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ABSTRACT
The current trend of ever-increasing performance in scientific ap-
plications comes with tremendous growth in energy consumption.
In this paper, we present a framework for GPU applications, which
reduces energy consumption in GPUs through Safe Overclocking
and Undervolting (SAOU) without sacrificing performance. The idea
is to increase the frequency beyond the safe frequency fsa f eMax and
undervolt below Vsa f eMin to get maximum energy saving. Since such
overclocking and undervolting may give rise to faults, we employ an
enhanced checkpoint-recovery technique to cover the possible errors.
Empirically, we explore different errors and derive a fault model
that can set the undervolting and overclocking level for maximum
energy saving. We target cuBLAS Matrix Multiplication (cuBLAS-
MM) kernel for error correction using the checkpoint and recovery
(CR) technique as an example of scientific applications. In case
of cuBLAS, SAOU achieves up to 22% energy reduction through
undervolting and overclocking without sacrificing the performance.
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1 INTRODUCTION
Ever-increasing performance demands have led to the GPU-based
acceleration in a wide range of computing systems from mobile
devices to super computers. While GPUs deliver high computational
capability, they consume a significant portion of total system energy.
As technology advances towards deep sub-micron level, the static
power becomes a serious problem. Several techniques including
Dynamic Voltage and Frequency Scaling (DVFS) and power gat-
ing techniques have improved energy efficiency of the GPUs [1–3].
However, DVFS and power gating techniques usually degrade per-
formance due to lowering the frequency or putting the components
into sleep mode.

GPUs are designed to operate in worst case operating conditions
in terms of process, temperature and voltage variation. A compre-
hensive study has been done on several commercial GPU cards
showing that there exists about 20% voltage guardband on different
GPU cards, which, when utilized, can result in up to 25% energy
saving on GPU cards [4]. Through GreenMM framework, we have
explored undervolting to save energy for GPUs for a Matrix Multi-
plication (MM) algorithm [5]. GreenMM saves the energy through

undervolting beyond the Vsa f eMin and employing algorithm based
fault tolerant (ABFT) technique to correct the errors [5]. Vsa f eMin
is identified as the minimum voltage for a GPU to operate without
generating any fault. However, ABFT can be applied to only very
regular algorithms, like matrix multiplication [6]. On the other hand,
checkpoint and recovery (CR) is a general technique that can be
applied to both regular and irregular applications. In this paper, as
an example, we have built our framework on top of GreenMM by
enabling the CR technique. We aim at using the voltage guardband
to save energy while preserving performance. Since the GPU is
undervolted at a fixed frequency, it does not incur any performance
degradation.

Overclocking is another technique that reduces the execution time
through boosting the frequency to a higher level. Even though the
power consumption increases, the total energy can be saved due to
the reduction in the execution time. However, similar to undervolti-
III describes checkpoint and recovery technique. Our evaluationng,
overclocking beyond fsa f eMax may raise errors due to having less
time for charging and discharging transistors. In this paper, we exper-
imentally determine the safe values for the maximum safe frequency
for different applications, similar to the undervolting experiments
done earlier [4, 5].

We develop an undervolting and overclocking model in this pa-
per and validate with several applications. We specifically target
cuBLAS Matrix Multiplication (cuBLAS-MM), a key kernel used in
many scientific applications and implement checkpoint and recovery
(CR) on top of cuBLAS-MM.

CR is a general resilience technique that is often used to handle
hard errors but it can also recover soft errors. Several CR mech-
anisms are developed for CPUs [7, 8]. However, none of them is
feasible on NVIDIA GPUs due to the absence of particular runtime
APIs to extract computation state inside the kernel. Considering
these limitations, a handful of GPU CR schemes are developed [9–
12]. CheCuda [10] is built on top of checkpoint and recovery library
called BLCR [11] to store the system state. Since the BLCR does not
support CUDA contexts, before checkpointing, it stores and destroys
CUDA contexts, then runs BLCR to reallocate all destroyed GPU
contexts. These extra phases, incur a huge performance overhead to
the system. NVCR is another checkpoint and recovery library which
is transparent to the applications[12]. CheCL is another checkpoint
and recovery technique that follows CheCuda but it is designed for
OpenCL-based applications[13]. All these checkpoint and recov-
ery techniques reload GPU state and re-launch kernels from the
beginning which incurs huge performance overhead.
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Figure 1: Failure rate of different Rodinia benchmarks and
cuBLAS-MM from cuBLAS library w.r.t overclocking

