PAVER: Locality Graph-based Thread Block Scheduling for
GPUs

DEVASHREE TRIPATHY, University of California, Riverside, USA
AMIRALI ABDOLRASHIDI, University of California, Riverside, USA
LAXMI NARAYAN BHUYAN, University of California, Riverside, USA
LIANG ZHOU, University of California, Riverside, USA

DANIEL WONG, University of California, Riverside, USA

The massive parallelism present in GPUs comes at the cost of reduced L1 and L2 cache sizes per thread, leading
to serious cache contention problems such as thrashing. Hence, the data access locality of an application
should be considered during thread scheduling to improve execution time and energy consumption. Recent
works have tried to use the locality behavior of regular and structured applications in thread scheduling, but
the difficult case of irregular and unstructured parallel applications remains to be explored.

We present PAVER, a priority-aware vertex scheduler, which takes a graph-theoretic approach towards
thread scheduling. We analyze the cache locality behavior among thread blocks (TBs) through a just-in-time
(JIT) compilation, and represent the problem using a graph representing the TBs and the locality among them.
This graph is then partitioned to TB groups that display maximum data sharing, which are then assigned to
the same SM by the locality-aware TB scheduler. Through exhaustive simulation in Fermi, Pascal and Volta
architectures using a number of scheduling techniques, we show that PAVER reduces L2 accesses by 43.3%,
48.5%, 40.21% and increases the average performance benefit by 29%, 49.1%, 41.2% for the benchmarks with
high inter-TB locality.

CCS Concepts: » Computer systems organization — Single instruction, multiple data.

Additional Key Words and Phrases: GPGPU, Thread Block, Dependency Graph, locality

1 INTRODUCTION

The massive parallelism provided by general-purpose GPUs (GPGPUs) is in demand from many areas
of industry and research. Possessing numerous compute cores in their streaming multiprocessors
(SMs) and enormous memory bandwidths as high as 1555 GB/s [41], GPGPUs have become the
de-facto accelerator of choice in many scientific domains. To support the complex memory access
patterns of applications, GPGPUs have a multi-level memory hierarchy consisting of an L1 data
cache private to each SM, a banked shared L2 cache connected through an interconnection network
across all SMs and high-bandwidth banked DRAM.

With the amount of parallelism GPUs can provide, memory traffic becomes a major bottleneck
for present-day GPUs, mostly due to the small amount of private cache that can be allocated for
each thread, and the constant demand of data from the GPU’s many computation cores. With
the ever-increasing data size of GPU applications, and each thread having to process more data,
simply increasing the cache sizes is not a viable option, since the additional area will incur extra
cost and overhead. This means that smaller L1 and L2 caches are much more likely to suffer from
cache thrashing, i.e. eviction of cache lines which could have been used by other functional units.
Cache thrashing can lead to more cache operations, which means more energy consumption,
and tremendous under-utilization of the other GPU resources, resulting in under-performance

Authors’ addresses: Devashree Tripathy, University of California, Riverside, 900 University Ave, Riverside, CA, 92521,
USA, devashree.tripathy@email.ucr.edu; AmirAli Abdolrashidi, University of California, Riverside, 900 University Ave,
Riverside, CA, 92521, USA, amirali.abdolrashidi@email.ucr.edu; Laxmi Narayan Bhuyan, University of California, Riverside,
900 University Ave, Riverside, CA, 92521, USA, bhuyan@cs.ucr.edu; Liang Zhou, University of California, Riverside, 900
University Ave, Riverside, CA, 92521, USA, 1zhou008@ucr.edu; Daniel Wong, University of California, Riverside, 900
University Ave, Riverside, CA, 92521, USA, danwong@ucr.edu.

2 Tripathy et al.

[11, 23, 56, 62, 63]. To minimize this, all threads need to utilize the shared cache memory spaces
with each other as efficiently as possible.

The most common relationships between the threads sharing the cache are read-after-write
(RAW) and read-after-read (RAR) cases. RAW constitutes of data dependency among tasks, e.g.
thread blocks (TBs), also known as structured parallelism. In this case, a certain execution order
among the tasks will be formed and the execution time will be bound to a critical path. Exploiting this
order can improve the performance substantially. There have been numerous works on structured
parallelism in CPUs [3, 12, 14, 51], and more recently in the realm of GPUs [2, 6, 16, 60]. In particular,
they try to exploit the data locality between parent and child TBs.

RAR, or local data sharing, on the other hand, happens in unstructured parallelism, in which the
tasks are similar and independent, and thus free to be executed in any order. Its impact is more
prominent when there is no write-allocate policy in place. As a result, the program’s outcome
would be correct regardless of task ordering. However, processes can still subtly affect each other
in terms of shared resources and, subsequently, the performance, in contrast to the more explicit
sharing in structured parallelism. To make better use of the cache data, the data locality of the
parallel-run tasks must be observed and considered with respect to a given cache architecture.
Research works have addressed this issue in the multi-core CPU area [20, 61], and Wang et al [60]
improved cache performance with respect to data-reuse involving parent-child thread blocks in
GPUs. To the best of our knowledge, however, PAVER (Priority-Aware Vertex schedulER) is the
first work on exploiting data locality in unstructured parallelism in GPUs.

At the TB level, there have been attempts to take advantage of locality based on a specific
data access pattern [22]. In [29], Lee et al. propose Block CTA Scheduling (BCS) which naively
assigns two consecutive TBs to the same SM. However, their approach works only for row-major
applications, i.e. applications optimized to run with row-major data structures, such as matrix
multiplication, n-body, and hotspot. Since the grid structure of the tasks is application-specific,
PAVER addresses this problem with a generic graph-based approach to improve performance and
memory efficiency. We do so by creating a graph of TBs using their data sharing statistics, where
the vertices represent the TBs and weighted edges between TBs denote the number of shared data
locations.

Designing a graph structure requires us to know the access footprint per TB in the application a
priori and then deciding which TBs to group in the same SM to maximize the cache utilization.
Hence, it is necessary to analyze the cache access characteristics before the execution. There has
been substantial work on CPU data access profiling using compilers in the past [4, 20, 58, 64, 65].
Such profiling work has also been done for GPUs [13, 53]. Research has started recently to speed up
the GPU profiling through sampling and other techniques [20]. However, profiling requires the user
to run the code in order to detect opportunities to improve the performance [17]. Compiler-assisted
methods can extract information directly from the code itself e.g. static compiler analysis, which
can be used to optimize cache bypassing, warp scheduling and thread throttling [23, 24, 32, 47].
In PAVER, we propose a just-in-time compilation approach to gather the data sharing statistics
among the thread blocks which constitute the same kernel and are able to use the same allocated
memory. The JIT analysis is accomplished after compilation and before the kernel launch [40].

