
Slumber: Static-Power Management for GPGPU Register Files
Devashree Tripathy

University of California, Riverside
Riverside, CA

devashree.tripathy@email.ucr.edu

Hadi Zamani
University of California, Riverside

Riverside, CA
hzama001@ucr.edu

Debiprasanna Sahoo
Indian Institute of Technology

Bhubaneswar
ds12@iitbbs.ac.in

Laxmi N. Bhuyan
University of California, Riverside

Riverside, CA
bhuyan@cs.ucr.edu

Manoranjan Satpathy
Indian Institute of Technology

Bhubaneswar
manoranjan@iitbbs.ac.in

ABSTRACT
The leakage power dissipation has become one of the major concerns
with technology scaling. The GPGPU register file has grown in
size over last decade in order to support the parallel execution of
thousands of threads. Given that each thread has its own dedicated set
of physical registers, these registers remain idle when corresponding
threads go for long latency operation. Existing research shows that
the leakage energy consumption of the register file can be reduced
by under volting the idle registers to a data-retentive low-leakage
voltage (Drowsy Voltage) to ensure that the data is not lost while not
in use. In this paper, we develop a realistic model for determining
the wake-up time of registers from various under-volting and power
gating modes. Next, we propose a hybrid energy saving technique
where a combination of power-gating and under-volting can be used
to save optimum energy depending on the idle period of the registers
with a negligible performance penalty. Our simulation shows that
the hybrid energy-saving technique results in 94% leakage energy
savings in register files on an average when compared with the
conventional clock gating technique and 9% higher leakage energy
saving compared to the state-of-art technique.

© Tripathy, Zamani, Sahoo, Bhuyan, Satpathy 2020. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in Proceedings of ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED ’20), https://doi.org/10.1145/3370748.3406577.

1 INTRODUCTION
One of the main limitations of the General Purpose Graphic Proces-
sor Units (GPGPUs) is the heterogeneity in workloads with different
degrees of parallelism resulting in major resource under-utilization
[2, 18]. This results in wasted energy especially in case of the register
files, which constitute 18% of the total GPU chip power consumption
and 32% of the streaming multi-processor’s (SM) leakage power
[8, 9]. This number has likely grown as the register file size has
increased with the recent GPU architectures. One way to save energy
is to power gate the unused components when they are not in use.
However, the memory components like register files lose data when
power-gated.

Authors of [1, 7] propose a drowsy mode, where the state of the
memory cells or passive units are retained by lowering the voltage
to a minimum voltage, called drowsy voltage. The active units or the
functional units are turned off, i.e. read and write accesses cannot
be performed. However, switching the component to deep sleep
(drowsy) mode can result in performance penalty due to high wake-
up latency. Under-volting is a technique to set an optimum voltage
level (less than 𝑉𝐷𝐷) that has less wake-up latency as compared

to the deep sleep state that mitigates the performance penalties.
However, the undervolting level of the functional elements will be
different.

In this work, we analyze under-volting and power gating using
a detailed device level modelling. Our detailed modelling of under-
volting the registers using the trimodal switch [12] with HPSICE
[15] shows that the drowsy voltage transition times can be as high
as 13 clock cycles (cc), therefore, the performance penalty incurred
can not be neglected. Hence, we argue that there is a need for an
intermediate under-volting level with less transition time. We use
two undervolting levels of 0.3 Volt and 0.9 Volt referred to as deep
sleep and shallow sleep state respectively. The register is under-
volted to a state retentive voltage if (a) next access to the register is a
read access or (b) idle period length is larger than the corresponding
energy break-even time (EBT). We use static compiler analysis to
determine the type of register’s next access and, thereby, predict
the idle period length of the register. Then we determine the under-
volting level based on the idle period length and EBT. Though
all the prior approaches [1, 16] under-volt the registers associated
with a warp, we show that the registers can instead be power-gated
if the contents of the registers are not useful anymore. Since the
register inter-access distance is about 789 clock cycles on an average
[1], power-gating the idle registers which are waiting to be written
leads to significant leakage energy benefits. The registers can be
power-gated only under the following circumstances: (a) register is
not allocated to any thread block (TB), (b) next pending access to
the register is "Write", because the write will reset the register file
contents. (c) The warp has finished executing the kernel. Since the
register shall be re-allocated when next thread-block is allocated to
the SM, the physical registers for the warp can be power-gated till
all the other warps for the TBs finish executing the kernel. It should
be noted that power-gating is only possible if the idle-period length
is more than the power-gating break-even time.