We propose application specific incremental CR to preserve the
computation state. Our technique is similar to the in-kernel, in-
memory, and incremental CR technique, employed in [9]. However,
we specifically target the cuBLAS-MM library and extend it to han-
dle faults arising from undervolting and overclocking. Through a
detailed fault model based on our experiments, we determine the
locations of checkpoints in the kernel. SAOU preserves computation
states in the GPU device memory to eliminate transfer time between
CPU and GPU. We also adopt an incremental CR that only saves
the variables that have been modified since the last checkpoint. It
can improve the performance but requires us to keep track of the
modified variables. Once a failure happens, the preserved computa-
tion state will be loaded and the execution will be resumed from the
last checkpoint. Clearly, the cost of a checkpoint will vary with the
amount of states required to be saved and the bandwidth available to
the storage mechanism being used to preserve the state.

This work presents performance and energy consumption using
the combination of overclocking, undervolting and FT algorithm.
Through experiments, we show that SAOU achieves up to 22%
energy reduction for a 10K ×10K matrix multiplication .

This paper makes the following contributions:
• First, we empirically find fsa f eMax and Vsa f eMin for different

applications.
• Next, based on our overclocking and undervolting results, we

develop a fault model to determine the number of checkpoints
and their locations in the application.

• We design an incremental in-kernel and in-memory CR tech-
nique to overcome any transient faults during the execution.

• We verify the operation by applying the proposed technique
to cu-BLAS-MM library and executing it on a NVIDIA GTX
980 GPU.

The rest of the paper is organized as follows. Section II describes
overclocking, undervolting and corresponding fault model. Section
III describes checkpoint and recovery technique. Our evaluation
results are discussed in section IV. Finally, conclusion and final
remarks are provided in Section V.

2 FAULT MODEL
As clock frequency of the system is pushed beyond the maximum
clock frequency, system may experience errors due to timing faults.
It is because with increasing the clock frequency, a circuit node may
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Figure 2: Fault distribution w.r.t. overclocking

not have enough time to fully charge and discharge the load capaci-
tance. Therefore, increasing frequency leads to higher probability of
logic failure [14]. In this section, we develop a realistic model for
error probability in different applications at a given frequency.

The probability of failure is given by,

Pf =
Number o f f ailures

Number o f application runs
(1)

We define fmax, as the maximum nominal frequency of the GPU at
which the program executes correctly and fsa f eMax as the theoretical
highest safe frequency under which the system can operate without
crashing. Reliability of application R(t) is the probability that there
is no failure in the system during the execution time t.

R
(
t
)
= 1−Pf

(
t
)

(2)
The failure rate is obtained using Weibull lifetime reliability

model, a well-accepted model for transient and permanent soft errors
as in equation 3 [15].

R
(
t
)
= e−λ t (3)

Hence, we calculate the λ according to execution time t and R(t),
which are measured through the profiling phase. λ gives the number
of errors per minute, which will be used to determine the number of
sufficient checkpoints at a given frequency.

We executed applications from Rodinia benchmark [16] and
cuBLAS library are executed on Nvidia GTX 980 GPU at different
frequencies. We increase the frequency starting from 1404 MHz,
which is the default maximum frequency of the Nvidia GTX 980
GPU. At each frequency, using the MSI After Burner, we keep the
frequency constant during the execution time. The frequency is in-
creased in steps of 25 MHz. To estimate the failure rate, we run
each application 100 times at each level of overclocking, and the
corresponding output is compared with the golden output which
is extracted by running the application at default frequency. If the
output does not match with the golden output, then the applica-
tion has experienced a failure during the execution. The failure rate
calculated for for applications is shown in Figure 1, where X-axis
represents overclocking level and Y-axis represents failure rate per
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minute. Applications have different failure rates due to different
activity patterns they experience during the execution time. different
activity patterns which can lead to different voltage droops. The
voltage droop is the main reason of GPU voltage noise. So, at a
specific voltage, different intra and inter-kernel activities can lead
to different failure rates. It is observed that the voltage noise, and
specifically di

dt droop, has the largest impact on Vsa f eMin. Microar-
chitectural events, such as cache misses, cause pipeline stalls and
large di

dt droops lead to different guard-bands and Vsa f eMin. Because
cuBLAS-MM is highly optimized, and all GPU components are
active most of the time, there is no large di

dt droop which could lead
to lower voltage noise margin and larger guard-band [4].