We partition the graph in order to assign TB groups with the most locality to SMs. We explore
various graph partitioning policies, such as k-way and recursive bi-partitioning algorithms based
on METIS graph partitioning software [21], and Prim’s maximum spanning tree (MST)-based
algorithm [46]. The partitioning is stopped when the maximum number of TBs is allocated to an
SM, as determined by the application and resources. To improve load balancing between SMs, we
also incorporate a task-stealing process to move a TB from one SM queue to another when all the
TBs in the latter finish early. This ensures a decent load balance in the final phase of the execution.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

In short, PAVER presents a novel graph-theoretic approach for TB scheduling on GPUs based
on the cache sharing behavior between the TBs. Our partitioning algorithm ensures maximum
cache sharing within an SM for L1 locality, high L2 locality among the SMs, and also ensures load
balancing between the SMs. In a SM, maximum allowed concurrent TBs are sent for execution in
the form of bunches of 32 threads each, called a warp, to a warp scheduler. This scheduler checks for
ready warps within the pool of available warps and once a TB has finished execution, another TB
assigned to that SM starts executing. There are several warp scheduling policies with the baseline
policy as Greedy Then Oldest (GTO) in which a single warp is prioritized for execution until it hits
a long latency operation after which it is replaced by the warp which was assigned to the core for
the longest period of time.
The following outlines the organization of this paper:

e In Section 2, we explore the baseline architecture and show how locality awareness can

benefit the application performance.
e In Section 3, we generate the TB locality graphs of various benchmarks through analyzing

memory access behaviour of individual thread blocks. We also present details of the JIT
compiler analysis, adopted in this paper.

e In Section 4 we design TB scheduling policies, starting from MST, and improve it to k-way
partitioning and recursive graph bi-partitioning. We compare these partitioning techniques

to understand its effect on L1 and L2 locality.
e In Section 5 we explain the PAVER runtime and TB scheduling and how task stealing can

help with an application’s load balancing. We further discuss the architectural support to
store the TB-groups produced by various TB-partitioning strategies and using them to guide

TB scheduling.
e In Section 6, we evaluate PAVER and show that our proposed scheduler can achieve average

speedup of 29%, 49.1%, 41.2% compared to the baseline scheduler LRR in Fermi, Pascal and
Volta architectures. Benchmarks selected from widely used benchmark suites Parboil [54],
Rodinia [7], Polybench [45], ISPASS [1], and CUDA SDK [36] were analyzed and classified
into high, low and no inter-TB locality categories.

2 BACKGROUND AND MOTIVATION

TB scheduling is managed by the GigaThread engine in Nvidia GPUs [30]. Despite efforts to
approximate the behavior of the TB scheduler [34], there are few official details on it. The baseline
TB scheduler is assumed to be using a loose round-robin (LRR) policy, as empirically observed in
prior work [31]. A round-robin policy implicitly takes advantage of locality among consecutive
TBs that can simultaneously access the L2 cache. To capture both L1 and L2 locality, some prior
works assign TBs at the granularity of a group of consecutive TBs (typically groups of two) to an
SM [29, 55]. These prior techniques specifically exploit the two-dimensional data grid with locality
typically occurring between TBs in the same row. Such a policy is bound to fare poorly if there is
large column-wise communication, or even worse, if the communication between TBs is arbitrary.

As a novelty, we attempt to establish an order in thread block execution by using a graph-based
approach to maximize data locality. This method is completely generic and is able to extract
locality patterns through graph-theoretic approaches regardless of the application’s data layout or
algorithmic behavior. To this end, we determine the locality among all the thread blocks per kernel
before the kernel launch, and create a weighted graph pertaining to that kernel (for multi-kernel
applications, a graph is generated for each kernel). The vertices are annotated with thread block
IDs and the edge weights represent the number of shared data references between two TBs. The
higher the weight of an edge between two nodes, the higher is the locality between the two TBs.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

4 Tripathy et al.

SMO SM1 SM 14

[N J
L1D L1D L1D

[I I

Interconnection Network

semase

Fig. 1. GPU memory hierarchy

We will later explore various locality graph partitioning techniques in order to assign TBs to SMs
to maximize cache reuse.

2.1 Baseline GPGPU architecture

In this work, we use Nvidia GTX480 (Fermi [37]), Nvidia TITANX (Pascal [38]) and Nvidia TITANV
(Volta [39]) architectures for evaluation purposes. Our technique exploits application-level charac-
teristics and can be generally applicable to all architectures. Table 1 describes the specifications of
GTX480, TITANX and TITANV, and Figure 1 depicts the memory hierarchy layout for a generic
GPU. As it can be seen, every streaming multiprocessor (SM) has an L1 cache, and there is an L2
cache per memory channel that is shared by all the SMs. Whenever a load operation attempts to
access a data which is already cached, it is considered a cache hit. Otherwise, it results in a cache
miss, and the cache will request the data from the lower memory in the hierarchy. A miss can occur
due to the data simply never being present (cold miss), or due to the data block being evicted from
cache because of cache size limit (capacity miss), or set conflicts (conflict miss), or becoming stale
after another ‘sibling’ cache has modified it. In Fermi, however, since there is a write-evict policy
[42], we do not experience cache invalidations due to coherence protocols.

Table 1. Fermi, Pascal, Volta GPU specifications (for evaluation)

Architecture Fermi Pascal Volta
of SMs 15 28 80
Max # of TBs/Warps/Threads per SM | 8/48/1536 | 32/32/2048 | 32/64/2048
L1/Shared Mem. Cache Size per SM | 16/48 KB | 48/96 KB 32/96 KB
Total L2 Cache Size 768 KB 3MB 4.5MB
Core Frequency 700 MHz 1 GHz 1.2 GHz

All load/store units (LDST) in the SMs have a memory coalescing unit to reduce unnecessary
cache accesses. To further accommodate memory coalescing and avoid extra memory traffic, an
SM’s L1 data cache has a miss status holding register (MSHR) table, which sends the request to the
L2 cache and holds the pending data block request while it is being loaded. If another thread tries
to access the same block again, it is called a hit reserve or MSHR hit. In this case, the operation will
wait for the request in the MSHR to be finished. There can be MSHR hits in a cache only if there
is data sharing across warps. If the MSHR is full, any more requests will be a miss and named a
reservation fail [5].

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

Data Reference Distribution

100%
80%
60%
40%

Inter-TB only

\

\
\
§
\

\
\

X
\
\

\

Intra-TB N Inter-TB

£ Intra-TB only

H UnShared

ves

2R R S U=
zz: i \ \ § § § § \ N S
s 82827 I 3 3 8 3

High Inter-TB Locality

Low Inter-TB Locality

No Inter-TB Locality

Fig. 2. Data reference sharing distribution

2.2 L1/L2 hit and miss distribution

There are two main types of locality: temporal and spatial. Temporal locality refers to the same data
in the cache used at different times, while spatial locality involves different units accessing different
parts of the same data block, e.g. two TBs accessing two adjacent elements in the same cache line.
We define a term called “block locality” to capture the usage frequency of any data element inside a
data block either due to temporal or spatial locality during the execution. If the GPU knows which
data block is needed by which specific TB, it can schedule the appropriate TB before the data block
is evicted. GPU execution can benefit from a planned scheduling, which maximizes data locality
in all caches. If TBs that use distant parts of the memory also share the same SM, it will lead to
unnecessary L1 evictions and thrashing, hurting the performance. Similarly, if TBs executing on
different SMs lack block locality, they will suffer from L2 eviction.