In summary, we propose Slumber, a static-power management
technique, for the register files of GPUs which uses various under-
volting levels and power-gating at the run-time to save maximum
leakage power. This work makes the following contributions:

• We propose a novel power management technique named
"Slumber" that enables multiple levels of under-volting as
well as power-gating based on a static compiler analysis to
determine the type of next register access. The length of the
idle period is determined using our run-time technique.

1

• We implement the proposed techniques using the GPGPUSim
and obtain a static energy saving of 94% with negligible
performance degradation of 1.2% on an average. (Section-4)

The paper is organized as follows: Section 2 describes GPGPU
register file architecture and motivation for this work. Section 3
discusses the device level power modeling of the GPU registers to
determine the wake-up latency for power-gating and different under-
volting levels. Section 4 discusses the proposed power-management
technique for the GPU Register File. Our results are discussed in
Section 5 and we conclude in Section 6.

2 MOTIVATION
The current state-of-art GPU design focuses on the performance and
throughput of the applications being executed. The warp scheduler
strives to make the best use of all the available resources by fast
context-switching between the warps. When one warp is stalled,
another warp swaps in and starts executing to boost the resource
utilization. However, in most practical scenarios the GPGPU re-
sources are under-utilized primarily due to imbalanced workload
distribution. In the current work, we focus on the register file which
consumes 32% of the Streaming Multi-Processor’s (SM) total leak-
age power and hence, is the biggest contributor of the static power in
a GPGPU core [9]. The behavior of the applications not only lead to
resource under-utilization but also sub-optimal power usage. In the
existing literature, there is almost no power-saving features besides
the coarse-grain DVFS and clock-gating [4, 6].

Utilization is calculated as the ratio of the number of clock cycles
the unit was accessed and the total clock cycles taken for the exe-
cution of the application. GPU registers are heavily under-utilized.
The less the utilisation, more the opportunity of energy saving. If
the accesses are less apart from each other with time, then the idle
period length is less. The register file can be under-volted at dif-
ferent levels of granularity: whole register file, register file bank,
registers allocated per thread, or individual 32-bit Register. A more
fine-grained under-volting leads to maximum static power savings
in the component but it comes at the cost of extra hardware complex-
ity. Hence, the granularity at which under-volting needs to be done
has a significant impact on the power usage and performance. Our
experiments show that the average utilization of the Register File,
register Bank, all registers associated with a warp, and each 128
Byte register are 32.7%, 16.3%, 3.9% and 0.2% respectively. This
imbalance is mainly because of the load imbalance across the GPU
cores, warp branch divergence, irregular memory access patterns and
cache contention. In this work, we target on saving leakage energy
at the register granularity as they have the least utilization.

The registers to be read in next accesses can not be power-gated
as they are state-retentive, hence they are undervolted. However,
the registers to be written in the next access can be power-gated
or undervolted depending on the idle period length. If the idleness
period is more than the power gating break-even time then they are
power-gated else they are undervolted.

The main challenge in under-volting or power gating is determin-
ing the time to initiate the wake-up of the component; inefficient
wake-up policy can lead to sleeping on the registers in the critical
path of the GPU pipeline execution and hence, incur heavy perfor-
mance penalty.

D
e

vi
ce

 L
ay

er
A

rc
h

it
ec

tu
re

 L
ay

er

HSPICE

GPGPU-Sim
+

SLUMBER
Applications

Power

Performance

GPU-
Wattch

Tri-Modal Switch Register

PG, DS, SS :
Energy savings,

Overhead

Figure 1: Slumber Overview showing Cross-layer methodology.

Conservative wake-up: Latency of the non-memory instructions
execution (ALU-Int/Float, SFU) are deterministic. So, the output
register is switched to "Sleep mode" depending on the instruction
execution latency and the wake-up is initiated at time calculated
as instruction latency - Wakeup latency of sleep mode. However,
determining the wake-up initiation time for the memory instructions
is challenging as the memory instruction execution latency is non-
deterministic and depends on various factors like mshr-free-entries,
L1 hit/miss, L2 miss, DRAM access and queuing delay. Hence, the
status of the memory instruction is tracked [L1 hit/miss, L2 miss] and
the memory operation latency is assumed to be the access latency of
L1 (for L1 hit), access latency of L2 (for L1 miss), or access latency
of DRAM (for L2 miss). Accordingly, wake-up is initiated at the
minimum memory access latency - wakeup latency of sleep mode.

