a report, there needs to be some text in the body of the report that explicitly points to it, and interprets it. The next sentence is a sample. As we can see in Figure 1, the Fowl Heuristic is much faster than the Fish heuristic, especially as we consider harder problems.
· Look at your figures carefully. Did you label the X-axis and the Y-axis? Does your figure work in B/W or do you need a color printout?
· Do you have an explicit conclusion to your report? As we have discovered empirically, the cost of owning a dog is approximately 240% the cost of owning a cat, over the life of the animal. However this cost gap close for smaller dog breeds.

	
[image:]

Figure 1: A comparison of two heuristic on the Rubix Sphere Problem, for increasingly hard problems.

Assignment 1 					 CS170: Introduction to Artificial Intelligence
Lorem Ipsum									Dr. Eamonn Keogh
SID
Email
3-11-2017

In completing this assignment I consulted:
The Blind Search and Heuristic Search lecture slides and notes annotated from lecture.
Python 2.7.14, 3.5, and 3.6 Documentation. This is the URL to the Table of Contents of 2.7.14: https://docs.python.org/2/contents.html
For the randomly generated puzzles: http://www.puzzlopia.com/puzzles/puzzle-8/play
All important code is original. Unimportant subroutines that are not completely original are…
All subroutines used from heapq, to handle the node structure of states.
All subroutines used from copy, to deepcopy and correctly modify states.

CS170: Assignment 1 Write Up
Lorem Ipsum, SID 12345678
[bookmark: introduction]Introduction
[bookmark: _GoBack]This assignment is the first project in Dr. Eamonn Keogh’s Introduction to AI course at the University of California, Riverside during the quarter of Fall 2017. The following write up is to detail my findings through the course of project completion.
It explores Uniform Cost Search, and the Misplaced Tile and Manhattan Distance heuristics applied to A*. My language of choice was Python (version 3), and the full code for the project is included.
[bookmark: comparison-of-algorithms]Comparison of Algorithms
The three algorithms implemented are as follows: Uniform Cost Search, A* using the Misplaced Tile heuristic, and A* using the Manhattan Distance heuristic.
[bookmark: uniform-cost-search]Uniform Cost Search
As noted in the initial assignment prompt, Uniform Cost Search is simply A* with h(n) hardcoded to 0, and it will only expand the cheapest node, whose cost is in g(n). In the case of this assignment, there are no weights to the expansions, and each expanded node will have a cost of 1.
[bookmark: the-misplaced-tile-heuristic]The Misplaced Tile Heuristic
The second algorithm implemented is A* with the Misplaced Tile Heuristic. The heuristic looks to the number of “misplaced” tiles in a puzzle. For example:
2
A puzzle:
[[1, 2, 4],
 [3, 0, 6],
 [7, 8, 5]]
goal state:
[[1, 2, 3],
 [4, 5, 6],
 [7, 8, 0]]
Not counting 0 (the placeholder for the blank/missing tile), g(n) is set to the number of tiles not in their current goal state position are counted; in this example, g(n) = 3. This assigns a number, where lower is better, to node expansion based on how many misplaced tiles there are after any given position change of the space. When applied to the n-puzzle, queue will expand the node with the cheapest cost, rather than expanding each of the child nodes as Uniform Cost Search would.
[bookmark: the-manhattan-distance-heuristic]The Manhattan Distance Heuristic
The Manhattan Distance Heuristic is similar to the Misplaced Tile Heuristic such that it considers the cost of future expansions and looks at misplaced tiles, but has a different rationale to it. The heuristic considers all of the misplaced tiles and the number of tiles away from its goal state position would be. The resulting g(n) is the sum of all the cost of all misplaced tile distances.
Using the same example above, not counting the position of 0, it can be seen that tiles 4, 3, and 5 are out of place. Based on their positions in the puzzle and their goal state positions, g(n) = 8.

[bookmark: comparison-of-algorithms-on-sample-puzzl]Comparison of Algorithms on Sample Puzzles
There were six puzzles of varying difficulty given to implement. The easiest of the six is a trivial puzzle (the puzzle being the goal state) and the hardest puzzle is impossible to solve (the goal state, but the position of tiles 7 and 8 swapped). The puzzle configurations themselves can be seen in nPuzzle.py. See Figure 1 (page 3) and Figure 2 (page 4) for a visual representation of the number of nodes expanded and the maximum queue size, respectively.

It was found that the difference between the three algorithms was relatively negligible when given easier puzzles, but the heuristics (and how good the heuristic was) made a significant difference in the space complexity when solving more difficult but still solvable puzzles.