We measured the L1 data cache and L2 cache hit and miss distribution for different benchmarks

and observed that on an average, 33.6% of all misses in L1 are conflict or capacity misses. More
conflict or capacity misses lead to more frequent L2 cache accesses, which may in turn result in
L2 evictions. Also, it was noted 9% conflict + capacity misses in L2 on average. Our method will
reduce the average cache miss rate due to both conflict and capacity misses.

Data Reference Distribution: Figure 2 shows the data reference distribution for different
benchmarks. The y-axis shows the normalized total number of global read accesses in an application
as a percentage. We categorize data accesses into the following type of references:

e Unshared - single warp in a TB accesses a data ;

e Intra-TB - multiple warps within a TB access same data ;

o Inter-TB - multiple TBs access same data ; and

e Intra-TB N Inter-TB - data block is accessed by multiple warps within a TB, and across
multiple TBs.

As it can be seen, the benchmarks SYRK, SYR2K, MM, BTR, HTW, HS, SRAD have heavy inter-TB
data sharing; BFS, TPACF, DWT, SPMV, PF, STO and MGS have low inter-TB sharing; SAD, MUM,
BP and BLK have no inter-TB data sharing.

Therefore, if TBs sharing the data are assigned to the same SM, we can increase the L1 hits,
thereby reducing the number of L2 accesses and lowering L2 conflict misses, and improving IPC.
On an average, 27% of data sharing between TBs is observed. Hence this paper targets exploiting
inter-TB and intra-TB N inter-TB references by cleverly scheduling the TBs instead of the naive
LRR TB scheduler.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

6 Tripathy et al.

3 GENERATING LOCALITY GRAPHS
3.1 PAVER overview

Figure 3 overviews the PAVER framework, a Priority-Aware Vertex schedulER. It is a locality-
aware thread block scheduling (TB) framework, which is guided by locality graph analysis. The
load address ranges for a TB are extracted from the PTX code. The locality graph is constructed
from the extracted locality information, where the vertices of the graph represent the TB ID and the
edge weight represents the number of common shared data-references accessed by those TBs. The
TB graph capturing the inter-TB locality is partitioned such that each partition contains TBs having
maximum locality among them (explained in Section 4). After this stage, we enforce the execution
of a TB partition in an SM through hardware support. A locality-aware TB scheduler assigns the
TBs to the SMs in the order specified by the partitioning algorithm (explained in Section 5).

TB Graph Mem LL:]

Source Code
Partitions Scheduler

Identify Locality

PTX Information

— Locality Graph

Fig. 3. PAVER Overview: Paver generates the locality graphs by identifying the locality information in the
PTX code at JIT. The TB-graph partitions are then fed to TB scheduler at run-time to leverage the inter-TB
data locality.

3.2 Locality Graph:

The data reference sharing information is used to generate a locality graph in the form of an
adjacency matrix. In this matrix, every element in location (i, j) specifies the number of data
references shared between TB; and TB;. We represent the graph by an adjacency matrix is sym-
metrical around the diagonal (undirected graph). The examples of an adjacency matrix and the
corresponding locality graph are shown in Figure 4. The nodes are numbered as per the TB ID, and
node weights represent the number of instructions executed by the node. In our case, the weights
of all nodes are the same, because all the TBs execute the same number of static instructions in an
SIMD manner.

Figure 5 visualizes the adjacency matrix representing the locality graph for different applications.
Both X and Y dimensions represent the TB numbers. The sharing (edge) between them is represented
by a point in the figure, where the color density of the point represents weight on the particular
edge. It may be observed that maximum sharing between two TBs may occur when they are
adjacent (MGS, STO, PF, HTW) or when they are far away (BFS, BTR, SPMV). Though the prior
work in [29] assumes that consecutive TB have max locality, this is not necessarily true. Sometimes
there is sharing among adjacent TBs in the same row and same column of the 2D Grid (SYRK,
SYR2K, MM), same row and first column of 2D Grid (HS, DWT, SRAD), same row of 1D Grid (MGS,
STO, PF, HTW) or arbitrary (BFS, BTR, SPMV). A generic graph representation accounts for all
these cases.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

Fig. 4. An example of an adjacency matrix and the corresponding locality graph

SYRK / SYR2K HTW BFS SPMV
gridDim=(4,16,1) gridDim=(51,1,1) gridDim=(256,1,1) gridDim=(36,1,1)

I P

R

B |

TPACF STO / PF

MM
gridDim=(13,13,1) gridDim=(6,6,1) gridbim=(201,1,1) gridDim=(384/463,1,1)
AT e - v
, E -5? o 4 e
Z A
g g v
77 A
7} Lo
) -y
s i-ﬁg:-,-"-
BTR SRAD DWT MGS
. gridbim=(10000,1,1) gridDim=(16,16,1) gridDim=(4,11,1) gridDim=(32,1,1) _

Fig. 5. Adjacency matrix of Various Applications.
3.3 Identifying Locality Information

In order to run CUDA applications, the CUDA code must first be parsed into the PTX intermediate
representation (IR) during compilation. In this stage, the code is converted into a quasi-Assembly
structure, with instructions using input/output registers, indirect addressing, etc. However, after
conversion to PTX, the code is still not ready for execution on real hardware, as GPUs require a
code format specific to their architecture, i.e. the SASS representation. The conversion from PTX to
SASS is performed via just-in-time (JIT) compilation at the time of application load [40]. This is
when some of the remaining unknown parameters are resolved that might be dependent on user
input during the kernel launch in order to specify the kernel’s characteristics, such as input/output
arguments and pointers, grid and block sizes, etc. When the kernel is converted to SASS format
with all the necessary parameters, only then can it run on the target GPU. In our work, we aim to
perform analysis on the PTX code before the kernel launch in order to extract locality information
from the kernel PTX.

Profiling has been extensively used in CPUs [4, 58, 65]. In a recent paper for GPUs [13], Ocelot
[10] was used to instrument the PTX code. The instrumentation involves inserting a device function
call to gather the memory trace of the entire program in order to detect the uncoalesced accesses
in the code. Alternatively, Shen et al. [53] use an instrumentation engine, built on top of LLVM
[28] to place bits of code on both the host and device sides to track statistics such as memory
reuse distance. The code will then be translated into PTX. However, profiling requires the user

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

8 Tripathy et al.

to run the application once to extract all the relevant information, which is not desirable if the
data size is large. To minimize the user burden, preprocessing the code before execution is needed.
In PAVER, we propose a JIT-based static analysis to extract TB locality information from each
kernel. In a CUDA application, inputs and outputs are given to the CUDA kernel call as base
pointers initialized through cudaMalloc(). The kernel would then read the data from the input
data structures and write the results in the outputs. In order to generate a locality graph for our
application, the accessed read addresses will need to be extracted in order to determine address in
the global memory, accessed by a TB.