Slumber Overview: The overview of the proposed static power
reduction technique has been shown in Figure 1. The device layer
implementation (details in Section 3) consists of the accurate mod-
eling of the different power reduction modes (PG: Power gating,
DS: Deep Sleep and SS: Shallow Sleep) and the associated leakage
energy savings and overhead in terms of wake-up latency to the
ON mode using the Tri-modal switch [12] and 128 Byte (32 set of
6T SRAM) register using 45 nm technology. The architecture layer
consists of modifying the baseline GPGPU-Sim [3] to incorporate
the architectural modifications of Slumber and integrate the different
power modes and overheads from the device layer simulation. We
evaluate various applications from commonly used GPU Benchmark
suites [3, 5, 11, 13] using the modified GPGPU-Sim for the power
and performance results.

3 STATIC POWER REDUCTION METRICS
ESTIMATION

Static power can be reduced by two techniques: Power gating (PG)
and Under-volting (UV). We shall discuss the static power savings
metrics: performance and power overhead associated with each
technique in the following section. Figure 2 shows a tri-modal switch
used to apply different voltages (Virtual 𝑉𝐷𝐷) across the target
register [12]. For power-gating, the Virtual 𝑉𝐷𝐷 is set to "Zero"
such that the voltage drop across the register is negligible and we
have maximum leakage power savings. For under-volting, Virtual
𝑉𝐷𝐷 is set to a voltage such that (0 < Virtual 𝑉𝐷𝐷 < 𝑉𝐷𝐷); the
lower the Virtual 𝑉𝐷𝐷 , the more is the leakage power saving. The

2

output of the tri-modal switch (Virtual 𝑉𝐷𝐷) is controlled by the
signals "Sleep" and "Drowsy" and the width of the transistor MS as
described in [12].

VDD

Virtual VDDSleep Tri-modal
SwitchDrowsy

Register
Circuit

Figure 2: Varying the voltage across the register using Tri-modal switch.

When the target register is idle, a sleep signal = 1 and drowsy
signal = 0 are applied to the power gating switch so that the Vir-
tual 𝑉𝐷𝐷 is set to zero; the target circuit is turned off (OFF state).
Alternatively, while waking up the target circuit, the sleep signal
= 0 so as to set Virtual 𝑉𝐷𝐷 to 𝑉𝐷𝐷 . However, power-gating in-
troduces the energy overhead due to the switching of transistors
to OFF/sleep state. This implies that the target circuit should now
sleep for at least break-even time (𝑡𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛) to compensate for
the energy overhead incurred (𝐸𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑). For example, Figure-3
shows the voltage transition when the circuit is switched from ON
(Voltage = 𝑉𝐷𝐷) to OFF (Voltage = 0) at time 𝑡2 and back to ON
at time 𝑡4. The target circuit does not switch to OFF state imme-
diately, the voltage across the capacitive load in the target circuit
completely discharges at 𝑡3. The circuit stays in OFF state from 𝑡3
till 𝑡4 and then the wake up is initiated at 𝑡4. As seen in the ON to
OFF transition, the circuit capacitance charges to 𝑉𝐷𝐷 slowly and
the circuit is completely ON at 𝑡5. The break even time can calcu-
lated by taking the difference of 𝑡4 and 𝑡2, i.e., 𝑡𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛 = 𝑡4 − 𝑡2;
𝑡𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛 is defined as the minimum time period the target circuit
should sleep in-order to save power. At 𝑡𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛 , energy saved
(𝐸𝑠𝑎𝑣𝑒𝑑) is same as energy overhead (𝐸𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑). 𝑡𝑑𝑒𝑡𝑒𝑐𝑡 (= 𝑡1) is
the time taken by the control circuit to make a decision to power
gate the target circuit. Finally, 𝑡 𝑓 𝑎𝑙𝑙(= 𝑡3 − 𝑡2) is the transition time
to turn-off and 𝑡𝑤𝑎𝑘𝑒−𝑢𝑝(= 𝑡5 − 𝑡4) is the transition time to wake up
the target circuit.