[bookmark: additional-examples]Additional Examples
For the sake of comparison, I have a few made up puzzles, and run each of the algorithms on them. See Figures 3 (page 5) and 4 (page 6) for a comparison of the number of nodes expanded, and the maximum queue size reached.
5
 Puzzle 1:
 [[5, 1, 3],
 [8, 6, 0],
 [2, 7, 4]]

 Puzzle 2:
 [[4, 8, 0],
 [6, 5, 7],
 [3, 2, 1]]

 Puzzle 3:
 [[3, 5, 8],
 [4, 2, 6],
 [0, 1, 7]]

 Puzzle 4:
 [[5, 1, 8],
 [2, 4, 6],
 [7, 3, 0]]

 Puzzle 5:
 [[5, 1, 3],
 [8, 6, 0],
 [2, 7, 4]]

[image: Number Nodes Expanded.png]
The Number of Nodes Expanded, Preset Puzzles
[image: Maximum Queue Size.png]
The Maximum Queue Size, Preset Puzzles
[image: Puzzles Number Nodes Expanded.png]
The Number of Nodes Expanded, Randomly Generated Puzzles
[image: Puzzles Maximum Queue Size.png]
The Maximum Queue Size, Randomly Generated Puzzles
[bookmark: conclusion]Conclusion
Considering the list of the three algorithms and the comparisons between them: Uniform Cost Search, Misplaced Tiles, and Manhattan Distance, it can be said that:
· It can be seen that out of the three algorithms, the Manhattan Distance Heuristic performed the best, followed by the Misplaced Tiles Heuristic, followed by Uniform Cost Search (or in this case, effectively also called Breadth-First Search).
· The Misplaced Tile and Manhattan Distance heuristics improve the efficiency of algorithms. Uniform Cost Search, h(n) having been hardcoded to 0, became Breadth First Search, which has a time complexity of and also a space complexity of , where is the branching factor and is the depth of the solution in the search tree.
· While both the Misplaced Tile Heuristic and Manhattan Distance Heuristic improved the run time and space cost of Uniform Cost Search, it is clear that the Manhattan Distance Heuristic performed better between the two. It can be concluded that while a relevant heuristic will perform better than a blind search, not all heuristics are made equal.

The following is a traceback of a given puzzle and requested algorithm, detailed in the assignment specifications.
Welcome to my 170 8-Puzzle Solver. Type '1' to use a default puzzle, or '2' to create your own.
2
Enter your puzzle, using a zero to represent the blank. Please only enter valid
8-puzzles. Enter the puzzle demilimiting the numbers with a space. RET only when
finished.

Enter the first row: 1 2 3
Enter the second row: 4 0 6
Enter the third row: 7 5 8
Select algorithm. (1) for Uniform Cost Search, (2) for the Misplaced Tile
Heuristic, or (3) the Manhattan Distance Heuristic.
3

[1, 2, 3]
[0, 4, 6]
[7, 5, 8]

[1, 2, 3]
[4, 5, 6]
[0, 7, 8]

[1, 0, 3]
[4, 2, 6]
[7, 5, 8]

[1, 2, 3]
[4, 5, 6]
[7, 0, 8]

[1, 2, 3]
[4, 6, 0]
[7, 5, 8]

[1, 2, 3]
[4, 0, 6]
[7, 5, 8]

Number of nodes expanded: 13
Max queue size: 8

nPuzzle.py
import TreeNode
import heapq as min_heap_esque_queue # because it sort of acts like a min heap

trivial = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 0]]
veryEasy = [[1, 2, 3],
 [4, 5, 6],
 [7, 0, 8]]
easy = [[1, 2, 0],
 [4, 5, 3],
 [7, 8, 6]]
doable = [[0, 1, 2],
 [4, 5, 3],
 [7, 8, 6]]
oh_boy = [[8, 7, 1],
 [6, 0, 2],
 [5, 4, 3]]
impossible = [[1, 2, 3],
 [4, 5, 6],
 [8, 7, 0]]

eight_goal_state = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 0]]

def main():
 puzzle_mode = input("Welcome to an 8-Puzzle Solver. Type '1' to use a default puzzle, or '2' to create your own."
 + '\n')
 if puzzle_mode == "1":
 select_and_init_algorithm(init_default_puzzle_mode())

 if puzzle_mode == "2":
 print("Enter your puzzle, using a zero to represent the blank. " +
 "Please only enter valid 8-puzzles. Enter the puzzle demilimiting " +
 "the numbers with a space. RET only when finished." + '\n')
 puzzle_row_one = input("Enter the first row: ")
 puzzle_row_two = input("Enter the second row: ")
 puzzle_row_three = input("Enter the third row: ")

 puzzle_row_one = puzzle_row_one.split()
 puzzle_row_two = puzzle_row_two.split()
 puzzle_row_three = puzzle_row_three.split()

 for i in range(0, 3):
 puzzle_row_one[i] = int(puzzle_row_one[i])
 puzzle_row_two[i] = int(puzzle_row_two[i])
 puzzle_row_three[i] = int(puzzle_row_three[i])

 user_puzzle = [puzzle_row_one, puzzle_row_two, puzzle_row_three]
 select_and_init_algorithm(user_puzzle)