1d.param.u64 $rd3, [A];
1d.param.u64 %$rd4, [B];
1d.param.u64 %$rd5, [C];
1d.param.u32 %r6, [N];

mov.u32 %r7, %ntid.y;
mov.u32 %r8, %ctaid.y;
mov.u32 %r9, stid.y;
__global__ void matrixMultiplicationKernel (mad.lo.s32 %rl, %r7, %r8, %r9;
float* A, float* B, float* C, int N) ({ mov.u32 %r10, %ntid.x;
mov.u32 %rll, %ctaid.x;
int ROW = blockIdx.y * blockDim.y + threadIdx.y; mov.u32 arl2, stid.x:

int COL = blockIdx.x * blockDim.x + threadIdx.x; mad.lo.s32 %r2, $rl0, $rll, %rl2;

float tmpSum = 0.0; cvta.to.global.u64 %rdl, %rd4;

PTX cvta.to.global.u64 %rd2, %rd3;

if (ROW < N && COL < N) {
for (int i = 0; i < N;j i++) {
tmpSum A[ROW * N + i] * BJ[
}
C[ROW * N + COL] = tmpSum; }

Fig. 6. Matrix multiplication source code (left) and some of its corresponding PTX representation (right)

Figure 6 shows an example of the matrix multiplication code in CUDA converted into PTX. Some
of the corresponding codes on both sides have been highlighted with matching colors. It is in
our interest to extract the information from the global memory read instructions (e.g. 1d.global,
underlined) for each TB in order to determine the locality among all TBs in the kernel. In order to
extract memory access information, a JIT analysis is necessary, since the arguments in a kernel
call may not be known until the kernel is finally being called. In addition, some of the kernel
parameters, such as kernel grid size, block size and input data size, may also be unknown before the
call, e.g. if they are dependent on user input. However, once the kernel is called, all the information
stated above will be available. Therefore, each thread’s unique parameters, such as thread ID and
block ID, would also be known at that time, and would remain the same throughout the kernel’s
execution, which simplifies our analysis. Once the analysis is complete for the called kernel, we
have each TB’s memory access locations, which can then be used to construct a locality graph.
The exact values of the matrix size N and the base addresses of input/output matrices A, B, C are
known after malloc in GPU. When the grid size and TB size become available, so do the ranges
of the existing thread-specific values, namely threadldx and blockIdx. Therefore, ROW and COL
(colored red and teal) expressed in terms of these two values can readily be determined for each
thread at JIT compilation. Also, we can locate the global memory access instructions and identify
which elements of the arrays are accessed by each TB, thereby, determining the value range of
the memory accesses per TB. Here, for example, with ROW and N being known and i iterating
from 0 to N, we know all the possible values of index ROW * N + i, and thus all elements of

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

Table 2. Data reference sharing across TBs for various applications from [1, 7, 36, 54].

Benchmark | Description SpScore Total TB Total data | Shared Degr.ee of
references | TB sharing

HS Hotspot 0.995823097 | 1849 524288 1849 0.009194

PF Pathfinder 0.995689675 | 463 2100000 463 0.036717

STO StoreGPU 0.99480523 | 384 49164 384 0.044271

BFS Breadth first search 0.006408691 | 3907 7811036 3907 0.066406

SRAD (Speckle Reducing Anisotropic |) ;700964 | 16384 4196352 16384 | 0.066406
Diffusion

TPACF Two Point Angular Correlation | ;15055815 | 201 148388 201 0.084577
Function

MM Matrix-multiply 0.857988166 | 169 1024 169 0.100592

SYRZK Symmetric rank-2k 04140625 | 256 196608 256 0.265625

SYRK Symmetric rank-k 04140625 | 256 131072 256 0.265625

HTW Heart Wall 0.923875433 | 51 78135 51 0.333333

MGS Merge Sort 0.939453125 | 32768 8454144 32768 | 0.375

BTR B+ Tree 0.000167 10000 674287 10000 | 0.0017

DWT Discrete wavelet 0.862603306 | 4096 65536 4096 0.386364

SPMV Sparse-Matrix - Dense-Vector | \5o5ssse6 | 765 6981392 765 0.472222
Multiplication

MUM MummerGPU 1 196 1055946 0 -

SAD Sum of Absolute Differences 1 1584 25344 0 -

BLK Black scholes 1 430 6000000 0 -

BP Back-propagation 1 4096 1114112 0 -

A being read in the kernel by a particular thread. Similarly, all the elements of matrix B and
the thread blocks accessing them can be known. Any TBy. € {0, 1,,gridDim.x = gridDim.y *
gridDim.z} (= Urp) accesses a set of elements in matrices A and B. For A and B, the access sets
for TBy will be Ax = {i + N(L%JblockDim.y +j) | i€ [0,N),je [0,blockDim.y)} and
By = {(i.N(TBy%gridDim.x)blockDim.x + j) | i € [0, N), j € [0, blockDim.x)}. Using this, we can
obtain the common set of elements in matrices accessed by every TB; and T B, denoted by sets (A;,
B;) and (A}, Bj). Therefore, the number of common data elements accessed by TB; and TB; in the
locality graph will be:
L(TB,,TBJ) = |Al ﬂA]| + |Bl N Bj|

Table 2 showcases the characteristics of the benchmarks used in this work. Note that Sparsity
score is expressed as: SpScore = 1.0 — "O;’O_tfﬁ’:l:rfe'f;gi; inmaltlx Shared TB refers to the number of
TBs, which share at least one data reference.

The reported statistics are averaged over all the kernels for an application. It may be noticed
that the degree of sharing (ratio of shared blocks to shared TBs) varies widely depending on the
application. The applications with large sharing are likely to benefit from proper TB scheduling.

In PAVER, our focus is static memory analysis at JIT, or analysis of memory locations available
before the execution of the kernel, such as device variable addresses, immediate values, and kernel
parameters. As an example, if A is an input kernel argument, it counts as a static memory location
if we use an index that is available at JIT, such as AL@], ALi] (where i is a loop parameter), AL tid],
etc. At this time, we do not analyze non-static memory locations, which can only be known during
run-time, e.g. pointer chasing. An example of a non-static memory location is ALTAL@]], since the
value stored in AL@] cannot be known except at run-time, which is outside the scope of this work.
Overhead: The JIT analysis is done before the kernel-launch and hence does not affect the
kernel-execution time, but it increases the host side time. The functions like initialization, memory
allocation (malloc), cudaMalloc, cudaMemcpy, defining the gridDim and blockDim contribute

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

10 Tripathy et al.

G@ G/Q)\‘B
/N
A DU é% é\D

G3 Ga

@) (b) (©
Fig. 7. Overview of TB grouping and ordering approaches. (a) maximum spanning tree. (b) k-way partitioning.
(c) recursive bipartitioning.

towards the host side time. Usually, the kernel load is executed in CPU before the GPU execution
starts and is negligible. Since the JIT analysis is done right after the grid and block dimensions are
defined, the JIT overhead is calculated as : Overhead = osFside timeﬂ; Zia’::linﬂle e * 100. The
JIT overhead for some applications with high inter-TB locality SYRK, SYR2K and MM are 0.26%,
0.2% and 0.01%, respectively. Note that device to host cudaMemcpy has been excluded from the
overhead calculation as it does not delay the kernel load time. The overhead will reduce further if

the device to host cudaMemcpy time is included.