VDD

0
t1 t2 t3 t4

VDD
’

VDD
’’

t3’’t3' t4' t4’’

TDD’
TDD’’

TDD

Figure 3: Target circuit state transition during power gating interval.

On the other hand, if we undervolt to a level 𝑉𝐷𝐷
′ as shown

in Figure 3, the transition times (𝑡3′-𝑡2′) and (𝑡5′-𝑡4′) are much
shorter. Then the required idle period (𝑇𝐷𝐷

′) can be considerably
reduced at the expense of a little more energy. Target circuit state
transition during power gating interval is shown in Figure-3. We
obtain the values of 𝑡𝑑𝑒𝑡𝑒𝑐𝑡 , 𝑡 𝑓 𝑎𝑙𝑙 and 𝑡𝑤𝑎𝑘𝑒−𝑢𝑝 for the components
using HSPICE simulations and calculate the break even time (𝑇𝐷𝐷)

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 St
at

ic
 P

o
w

er
 S

av
in

gs
 (%

)

V
o

lt
ag

e
 (

in
 V

)

Idle Period length (in cc)

Voltage Static Power Saved

Figure 4: Determination of optimal under-volting level and associated
static power savings based on the idle period length.

0%
20%
40%
60%
80%

100%

AE
S

BF
S CP

Ve
cA

dd

M
M

M
er

ge
So

rt

He
ar

tW
al

l

Ho
ts

po
t

Pa
th

Fi
nd

er

SY
RK

AV
G

%
 D

ist
rib

ut
io

n
of

 Id
le

 C
yc

le
s

1 V (0 - 3 cc) 0.9 V(4 - 6 cc) 0.8 V (7 - 8 cc)
0.7 V (9 cc) 0.6 V (10 cc) 0.5 V (11 cc)
0.4 V (12 cc) 0.3 V (13 - 15 cc) 0 V (16+ cc)

Figure 5: Idle Period Distribution based on length

0%
20%
40%
60%
80%

100%

AE
S

BF
S CP

Ve
cA

dd

M
M

M
er

ge
So

rt

He
ar

tW
al

l

Ho
ts

po
t

Pa
th

Fi
nd

er

SY
RK

AV
G

%
 D

ist
rib

ut
io

n
of

Co

m
pe

ns
at

ed
 Id

le
 C

yc
le

s

ShallowSleep DeepSleep OFF

Figure 6: Idle Period Distribution across Sleep States

for power-gating, 𝑇𝐷𝐷
′ for undervolting to level 𝑉𝐷𝐷

′ and 𝑇𝐷𝐷
′′

for undervolting to level 𝑉𝐷𝐷
′′. The undervolting level 𝑉𝐷𝐷

′ is
termed as shallow sleep state and 𝑉𝐷𝐷

′′ is called deep sleep state in
our work.

The two main considerations for any static power reduction tech-
nique are: (a) typically, there is a performance overhead associated
with transitioning between different low-power states; ideally, the
transition overhead should not affect the overall performance of the
application, (b) the storage structures should be state-retentive at the
low power mode to preserve the content in such a way that it is ready
to use when the circuit is powered back to ON state.

We explore the state transition delay of the registers at various
voltage levels using the methodology described above. The transi-
tion time from different voltages to ON voltage (1V) and the static
power saving for the registers as a percentage of the maximum static
power consumed in the ON state are shown in Figure 4. Primary
Y -axis shows voltage applied across the Register (Virtual 𝑉𝐷𝐷)

3

Table 1: Power management modes for Register File.

State
Wakeup Delay

(in clock cycles) Static Power

ON 0 100%
Shallow Sleep (SS) 4 94%
Deep Sleep (DS) 13 42%

Power Gating (PG) 16 0%

for optimal static power savings. Secondary Y -axis shows static
power consumed by the registers as a percentage of the maximum
static power consumed while at 𝑉𝐷𝐷 in ON state. The drowsy state,
considered in the previous papers [1, 7], corresponds to a voltage
of 0.3 V that takes an idle period of 13 cycles to be enabled. The
% distribution of the idle cycles based on their length are shown in
Figure 5. Over 75% of the idle cycles have a length of more than 16
cc and rest of the idle cycles are evenly divided across the voltage
categories of 0.3 V - 0.9 V. Although we can theoretically put a
register to power gating after 16 cycles, that is not possible in case
the next access is a register read. We have to put it in deep sleep
mode. Also, incorporating multiple sleep states shall incur high area
overhead, hence, we define a shallow sleep state (SS) that works at
0.9 V, takes only 4 cycles but can save 6% static power, compared to
when the register is on. We call the drowsy state as the deep sleep
(DS) state.