Applications have different failure rates due to different activity
patterns they experience during the execution time [4]. It is observed
that increasing the frequency or lowering the voltage results in less
timing margin and higher error probability [4]. At a given frequency,
the applications have different failures due to micro-architectural
events such as cache misses, cause pipeline stalls which can cause
voltage noise or timing errors. Because cuBLAS-MM is highly
optimized, and all GPU components are active most of the time, so
there is no large di/dt droop which could lead to lower voltage noise
and as a result timing error.

To find sensitivity of overclocking, we also record error distribu-
tion of different applications during the overclocking. Silent data
corruption (SDC), CUDA run-time errors and OS crash are among
notable types of errors that system may experience during overclock-
ing. SDC refers to when program finishes its execution normally
without any error messages, however, producing a wrong result. In
profiling phase, errors can simply be detected by comparing results
against the golden output. CUDA run-time errors including segmen-
tation faults and driver faults are detected through standard error
output. OS crash happens when undervolting level is beyond the
Vsa f eMin. Since, SDC errors can be covered through fault-tolerant
algorithm, we only focus on SDC errors and we do not go for the
frequencies which can cause errors other than SDCs. Figure 2 shows
behavior of different applications including cuBLAS-MM, FFTD2D,
BlackScholes, and Histogram in regard to overclocking. X-axis de-
notes frequency and Y-axis denotes fault types. As shown in Figure
2, due to different activity patterns which explained earlier, we ob-
serve different SDC rates. For instance, cuBLAS-MM, and FFT2D
have larger SDC rate compared to Histogram and BlackScholes.

The failure rate of different applications due to undervolting are
measured similar to the approach used in [5]. As shown in Figure
3, failure rate of application increases exponentially. This means,
even, if all types of errors are in SDC form, which can be covered
through a FT algorithm, we should checkpoint more frequently
which incurs a huge performance overhead. So there is no need to
reduce voltage if number of checkpoints is going to be high. In MM
application, according to fault distribution and failure rate model, we
only checkpoint at the end of each thread and we are able to correct
the potential errors due to undervolting. Our resilience technique
which is used to cover the potential errors, is discussed in section 3.

Our aim is to carefully calibrate the level of undervolting and
overclocking so that the energy saving is more than the energy
overhead. Voltage and frequency are estimated through an offline

Figure 3: Failure rate w.r.t undervolting

profiling phase which is done only once for each GPU. The offline
profiling phase is split into two phases:

2.0.1 Phase 1: Extracting the overclocking and undervolting level
and error rate (λ ). We execute matrices of small sizes on the GPU
to minimize the profiling time and obtain maximum tolerable over-
clocking and undervolting level, and fault rate (λ ) as described in
Section 2.

2.0.2 Phase 2: Estimate number of faults. The number of faults in
an application can be obtained by multiplying λ with the execution
time, as shown in equation 5. Failure rate remains same irrespective
of the input data size for a given application as in equation 3. Hence,
we estimate the execution time of MM for a given matrix size on a
specific GPU through a simple profiling.

T = α ∗ax3 b (4)
F = λ ∗T (5)

Due to different compute resources like SM, register file size,
cache sizes and shared memory size, execution time of the MM for a
given size could vary in different GPUs. Due to memory constraints,
the GPU cannot handle matrix multiplication of any arbitrary size.
The time complexity of cuBLAS-MM as a function of matrix size is
provided in equation 4, where a and b are architecture-specific con-
stants [17][18]. After finding these constant values we can estimate
the execution time of the given matrix. Multiplying the failure rate
and estimated execution time provides the number of faults. We find
the number of faults for different pairs of frequency and voltage as
shown in Figure 4 for matrix multiplication with input size of 10K.
X-axis, Y-axis, and Z-axis shows undervolting level (%), frequency
(MHz) and number of faults respectively. For matrix of size 10K, on
average, we observe 1.45 faults during the execution.

3 CHECKPOINT AND RECOVERY
A checkpoint is a snapshot of a system state, including stack, heap,
global and register values. It also keeps the copy of the contents of ap-
plication process address space. In CPU domain, several checkpoint
and recovery (CR) techniques have been developed at different levels
including kernel, library, and application level. It is not feasible to
extract the mentioned information in kernel and library level. This is
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Figure 4: Number of faults in regard to overclocking and undervolting
for matrix with size of 10K

because, GPU is handled by driver rather than the operating system
and there is no available API to access the required information
during the execution. As a result, in a faulty case, it is not possible
to reload threads computing state inside the kernel and resume the
execution. Therefore, checkpoint and recovery techniques usually
relaunch kernel from the beginning[11][10][12]. We can overcome
this by modifying the application code to keep track of the necessary
information. Hence, we introduce a technique that is able to recover
only the corrupted information.