4 PAVER THREAD BLOCK (TB) SCHEDULING

In this section, we explore three different graph-based locality analysis techniques to partition and
group thread blocks to guide TB scheduling, namely; a naive approach using maximum spanning
tree (MST); a k-way partition-based method to improve the hit rate of L1 caches; and a recursive
bipartitioning-based approach to account for both L1 and L2 cache performances. Figure 7 shows
an overview of each grouping strategy. TB grouping and ordering is done at the just-in-time (JIT)
compilation and then the TB partitions are passed onto the GPU’s global memory to guide TB
scheduling.

4.1 Maximum Spanning Tree-based TB Scheduler (MST-TS)

In our first approach, we map this problem into a variant of the traveling salesman problem (TSP),
which aims to traverse all the vertices (TBs) in the graph with minimum (or maximum) traveling
cost. In our case, we can leverage the TSP problem to capture all the significant cases of data sharing
in terms of maximum edge weights in the graph G.

The heuristic we use to solve TSP is the maximum spanning tree (MST). The MST could be
constructed using either Prim’s [46] or Kruskal’s algorithm [26]. In this work, we use Prim’s MST.

Once the MST is constructed, we have a path connecting all the TBs. An example of an MST
solution (red lines) is displayed in Figure 7 (a), where each node represents a TB. We then partition
consecutive TBs in the MST into N groups of size x, where x is equal to the number of TBs that
can run concurrently in the SM and N is the number of SMs in the GPU architecture. N is limited
by the hardware resources (registers, shared memory, number of threads, maximum number of
TBs in an SM, etc.). After kernel launch, the first TB-group of size x is assigned to a SM, thereafter,
the subsequent TB groups assigned to the SM have one TB each. For example, if our N is 2 and x is
2, then we have 6 groupings of (0,4), (1,5), (2), (3), (7) and (6). This assignment aims at achieving
high L1 locality and load-balancing across the SMs.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

This approach captures more inter-TB locality than BCS and LRR. BCS groups two consecutive
TBs into a pair and assigns them to the same SM. This approach will not work for the applications
having column wise locality in a 2D grid or arbitrary locality pattern. Additionally, the TB pair
assignment is delayed till the TB contexts for the pair is available, leading to resource starvation in
the SM. MST-TS overcomes the SM-under utilization issue observed in BCS by assigning a TB as to
the SM as soon as the context becomes available and using a graph-based representation which
accounts for all types of locality patterns.

However, it only captures one-dimensional sharing without considering data sharing between
more than one TB. Thus, we need a more generalized approach.

4.2 k-way Partition-based TB Scheduler (Kway-TS)

Although the MST ordering could enhance the data locality within TB groups, it considers a TB
that has the highest data sharing on the path and ignores other connections to a TB that may also
share data. Given a graph G (V, E), E’ is the set of edges belonging to the MST. In the MST ordering,
we only order the TBs based on the data sharing on E’. A partition based on the complete edge set
E should produce better inter-TB locality-aware groupings for L1 cache locality inside the SM.

We present k-way partitioning, in which k is the total number of partitions equal to the number of
SMs. We evenly partition the entire set of TBs to all the k SMs considering data sharing. For example
in Figure 7 (b), we partition the graph G into 4 groups to be assigned to 4 SMs. Graph-partitioning
tools, such as METIS [21] or Chaco [15] can be used, to partition the graph in a load-balanced
manner while maximizing the sum of edge weights within partitions. In this work, we utilize METIS
for graph partitioning. The main advantage of this method over MST-ordering is that the graph
is partitioned in a way that the groups have the highest connectivity, i.e. TBs have the highest
locality within a group. Therefore, it leads to a much higher L1 locality. Since all the TBs in a
partition cannot execute concurrently due to resource limitation in an SM, we re-order the TBs in
each partition using Prim’s MST such that the subset of TBs in each partition executing concurrently
has maximum locality with each other.

One disadvantage of k-way partitioning is that L1 data locality is maximized within each partition.
However, each partition is executed in an SM over the entire kernel runtime, with multiple partitions
without locality running simultaneously on different SMs. The locality between the SMs may be
lost leading to L2 thrashing. This type of scheduling prioritizes L1 locality over L2 locality.

4.3 Recursive Bi-partition-based TB Scheduler (RB-TS)

The problem mentioned before with k-way partitioning inspires us to design the recursive bi-
partitioning scheduling for TBs to guarantee maximum data locality across L1 and L2 and load
balance between TB groups. As shown in Figure 7 (c), we recursively partition the graph G into two
parts until the partition size is less than the maximum allowed TBs in each SM (which we denote
as x from Section 4.1). This essentially creates a binary tree where the leaf nodes (G;, G,, G3 and
G,) are prioritized from left to right. This preserves L1 locality by TBs grouped within the same
leaf node, and preserves L2 data locality by concurrently scheduling adjacent groups on different
SMs that share the same parent.

The pseudocode for our recursive bipartitioning algorithm is shown in Algorithm 1. Q is the
queue to store the TB groups, which need further partitioning. L stores all the final leaf TB groups
in the partition tree. At every iteration, we pop out one sub-graph G; from the queue and partition
it into two different TB groups. If G; is smaller than the TB capacity of an SM, we get one final
TB group. Otherwise, the algorithm pushes it to the back of the queue Q and waits for further
bipartitioning. Our algorithm uses METIS to achieve recursive bipartitioning with load balancing.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

12 Tripathy et al.

Algorithm 1: Recursive bipartitioning

1 Let Q be the queue of TB groups

2 Let L be the list of TB groups for SM scheduling
3 Q.push(Go)

4 while Q not empty do

5 G; =Q.front()
6 Q.pop()
7 (G?, G})=METIS partition(G;, n = 2)
8 if G?,size() < maxTB then
9 ‘ move G? to list L
10 else
1 | Qpush(G?)
12 end
13 if Gl.1 .size() < maxTB then
14 ‘ move Gi1 to list L
15 else
16 ‘ Q.push(Gil)
17 end
13 end

5 PAVER RUNTIME

In this section, we will discuss the generalized PAVER Runtime, which schedules thread blocks
(TBs) based on graph-based TB grouping strategies. Once the TB groups have been created and
re-ordered at JIT compilation, the TB scheduler uses them at runtime to schedule TBs among SMs.
For PAVER TB Scheduling policies, a global queue (located in global memory) is used to store the
pointers to the TB groups. We assume that the maximum number of concurrent TBs executing on
an SM is x, which is dependent on the kernel resource requirement like registers, shared memory,
local memory and number of threads in an TB.