 return

def init_default_puzzle_mode():
 selected_difficulty = input(
 "You wish to use a default puzzle. Please enter a desired difficulty on a scale from 0 to 5." + '\n')
 if selected_difficulty == "0":
 print("Difficulty of 'Trivial' selected.")
 return trivial
 if selected_difficulty == "1":
 print("Difficulty of 'Very Easy' selected.")
 return veryEasy
 if selected_difficulty == "2":
 print("Difficulty of 'Easy' selected.")
 return easy
 if selected_difficulty == "3":
 print("Difficulty of 'Doable' selected.")
 return doable
 if selected_difficulty == "4":
 print("Difficulty of 'Oh Boy' selected.")
 return oh_boy
 if selected_difficulty == "5":
 print("Difficulty of 'Impossible' selected.")
 return impossible

def print_puzzle(puzzle):
 for i in range(0, 3):
 print(puzzle[i])
 print('\n')

def select_and_init_algorithm(puzzle):
 algorithm = input("Select algorithm. (1) for Uniform Cost Search, (2) for the Misplaced Tile Heuristic, "
 "or (3) the Manhattan Distance Heuristic." + '\n')
 if algorithm == "1":
 uniform_cost_search(puzzle, 0)
 if algorithm == "2":
 uniform_cost_search(puzzle, 1)
 if algorithm == "3":
 uniform_cost_search(puzzle, 2)

def uniform_cost_search(puzzle, heuristic):

 starting_node = TreeNode.TreeNode(None, puzzle, 0, 0)
 working_queue = []
 repeated_states = dict()
 min_heap_esque_queue.heappush(working_queue, starting_node)
 num_nodes_expanded = 0
 max_queue_size = 0
 repeated_states[starting_node.board_to_tuple()] = "This is the parent board"

 stack_to_print = [] # the board states are stored in a stack

 while len(working_queue) > 0:
 max_queue_size = max(len(working_queue), max_queue_size)
 # the node from the queue being considered/checked
 node_from_queue = min_heap_esque_queue.heappop(working_queue)
 repeated_states[node_from_queue.board_to_tuple()] = "This can be anything"
 if node_from_queue.solved(): # check if the current state of the board is the solution
 while len(stack_to_print) > 0: # the stack of nodes for the traceback
 print_puzzle(stack_to_print.pop())
 print("Number of nodes expanded:", num_nodes_expanded)
 print("Max queue size:", max_queue_size)
 return node_from_queue

 stack_to_print.append(node_from_queue.board)

Note: I deleted the rest of the code (so it cannot be trivially copied)The full code took 240 lines, including the above, and including blank lines for readability.

image4.png
Number of Nodes Expanded

Manhattan Distance Heuristic Misplaced Tile Heuristic Uniform Cost Search

Puzzle
Puzzle
Puzzle
Puzzle

Puzzle

Number of Nodes Expanded

N D U P W

3.1E+05

2.713E+@5

2.325E+@5

1.938E+05

1.55E+05

1.163E+05

7 .75E+04

3.875E+04

OE+00

1507
1144
5553
4608

20317

5340
13307
16166
38054

100978

62698
90374
96901
154909
180949

B Uniform Cost Search
Misplaced Tile Heuristic

Number of Nodes Expanded g Manhattan Distance Heuristic

Puzzle 3

Puzzle 1

Puzzle 5

Puzzle 4 Puzzle 2

image5.png
Maximum Queue Size

I Uniform Cost Search
M Misplaced Tile Heuristic
Il Manhattan Distance Heuristic

Puzzle 1 454 4789 21983
Puzzle 3 614 2024 17861
Puzzle 4 1788 12202 24188
Puzzle 5 2106 5908 23963
Puzzle 2 7153 23713 24230
Maximum Queue Size

60000

48000

36000

24000

12000

Puzzle 1 Puzzle 3

Puzzle 4

Puzzle 5 Puzzle 2

image1.emf
0 20 40 60 80 100 120

0

50

100

Fish

Heuristic

Fowl

Heuristic

Depth

Time in Seconds

image2.png
Number of Nodes Expanded

Uniform Cost Search Misplaced Tile Heuristic Manhattan Distance Heuristic

Trivial (@)
Very Easy (1)
Easy (2)
Doable (3)

Oh Boy (4)
Impossible (5)

1000000

1000

Number of Nodes Expanded

1

4

3

10

30
118332
181439

O Uniform Cost Search
© Misplaced Tile Heuristic
© Manhattan Distance Heuristic

(4]

3

9

15
18168
181439

(4]

3

9

15
2205
181439

Number of Nodes Expanded Per Puzzle

Trivial (0)

Very Easy (1)

Easy (2) Doable (3)
Puzzle (Difficulty)

Oh Boy (4)

Impossible (5)

image3.png
Maximum Queue Size

Maximum Queue Size

Uniform Cost Search Misplaced Tile Heuristic Manhattan Distance Heuristic

Trivial (@)
Very Easy (1)
Easy (2)
Doable (3)

Oh Boy (4)
Impossible (5)

10000

100

1

3

6

16
24969
24188

© Uniform Cost Search
© Misplaced Tile Heuristic
© Manhattan Distance Heuristic

1

3

6

9
6519
23314

Maximum Queue Size Per Puzzle

1

3

6

9

868
20922

Trivial (0)

Very Easy (1)

Easy (2) Doable (3)
Puzzle (Difficulty)

Oh Boy (4)

Impossible (5)