We adopt an incremental checkpointing [9] which preserves only
the data that has changed since the last checkpoint. In matrix mul-
tiplication, we only checkpoint partial results which are updated
during execution. Each thread block (TB) is responsible for a chunk
of matrix. Depending on the size of input matrix and TB size, in-
put matrices are divided into several TBs, all of which, might not
be accommodated on the GPU at a time. In GTX 980 GPU, the
maximum number of threads is 1024 per TB and 16 SMs which
can execute 16 TBs. If we decrease number of threads within the
thread block, we can accommodate more number of TBs in GPU
at a time. Due to constraints on GPU resources (16 SMs, and 128
CUDA cores/MP), we can have limited number of TBs at a time.
After executing each TB, GPU replaces the TB with other TBs in
the queue. However, as shown in Algorithm 1, before replacing the
executed TB, we check the correctness of the partial results within
the TB. If no error is detected, we checkpoint the partial results of
the current TB. To reduce the performance penalty, we start with
storing them in private memory space which is local to each thread.
If there is not enough space in private memory, data will be pushed
back into global memory.

In case of matrix multiplication, according to failure rate model,
it is sufficient to only checkpoint at the end of each TB. But for
bigger matrices, due to higher probability of faults, we might need
to checkpoint more frequently. Proposed checkpoint and recovery
technique incurs very small overhead on the energy and performance

Algorithm 1 High level pseudo-code for execution process of CR-
enabled matrix multiplication

1: Initialize()
2: cudaMalloc(&dA,size A);
3: cudaMalloc(&dB,size B);
4: cudaMalloc(&dC,size C);
5: cudaMemcpy(dA,hA,size A,hostToDevice);
6: cudaMemcpy(dB,hB,size B,hostToDevice);
7: Invoke MM-Kernel();
8: _syncthreads();
9: if (results!=correct) then

10: restore();
11: else
12: checkpoint();
13: end if
14: Go to 7

in comparison with the baseline. When TB size is 1024 threads,
energy and performance overheads are 0.5% and 0.4% respectively.

3.1 Implementation Details
The state of GPU application can be represented by variables de-
clared in the program. However due to the complex memory hier-
archy of the GPU, those variables are spread in different memory
locations: register, local memory, shared memory and global mem-
ory.

As shown in algorithm 1, to ensure an appropriate in-kernel check-
point and recovery, all threads synchronize before checkpoint and
during recovery. Due to memory inconsistency, it is not guaranteed
that all threads finish at the same time. In other words, it is mandatory
for all threads to participate in checkpointing. As an example, when
thread X is checkpointing, thread Y can update a shared variable
between them. CUDA supports synchronization between threads
within a TB with a built-in instruction called "syncthreads()".

The same problem exists if we extend this to threads of differ-
ent TBs which share a global variable. Due to lack of any built-in
synchronization mechanism between different TBs, similar problem
might occur [19]. To solve synchronization problem between TBs,
we propose an algorithm which synchronizes TBs before checkpoint-
ing. As shown in Figure 5, we define array of global variables which
can be accessed by all TBs. The array length depends on the number
of TBs that can run at a time on GPU. Before checkpoint module, we
use instruction "synchthreads()" to synchronize the threads within
the TB and make sure all of them are finished. Once, all threads
within the TB are completely executed, we set the global variable
corresponding to the TB to "1". Now, to solve the memory inconsis-
tency between different TBs, we ensure all TB flags are set to "1".

TB0 Flag TB1 Flag TB Max Flag

          0                        1                                 ...                                                        TB Index

Figure 5: Thread block level synchronization using array of global
variables
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Figure 6: Energy saving ratio in regard to overclocking in presence of
CR algorithm

Therefore, threads within different TBs will not modify the shared
global value anymore.

Checkpoint and recovery is embedded into the code through a pre-
compiling phase at compile time. Since the GPU drivers are closed
source, the modifications are done at the application level. During
pre-compiling phase, we transform application source code into a
format where run-time support calls are inserted for constructing
computation state. In pre-compiling phase, we follow the below
tasks:
1) Buffer allocation: Create buffers to hold GPU state in device
memory.
2) Insert checkpoint location
3) Synchronize GPU threads before checkpointing
4) Copy variables from GPU local, shared and global memory to
allocated buffers which can be register, private memory or device
global memory.