5.1 Hardware Implementation

The architectural modification needed for supporting PAVER is shown in Figure 8. Once the kernel
is loaded, the TB groups and ordering within each group are stored in the global memory as an array
of arrays. The global queue stores the array of partitions. Each entry in the array corresponds to a
partition and points to the head pointer of an array that stores all the TB groups of that partition in
order. The number of TB groups and size of each TB group differs by the partitioning technique
used. Each SM is associated with two registers (next, tail) which point to the TB group’s head
(initially) and tail assigned to that SM, respectively. Another 2-byte register in the SM stores the
next TB ID i.e. TB group[next]. Once the current TB from the TB group is issued to the SM and
starts executing, the next register value is updated to point to next TB in the TB group and the next
TB register is loaded with the new value. This next TB register guides the thread block scheduler.
Storage Overhead: The 3 extra registers per SM to store next, tail and nextTB incur an area
overhead of 64-bit * 2 (for next and tail) + 16-bit (for nextTB) i.e. 18 Bytes. So, total storage
overhead for Fermi (15 SMs), Pascal (28 SMs) and Volta (80 SMs) are 270 Bytes, 504 Bytes, and 1440
Bytes respectively. This overhead is negligible compared with the area of other on-chip storage
structures in Fermi/Pascal/Volta GPU such as L1 cache (240KB/720KB/480KB), shared memory
(1920KB/3840KB/3840KB) and Register File (1920KB/14MB/40MB).

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

Global Memory

012 3 456 7

.-.-- Global Queue

|->.-.--.-- TB Group 6

0 1 O O 5 Group 2
1 O O 75 Group 1
1 I I I I I 6 Group O

head tail
»

\
\
\
\
\
\

\

il
3 Registers next ‘ tai
per SM nextTB = TB GroupO[next]

M, C SM,,

Fig. 8. Storing TB Groups in Global Memory: Once the TB-Groups are generated by different graph-
partitioning strategies (MST, Kway, Recursive Bipartitioning), they are stored in the global memory. A
global queue (located in global memory) is used to store the pointers to these TB groups. Each SM is associ-
ated with two registers (next, tail) which point to the TB group’s head (initially) and tail assigned to that
SM, respectively. Once the current TB from the TB group is issued to the SM and starts executing, the next
register value is updated to point to next TB in the TB group and the next TB register is loaded with the new
value i.e. TB group[next]. This next TB register guides the thread block scheduler.

Timing Overhead: Any timing overhead would occur when the nextTB is yet to be loaded from
memory. However, this operation is off the critical path as the fetching occurs while the TBs are
executing on the SM. The only time the penalties occur is when there is a free TB context available
in an SM but there is no ready TB to be issued. However, this scenario is very rare as the time taken
for loading a TB from memory is very small compared to the TB execution time.

5.2 Task Stealing

Towards the end of the execution run, if the scheduling of a group to an SM leads to load imbalance,
we utilize task stealing to balance out the load of the last group amongst SMs. Note that since
PAVER focuses on RAR locality, rather than RAW, it will not preclude cases where issued thread
blocks on a busy GPU are dependent on still-unissued TBs which can result in a deadlock.

When there are no more unassigned groups, we employ task stealing to improve performance
through load-balancing. Ideally SMs should finish their workloads all at the same time. However,
there are workloads of different sizes on each SM. Therefore, an SM could finish early and stay idle
while the other SMs are still working on their TB groups. With task stealing, however, we take a
TB assigned to a busy SM (but not yet issued) and reassign it to a free SM. By tapping into the freed
resources, we can make sure that the SMs are utilized as much as possible until the application’s
termination, resulting in additional performance.

Task stealing is employed in k-way-TS and RB-TS. In MST-TS, the TB-Group size is 1, hence a
SM does not have more than 1 TB waiting in the TB group. When all the tasks in the TB group
are exhausted and SM has a free TB context, it is marked as recipient SM. While, the SM with
maximum number of waiting tasks in the TB group is the donor SM. The "WaitingTB" of each SM
is determined by the number of waiting tasks in its TB group (obtained from SM.next and SM.tail).
The granularity of tasks stolen is determined as: Maxw aisingTB -~ AveragewaitingTB-

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

14 Tripathy et al.

Algorithm 2: Task Stealing Algorithm

1 Maxw aitingTB=0

2 AUerageWaitingTBzo

3 for SM in range(0, total SM) do

4 WaitingTB= SM.tail - SM.next

5 if WaitingTB > Maxw qitingTB then

6 Maxw gitingT=Waiting TB
7 DonorSM=SM
8 end

9 AveragewamngTB += WaitingTB
10 end
1 Averagew aitingTB /= total SM
12 Stolen TB count = Maxw aitingTB - AveragewaitingTB
13 return DonorSM, Stolen TB count

If Stolen TB count > 2, it still captures some locality. Task stealing affects the L1 locality within
the donor SM but the overall kernel execution saves the extra cycles by load-balancing the SMs.
Also, the locality at L2 level is still preserved.

Storage Overhead: For the task-stealer, 3 16-bit registers are used to store the Maxw iringTB.
Averagew aitingTB, Stolen TB count which accounts for 6 Bytes. This overhead is negligible compared
with the area of other on-chip storage structures in Fermi, Pascal and Volta GPU.

Control logic Overhead: The task stealer uses a very simple control circuit consisting of 3 adders,
1 comparator and 1 divider. The area and power overhead of these control logic would be negligible
compared to the GPU chip area.

5.3 Generalized Runtime Algorithm for all TB Policies

Once the kernel starts executing, TB scheduler assigns the TB groups from the global queue to the
SMs in a round-robin manner. As shown in Figure 9, once a TB group is assigned to an SM, the
SM.next and SM.tail are initialized to point to the TB group’s head and tail, respectively. Due to
limited hardware resources, a limited number of TBs can be issued and executed concurrently in an
SM. A TB (stored in SM.nextTB) from the assigned TB group is issued to the SM as soon as a free TB
context is available. Upon TB issue, SM.next is updated to point to next TB in the assigned TB-Group.
TB-scheduler then fetches the nextTB to be issued, located at TB Group[SM.next] and fills up the
SM.nextTB register. If SM.next == SM.tail, then all the TBs in the TB group are exhausted. The
PAVER TB scheduler will then assigns another available TB group to the SM.

When all the entries in the global queue are exhausted, the load imbalance occurs, as an SM has
exhausted its TB group and has a free TB context available, while other busy SMs have TBs waiting
in their assigned TB groups. In this scenario, the task stealing is enabled. The donor SM and number
of TBs to steal are determined as per the task stealing algorithm (described in Algorithm 2). The
tasks are stolen from the tail of the donor TB group and the tail of the donor SM is updated. After
the task stealing, SM.next and SM.tail are updated accordingly. For example: There are 4 waiting
TBs in the TB-Group of the donor SM indexed as (T By, TBy, TB,, TBs), DonorSM.next = TBy,
DonorSM.tail = TBs and Stolen TB count = 2. After Task-stealing, recipient SM.tail is updated
to donor SM.tail i.e. TBs. Donor SM.tail is decremented by the stolen TB count and points to TB;.
Recipient SM.tail points to (DonorSM.tail + 1) i.e. TB,.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

i TB-Group Assign a TB-group from Global
Assignment Y Queue to SM
-
SM.next = TB-Group.head
SM.tail = TB-Group.tail
N
Assign SM.nextTB | Y SM has free TB

SM.next ++ | context?