Table 1 shows different power management states used in SLUM-
BER, their wake-up delays and static power consumed. The voltage
across the component in Figure 2 for the ON state is 1V, shallow
sleep state is 0.9V, deep sleep state is 0.3V and power gating or
OFF state is 0V. Considering these states, the latency distribution for
different applications is shown in Figure 6. The distribution gives
an idea about the possible energy saving in Slumber. On a average,
26.3% of the compensated idle cycles are in OFF state, 53.5% are in
Deep Sleep State and 20.1% are in shallow sleep state. Even though
the idle cycle length of over 75% of the idle cycles is more than 16
cycles, but only 26.3% can be power gated, as for the read accesses,
the register cannot be power-gated.

4 SLUMBER DESIGN
4.1 Power-Gating and Under-volting

Opportunities in Register File (RF).
Since the idle cycles for register read cannot be power-gated irre-
spective of the idle cycle length, we insert 1 bit flags per register at
the compile time stating the type of the next access to the operand
registers is read/write. We observed that registers can be undervolted
and power-gated in primarily three different conditions: (1) Register
write waiting on a compute operation: The compute operations
have a deterministic execution latency once they enter the functional
unit pipeline. For example, the latency of Integer multiplication
operation is 6 cc [3] (predicted idle period of the corresponding
register is 6 cc), hence, the corresponding registers are switched to
the shallow sleep (SS) state where there is a energy saving of 2 cc
after accounting for the switching overhead to SS state. Similarly,
in case of integer division operation where the latency is 153 cc [3],
the registers are switched to OFF state. There can be additional wait
periods at the collector unit prior to the execution in functional unit
as only one out of multiple ready warps can be issued per cycle to
initiate execution in the functional unit. The warps also wait at the

dispatch stage if there is a write conflict at the result bus since the
result bus is shared between all the compute functional units. We do
not account for these delays as we use a conservative wake-up policy.
(2) Register write waiting on a memory operation: At the write
back stage, the scoreboard releases the output registers for a warp
after writing into the registers for the finished warp. A 2 bit-counter
per warp (MSHR Tracker) can be used to keep track of the L1-hit,
L1-miss and L2-miss for a warp. Upon a L1-hit, counter is set to
0, in case of a L1-miss the counter is set to 1 and in case of a L2
miss it is set to 2. Usually, the hit access latency of L2 cache and
DRAM is in order of hundred cycles. Since the access latency for
L2 and DRAM cache is much higher than the wake-up latency of
the OFF state, the registers are switched OFF in case of a L1-miss
or L2-miss. No state change is there in case of LI-hit. The counter
values are used to determine the minimum memory access latency.
The idle period of the corresponding registers is predicted to be same
as this minimum memory access latency. The register is woken up
after a time = minimum memory access latency - OFF state latency.
The minimum memory access latency of L1, L2 and DRAM was
determined using microbenchmarking [17]. (3) Register idle as the
warp has finished executing the kernel: The registers associated
with a warp become idle after the warp has finished executing the
kernel and waiting for the other warps in the same thread-Block to
finish execution. The physical registers for the warp can be power-
gated till all the warps for the thread-blocks finish executing the
kernel. This is because the register contents shall be re-allocated
when next thread-block is allocated to the Streaming Multiprocessor
(SM). Another scenario when the registers are idle is when the last
batch of thread-blocks are executing in another SM. Since all the
thread-blocks in the current SM have finished execution, they can be
power-gated.

4.2 Power Mode Transition
The Finite State Machine for the various power mode transitions in
Slumber is shown in Figure 7.