At run-time, as shown in algorithm 1, when the execution stream
reaches a checkpoint, it synchronizes threads in all TBs and checks
for faults. If at least one thread detects an error, the entire block goes
to restoration phase. Otherwise, it goes to checkpointing phase. In
restoration phase, all threads within corrupted block jump to pre-
vious checkpoint label. Then, each thread, copies threads private
information from its backup to its original location. The shared mem-
ory is also reloaded from its backup located in device memory. In
case of matrix multiplication, due to different performance penalties,
registers, private memory, and device global memory are in priority
for storing the partial results. If there is not enough registers and
private memory, we save the computation states into device global
memory.

Algorithm 2 The pseudo-code for error detection phase

1: Initialize(Ac and Br)
2: C f = Ac× Br

3: Recompute C f from C
4: if (C f doesn’t maintain checksum relationship) then
5: error_detected();
6: else
7: no_error_detected();
8: end if

Figure 7: Energy saving ratio in regard to undervolting in presence of
CR algorithm

During the checkpoint and recovery, we need to check for the cor-
rectness of the computation. Similar to approach used in GreenMM
[5], we use checksum data redundancy for detection phase [20]. To
compute C=A*B. Algorithm 2 describes pseudo-code for detection
phase. Ac and Br are encoded input matrices and C f is a full check-
sum matrix [21]. At the end of each iteration right before checkpoint
location, we recompute checksum again. If checksum relationship
does not hold up, the computation is faulty and recovery phase will
be invoked.

4 EVALUATION
4.1 Experimental Setup
All experiments were performed on NVIDIA GeForce GTX 980
GPU. For matrix multiplication application, matrix with size of 10K
was considered due to memory constraints (4 GB RAM). The GPU
overclocking and undervoling was done using MSI After-Burner
[22]. For undervolting, the power budget was reduced to enforce
the GPU to operate at a specific voltage. For overclocking, the
memory frequency was set to its default value and only the core clock
frequency was modified. NVIDIA System Management Interface
(Nvidia-smi) was used to monitor GPU utilization and report power
consumption of every 10ms. We evaluate the energy savings of MM
due to overclocking only, undervolting only and combination of
overclocking and undervolting considering the power consumption
and execution time.

We used matrix multiplication application (cuBLAS-MM) as it
is a key sub-routine for many scientific applications like HPL and
ScaLAPACK [23][24]. For instance, MM constitutes of more than
90% of the computation cost in HPL [23]. Our proposed method
can easily be integrated into these applications to save considerable
amount of energy. Similar approach can be used while implementing
checkpoint and recovery (CR) for different applications in order to
save energy due to fusion of overclocking and undervolting.

4.2 Results

Figure 6 shows percentage of energy reduction in a matrix size of
10K, compared to the original execution of without overclocking or
CR. As shown in Figure 6, at default frequency, there is negligible
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Figure 8: Energy reduction for given frequencies and voltages

energy overhead of about 0.5%. However, as we continue overclock-
ing, 5.3% energy reduction can be achieved in comparison with the
baseline.

As shown in the Figure 7, for the same matrix, SAOU saves
energy up to 12.74% just by undervolting till Vmin . There is no error
in the system till Vmin as per Fig. 3. However, SAOU can save up
to 20% with going beyond Vmin and correcting possible errors with
checkpoint and recovery technique.

Performance Overhead is mostly incurred by detection phase.
According to experimental results, for a matrix of size 10K, the error
detection time is 1.15% of the total execution time.

We also evaluated the energy consumption of combined under-
volting and overclocking. Figure 8 shows the energy consumption of
combined undervolting and overclocking. X-axis and Y-axis denote
frequency (MHz) and undervolting level respectively. With com-
bined overclocking and undervolting, we are able to save about 22%
in comparison the original system.

5 CONCLUSION

In this paper, we proposed an energy efficient framework, SAOU,
that reduces energy consumption of GPUs through undervolting
and overclocking. Since going beyond the safe frequency or voltage
give rise to faults, we designed a checkpoint and recovery (CR)
technique to handle these faults. We created an empirical fault model
to determine the number of checkpoints at each level of undervolting
and overclocking. For a matrix of size 10K in cuBLAS-MM, SAOU
is able to save the energy consumption up to 22% through combined
undervolting and overclocking without sacrificing the performance.
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