Task Issue

l Y [No pending TB-Groups in Global Queue]

Task Stealing

1. Determine Donor SM and Stolen TB count

2. Reassign TBs from from a donor SM to this SM
SM.tail = Donor SM.tail
Donor SM.tail -= Stolen TB count
SM.next= Donor SM.tail +1

Fig. 9. PAVER Runtime Flowchart

6 EVALUATION
6.1 Methodology

We use GPGPU-Sim [5] with simulation parameters in Table 1 to model GTX480 Fermi, TITANX
Pascal and TITANV Volta GPUs. The warp scheduling policy follows a greedy-then-oldest (GTO)
policy [48]. Our thread block scheduling technique can be run with any warp scheduler, but we
find GTO to provide the best performance. Apart from our MST-TS, k-way-TS and RB-TS, we also
implement the Loose Round Robin (LRR) and Block CTA Scheduler (BCS) scheduling policy as the
baseline. We did not compare with warp scheduling policies, such as CCWS [49], because they are
orthogonal to TB scheduling and can be applied to PAVER to further improve the performance.

LRR scheduler selects one SM at a time, and assigns a TB in a sequential order. LRR is one of
the the fairest schedulers. However, since non-adjacent TBs are assigned to the same SM, there is
less locality among them and their data accesses may cause the L1 cache to suffer from thrashing.
Meanwhile, the locality will mostly remain on the L2 cache level because adjacent TBs will execute
at the same time but in different SMs. BCS [29] is similar to LRR with one difference: it schedules
two neighboring TBs at the same time with the assumption that the highest locality among TB
occurs in neighboring pairs. This specifically benefits 2D grid-type workloads only. Since BCS
will only schedule if the SM has enough resources to fit in two new TBs, it can potentially lead
to performance reduction due to lack of resources. In the worst case, if no free context for a TB
pair can be found during the execution, it may add unnecessary cycles to the execution by causing
task serialization, whereas it could avoid such cases by filling any free context in the SM without
pairing the remaining TBs in that cycle. BCS has better L1 locality than LRR, but it can be improved
much more. The L2 locality remains the same as LRR.

6.2 Benchmarks

Benchmarks shown in Table 2 are selected from Parboil [54], Rodinia [7], Polybench [45], ISPASS
[1], and CUDA SDK [36] benchmark suites. All these suites are widely used in evaluating a GPU
architecture’s performance. Out of all the kernels in these suites, we used a subset that have high
as well as low inter-TB locality. However, we also used a few benchmarks with little to no locality

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

16 Tripathy et al.

O Execution Time mOverhead Time
1.5
3
£ 13
=
1.1
- 09
E
5 07
ww
- £ 05
0.3
QOOn DONN V0NN NOBD QOB DODN PONN VONH POBNH DOBD VODN VODNH POOH NOBN DODH PODN VODH PODH POBD DODD PODH POHN
grkk onbbk obbk obbk obbk obbk obbk obbk obbk oFbk oFbk obbk ofbk oFbk oFbk oFbk ofbk obbk ofbk obbk obbk ok
S < H < < < H H H & < H & & & < < < < < < < <
SYR2K SYRK MM BTR HTW HS SRAD AVG BFS TPACF owt SPMV PF sTO MGS AVG SAD mMum BP BLK AVG[NO] AVG
15 [HIGH] [Low] [ALL]
o
E 13
=
1.1
— 09
3
o 0.7
g
o c 05
0.3
QOO QOOD GONN PONN NOOH AOOD AODD PODN VNNH POOD AODD PANN PDNH GOODH AODD AANN VNN VOOH AODD ADOD PDNH VNN
ghkk gRik ORkR oRbl gRik gRRE Okkh obkl oRiE ORbR ORkR obkk gRRE oRbR ORbR obbk gRke oRkR oRkR oRik gRie okkh
£ 058 “bE2 "hER “bER "hER "0ER “LE2 “hIR “LER "L "0 “LER "hIR “LER "R "L "LER "bsR "L “hbsR "L "LEe
S =
< SYR2K SYRK MM BTR HTW Hs SRAD AVG BFS TPACF DWT SPMV PF sTO MGS AVG SAD mMum BP BLK AVG[NO] AVG
[HIGH] [Low] [ALL]
1.5
]
£ 1.3
IS
1.1

0.5
0.3

=
?
=
=
=
=
=
=
=

! QVON VOV NVOD VVON VENE BVEN VEVE NVED VNDH NOVB PVOH VOVH AVHD VNDH NAND AVON VOVH AVOD VNDH NOND BVAN VOVD
gRin gnon Sopn SRR GRoR SnoR SROR GRoD SnoR GROD Snon SRER ORED Snon SRER gnob Sobn gnen gnon sopn ghnn snep
5i8 Rg% "hiS “5iR RU% “piS Si® HIS Shis o9 LIS SHid Siip SLsd Siid Sigl Shid Siid Sngw Spis Sriml Snge
5 S! Ex Ex EX EX EX EX EX EX EX EX Ex Ex Sx Sx Sx Sx Sx S! Sx Ex EX
z SYR2K SYRK MM BTR HTW HS SRAD AVG BFS TPACF DWT SPMV PF STO MGS AVG SAD MuMm BP BLK AVG [NO]| \VG
[HIGH] Low] [ALL]

High Inter-TB Locality Low Inter-TB Locality No Inter-TB Locality

Fig. 10. Kernel Execution Time and JIT Analysis Overhead of BCS, MST-TS, k-way-TS, RB-TS normalized w.r.t.
baseline TB scheduling policy (LRR), on Fermi (top row), Pascal (middle) and Volta architectures (bottom).

to test the impact of our TB scheduling policies to see if they are affected in any way. As shown in
Figure 2, The benchmarks such as SYR2K, SYRK,MM, BTR, HTW, HS and SRAD which have at
least 50% Inter TB Data-references (Inter-TB + Intra-TB N Inter-TB) are considered high-TB locality.
The benchmarks with less than 50% Inter TB Data-references are considered low-TB locality. The
benchmarks which show low-TB locality are BFS, TPACF, DWT, SPMV, PF, STO and MGS. The
benchmarks without any inter-TB locality are SAD, MUM, BP and BLK.

6.3 Results

Speedup: Figure 10 displays the kernel execution time as well as JIT Analysis Overhead of our
different TB scheduling policies with respect to LRR and BCS. The x-axis shows the benchmark
name, and the y-axis shows the Execution time + JIT Overhead w.r.t. LRR. The results have been
normalized to the LRR TB scheduler. The TB policies LRR and BCS do not involve JIT analysis,
hence, JIT time is excluded in BCS result. GPU kernel execution time is calculated using the kernel
execution cycles and core frequency (from Table 1). On an average, the JIT overhead is observed to
be a very negligible fraction (1%) of the total kernel execution time.