When the Kernel starts execution, all the registers are in OFF state
(T8). The thread-block scheduler allocates the physical registers
in an Streaming Multiprocessor(SM) to a Thread-block. Once the
instruction buffer issues the Instruction Fetch request (𝑃𝐶1) for a
warp, the registers used by 𝑃𝐶1 in the specific warp are transitioned
to Shallow Sleep (SS) state through T1. The default warp scheduling
policy is modified to determine the three future warps to be scheduled
in-addition to the current scheduled warp in order to hide the SS
latency of 4 clock cycles. The registers for the determined future
warps are switched from the SS to ON state (T4). If the access to
register is read, the register provides the values to the warp in the
collector unit and switches (T5) back to any of the 3 states SS (T5),
DS (T3) or OFF (T6) depending on the idle period length predicted
at run-time and type of the next access to the register (read/write)
determined by static compiler analysis.

From the ON state in Figure 7, it is switched to (a) SS through T5:
If the warp using the register is not among the ready warps in the
warp scheduler but corresponding instruction or Program Counter
(PC) exists in the instruction buffer or L1 Instruction Cache. (b) DS
through T3: If condition for SS state are not met and type of next
access is "read",(c) OFF through T6: If condition for SS state are not

4

ON OFF

Deep
Sleep

S.
Sleep

T7

T1

T2

T3

T4T5

T6

T8

T9T10

T11

T12

T13

Figure 7: FSM of the Slumber Algorithm

met and type of next access is "write". The register resumes to stay
in its current state (T10/T9/T8) till the instruction buffer (for DS and
OFF)/warp scheduler(for SS) notifies it about the time of the future
register access. However, if the access to the register is write, then it
remains in the ON state (T7) till the latency of the pending register
write operation is determined. If the write operation is an ALU
operation, the register is switched to SS (T5), DS (T1) or OFF (T6)
state depending on the deterministic latency of the operation. For
example, the latency of an Integer Add is 6 clock cycle, hence, the
register will be switched to SS state . However, if the write operation
is load operation, then the register stays in ON state till the L1 cache
access status is determined. In case the L1 cache access is a hit, the
register is updated; In case of a L1 miss, the register transitions (T6)
into OFF state since the L2 access latency is in order hundreds of
clock cycles. The register is transitioned (T11) to ON state before
the memory request completes based on the technique mentioned
in Section 4.1. It may be reminded here that the previous warped
register-file technique used to keep a register ON until the write
is performed, thus wasting a lot of energy. When a warp finishes
execution of the kernel, all the registers are transitioned from any
other state (T6, T12, T13) to OFF state.

4.3 Re-Architecting Register File for Slumber
In this section, we illustrate how the baseline register file architecture
is modified to incorporate SLUMBER power modes shown in Figure
8. The power modes are enabled by connecting each 128 byte register
to a multiplexer (mux). Each register is associated with a 10-bit
counter to wake-up after the predicted idle period since the maximum
idle period length results from DRAM access is 400-600 cc [3]. The
mux has 4 input signals: Vdd (Supply Voltage), Deep Sleep Voltage,
Shallow Sleep Voltage (Both generated by varying the configuration
of the Trimodal switch), 0 (Ground) ; 2-bit control signal (from
the Slumber Control Logic) to select between 4 different power
modes. The Slumber Control Logic decides the Power mode for a
given register based on the input from the MSHR tracker (L1 or L2
miss), Instruction Buffer (next registers to be in the Shallow Sleep
mode), Warp Scheduler (registers for the future warps in On mode),
Operand collector and Thread-Block Scheduler. We introduce a
hardware fetch-unit-list to determine whether a PC exists in L1I.
The 16-entry fetch-unit-list to keep track of the starting PC address
in each cache line, where each entry is 8 Bytes (PC size). Each cache
line in L1I serves 16 consecutive PC requests. If there is an L1I hit,

Vdd

Trimodal Switch

Trimodal Switch
SS

DS

Register Bank

128 B Register

128 B Register
.
.
.

Slumber
Control Logic

Operand Collector
TB Scheduler
Warp Scheduler
Instruction Buffer

0

2 bit / /

MSHR Tracker

Figure 8: Illustration of GPU Registers connected to the voltage rail and
tri-modal switch output using mux and Slumber control Logic in order to

enable Power Gating (V = 0), Under-volting modes(SS: Shallow Sleep,
DS: Deep Sleep) and ON state (V = 𝑉𝑑𝑑).

the instruction gets loaded into instruction buffer in 2 clock cycles.
However, wake-up delay from OFF or DS state is much higher. So,
we use a similar mechanism as in Section 4.1.2 to determine the
idle period length of the registers and initiate their transition into SS
state.

Overheads: The counters associated with each 128 Byte register
introduces the largest area overhead of 10 bit x 1024 i.e. 1.25 KB.
The counters along with area overhead of Slumber Control Logic,
MSHR Tracker (16 Bytes), multiplexers, tri-modal switches and the
fetch-unit-list (128 Bytes) constitutes around 4% of the total register
file size and less than 1% of the register file leakage power. The
power overhead of these components is included in our results. The
area and power overhead are calculated using HSPICE and CACTI
v5.3 [14]. These overheads will reduce when we go for a coarser
grained power saving technique at whole register-file, bank or warp
granularity. However, since the utilization of these components is
much high compared with the individual 128 Bytes register, the
corresponding leakage energy gain is likely to reduce.

5 RESULTS AND DISCUSSION
Methodology: The proposed power management technique for sav-
ing leakage energy was evaluated using GPGPU-Sim v3.2.1 [3]
based on Fermi-like configuration with 15 SM. Each SM comprises
of 1024 registers of 128 Bytes each divided into 4 banks. Each SM
has two warp schedulers using two-level warp scheduling policy
[10]. In our experiments, 10 benchmarks used were selected from
4 different benchmark suites ISPASS [3], Nvidia CUDA SDK [11],
Rodinia [5] and Polybench [13]. We enabled PTXPlus for accurate
register file evaluations.

Comparison with prior work: Leakage energy saving of Slum-
ber is 94% and Warped Register File (WRF) is 85% compared to
the baseline is shown in Figure 9. The power gain of Slumber as
compared to WRF come from the following scenarios: (1) During
a long latency operation, the output register is in ON state due to
the write-conservative policy of WRF. However, in Slumber the
output register is power-gated during this time interval. (2) When
a warp finishes executing the kernel, the registers associated with
the warp and all the other warps in the same thread-block are in
drowsy state. However, our technique leverages these power saving
opportunities and power gates the registers of the finished warps.

5

0

20

40

60

80

100
AE

S

BF
S CP

Ve
cA

dd

M
M

M
er

ge
So

rt

He
ar

tW
al

l

Ho
ts

po
t

Pa
th

Fi
nd

er

SY
RK

Av
er

ag
e%

 L
ea

ka
ge

 E
ne

rg
y

Sa
vi

ng

Warped Register File Slumber

94
 %

85
 %

Figure 9: Leakage Energy Savings

(3) The inter-access distance between subsequent accesses to the
same register is very high, around 789 clock cycles on an average
[1]. In the WRF, the registers are switched to drowsy mode after
each access. However, slumber classifies the registers depending on
the "next access type". If the next access is a register write (write
register), then it is switched to OFF mode in case the re-use distance
is high. Since the drowsy voltage still consumes a non-negligible
portion of the register leakage power, Slumber outperforms WRF
in terms of the leakage power savings by switching OFF the "write
registers" aggressively.

Leakage energy efficiency improvement: The benchmarks AES,
CP, MM and VecAdd have significantly high power saving compared
to WRF. The additional power saving for these benchmarks are
23.2%, 14%, 14%, and 10.8%, respectively. The benchmarks with
more number of power-gated idle cycles (idle cycle length more than
16 clock cycles) tend to fair better with Slumber. On the contrary,
when the frequency of the shorter idle periods in a benchmark is high,
it is switched to shallow sleep state (consume more leakage power
than deep sleep), thereby reducing the energy gains. This leakage
energy saving in register file accounts for about 30% leakage energy
saving in streaming multiprocessor and 5% total power saving in the
whole GPGPU assuming the dynamic power to leakage power ratio
to be 2 to 1.

Performance Penalty: Average performance penalty of Slumber
is 1.2% compared to the baseline. In Slumber, when the average
number of ready warps in the warp scheduler is less than 3, then the
performance loss is experienced as the issued warp has to wait for
the register to wake-up from the Shallow sleep state.

6 CONCLUSION
We propose SLUMBER multi-power mode management technique
to efficiently reduce the static power consumption of GPU register
file unit. The novel approach exploits their under utilization be-
havior and non-state retentive requirement of the register writes.
SLUMBER employs three static power reduction modes, each with
different static power saving abilities and wake-up overheads in or-
der to reduce power consumption of idle registers effectively. Our
experimental results show that by aggressively switching the regis-
ters to low-leakage modes, SLUMBER saves static energy by about
94% compared to baseline; it saves 9% more energy than Warped
Register File work with minimal performance overhead of about
1.2% compared to baseline. We conclude that SLUMBER provides
an effective framework for reducing static power consumption in
modern GPU Register Files.

ACKNOWLEDGMENT
This work is supported by NSF Grant 1513201 and Govt. of India
SPARC grant P712. The authors would like to thank the anonymous
reviewers for their invaluable comments and suggestions.

REFERENCES
[1] Mohammad Abdel-Majeed and Murali Annavaram. 2013. Warped register file:

A power efficient register file for GPGPUs . In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 412–
423.

[2] AmirAli Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli,
Laxmi Narayan Bhuyan, and Daniel Wong. 2017. Wireframe: Support-
ing data-dependent parallelism through dependency graph execution in gpus.
In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. 600–611.

[3] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
2009. Analyzing CUDA workloads using a detailed GPU simulator. In Perfor-
mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. IEEE, 163–174.

[4] Juan M Cebri’n, Gines D Guerrero, and Jose M Garcia. 2012. Energy efficiency
analysis of GPUs. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum. IEEE, 1014–1022.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 44–54.

[6] Hodjat Asghari Esfeden, Farzad Khorasani, Hyeran Jeon, Daniel Wong, and
Nael Abu-Ghazaleh. 2019. CORF: Coalescing Operand Register File for GPUs.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[7] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor
Mudge. 2002. Drowsy caches: simple techniques for reducing leakage power. In
ACM SIGARCH Computer Architecture News, Vol. 30. IEEE Computer Society,
148–157.

[8] H. Jeon, H. A. Esfeden, N. B. Abu-Ghazaleh, D. Wong, and S. Elango. 2019.
Locality-Aware GPU Register File. IEEE Computer Architecture Letters 18, 2
(2019), 153–156.

[9] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. [n. d.]. GPUWattch: Enabling
Energy Optimizations in GPGPUs. SIGARCH Comput. Archit. News 2013 ([n.
d.]).

[10] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N Patt. 2011. Improving GPU performance via large warps
and two-level warp scheduling . In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. 308–317.

[11] NVIDIA. 2007. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit.
(2007).

[12] Ehsan Pakbaznia and Massoud Pedram. 2009. Design and application of multi-
modal power gating structures. In 2009 10th International Symposium on Quality
Electronic Design. IEEE, 120–126.

[13] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL:
http://www. cs. ucla. edu/pouchet/software/polybench (2012).

[14] Premkishore Shivakumar and Norman P Jouppi. 2001. Cacti 3.0: An integrated
cache timing, power, and area model. (2001).

[15] I Synopsys. 2010. HSPICE User’s Manual: Simulation and Analysis. Synopsys
Inc, California (2010).

[16] Xin Wang and Wei Zhang. 2017. Drowsy register files for reducing gpu leakage
energy. In 2017 IEEE 23rd International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 632–639.

[17] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and An-
dreas Moshovos. 2010. Demystifying GPU microarchitecture through microbench-
marking. In 2010 IEEE International Symposium on Performance Analysis of
Systems & Software (ISPASS). IEEE, 235–246.

[18] Hadi Zamani, Yuanlai Liu, Devashree Tripathy, Laxmi Bhuyan, and Zizhong Chen.
2019. GreenMM: energy efficient GPU matrix multiplication through undervolting.
In Proceedings of the ACM International Conference on Supercomputing. 308–
318.

6

https://developer.nvidia.com/cuda-toolkit

	Abstract
	1 Introduction
	2 Motivation
	3 STATIC POWER REDUCTION METRICS ESTIMATION
	4 SLUMBER DESIGN
	4.1 Power-Gating and Under-volting Opportunities in Register File (RF).
	4.2 Power Mode Transition
	4.3 Re-Architecting Register File for Slumber

	5 Results and Discussion
	6 Conclusion
	References