Figure 11 displays the speedup of our different TB scheduling policies with respect to LRR and
BCS. The x-axis shows the benchmark name, and the y-axis shows the speedup w.r.t. LRR. The
results have been normalized to the LRR TB scheduler. The speedup of PAVER TB scheduling policies
over the baseline (LRR) is calculated as Speedup = g el esscution tine n baseline -
Fermi (Figure 11 (top)), for applications with high inter-TB locality, on an average, the TB policies:
Maximum Spanning Tree-based TB Scheduler (MST-TS), k-way partition based TB Scheduler (k-
way-TS) and Recursive Bipartition-based TB Scheduler (RB-TS) have 2.8%, 23.8% and 29% speedups

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

17

E Kway-TS B RB-TS

B MST-TS

BCS

[1v]loAv

Sy [ON] oAV

m—
T
e]
i

——
b
s dd
Cerrres
e)
)

ELs NN

07777775

avs

Wy (Mol oAy

[rer—
= SOW
55055555,

ols

e AINdS
|z

|

ima

s
i

B 40VdL
o555

EI

o g
Crrrrrrrrrrrs

CITEEEIID [HOIH] DAY

MLH
uig
WA
T NUAS
NTUAS
TN RQY

- - o o o
(x) 1waa4 u dnpaads

B3 MST-TS E Kway-TS H RB-TS

BCS

s
s [mvloav

[ON] oAV

B NN

[mo1] onv

I gopy

e 01S
Trrssiis

BRI 4d
Crrrrrsssess

AWdS
]

40vdL

[HOIH] DAY

avis

DO MM

ylia

W

T WHAS

e TA T
Crrrrrrrrrrr.

TN ey
S od

c o o

(x) jeaseq ui dnpaads

H RB-TS

E Kway-TS

MST-TS

BCS

<

G
e e

[1v] oAV

[oN] oAV

pat:]

dg

WNW

D

[mo1] oav

SO

NWdS

ima

40vdL

s49

22 [HOIH] oAV

High Inter-TB Locality

[zrrrrrzs

T NH®ey
- - o ©o o

(x) eajop ur dnpaads

avis

MIH

yig

W

NYAS

NTYAS

No Inter-TB Locality

Low Inter-TB Locality

Fig. 11. Speedup of BCS, MST-TS, k-way-TS, RB-TS normalized w.r.t. baseline TB scheduling policy (LRR), on

Fermi (top row), Pascal (middle) and Volta architectures (bottom).

BCS EMST-TS EKway-TS HRB-TS

CLRR

vl oav

[oN] oAY

£
3
o
2
B2
L
3
£
(=]
wow =
: [mo1] oAV
. SON
2
3
o1s g
2
g
3
AWds E
2
o
2
[HOIH] DAY
2
g
o
2
R
L
8
£
<
2
T

S WUAS

NTYAS

, BCS, MST-TS, k-way-TS and RB-TS in Fermi.

Fig. 12. L1 miss rate comparison of LRR

respectively as compared to baseline LRR. The average speedup for applications with low inter-TB

locality are for MST-TS, k-way-TS and RB-TS are 1.8%, 2.5% and 3.8% respectively. We also tested our
TB policies on the benchmarks SAD, MUM, BP and BLK which do-not have any inter-TB locality

to see if the IPC is affected by the new TB scheduling policies. It is observed that the performance

of our proposed TB policies for these applications is reduced by a negligible amount 0.15%,0.3%

and 0.5% for MST-TS, k-way-TS and RB-TS respectively as compared to the baseline LRR scheduler.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

18 Tripathy et al.

Overall, considering the applications from different inter-TB locality categories (high, low and
no-sharing), MST-TS, k-way-TS and RB-TS show an average speed-up of 1.8%, 10.1% and 12.6%
respectively. PAVER was evaluated for the recent architectures Pascal and Volta. Our graph-based
TB policies MST-TS, k-way-TS and RB-TS achieve an average speedup of 10.8%, 32.5% and 49.1%
for high inter-TB benchmarks; 0.2%, 1.8% and 3.7% for low inter-TB benchmarks; and 3.3%, 13.32%
and 20.49% overall for different inter-TB locality applications in Pascal (Figure 11 (middle)). We
observe that PAVER fares well in Volta (Figure 11 (bottom)), where MST-TS, k-way-TS and RB-TS
achieve an average speedup of 4.5%, 28.6% and 41.2% for high inter-TB benchmarks; 0.4%, 3.5% and
3.8% for low inter-TB benchmarks; and 0.18%, 12.4% and 17.4% overall for different inter-TB locality
applications.

The high inter-TB locality benchmarks get significant improvement in IPC through our graph-
based TB scheduling policies, upto 2.2x for SYRK benchmark (Fermi). Note that our work is
orthogonal to warp scheduling techniques, and therefore adding a warp scheduler [18, 35] on top
of the TB scheduler could further increase the speedup.

In the case of BCS, if the maximum thread block (TB) per SM limit is an odd number, it leads to
thread block throttling, which means some of the thread blocks could not be jointly assigned due
to the lack of free TB contexts in the SM. For example, in the STO application, there are 384 thread
blocks and yet 3 thread blocks executing on the SM at the same time (maximum concurrent TB
execution per SM depends on the resources like registers, local memory, shared memory, constant
memory consumed by each TB). The BCS suffers drastically because every SM is assigned to
execute 2 thread blocks instead of 3 as in the baseline. Similarly, in HS benchmark 3 TBs execute
concurrently in a SM and lead to severe throttling incase of BCS TB policy which leads to around
22% slower execution than LRR. Similarly, for benchmarks like SYR2K, SYRK, BP and MGS even if
the maximum TB per SM is even i.e. 6, 6 ,6 and 8 respectively, whenever a TB finishes execution
in a SM, BCS does not start executing the next TB immediately. Rather, it waits for 2 TB contexts
to be freed up so that a pair of TB can start executing. This leads to SM resources starvation and
inferior performance by increasing the execution time of SYR2K, SYRK, BP and MGS by 7%, 9%
,6% and 5% respectively w.r.t LRR. Our policies, however, do not lead to throttling as evident in
Figure 11. In addition, BCS assigns every two consecutive TBs to the SM based on the assumption
that the neighboring TBs would always have a high inter-TB locality, which does not hold for 2-
and higher-dimensional grid applications, where the locality could be between TBs in a column.
Our graph-based approaches, however, are generalized methods and take all types of data access
patterns into account.

It may be pointed out that prior work [31] covers a limited pattern behavior which has locality
along the X-dimension or Y-dimension of the grid. In our paper, any locality pattern (shown in
Figure 5) can be analyzed in form of a graph and partitioned among the SMs to leverage maximum
locality within the SM. Applications such as BTR, BFS and SPMV having irregular data-locality
pattern application have been analyzed through our graph-based approach and gives significant
speedup for the Fermi, Pascal and Volta architectures as shown in Figure 11. We get significant
performance benefits compared to the baseline LRR for the unstructured applications BTR (4.52%
for Fermi, 22.8% for Pascal and 5.9% for Volta), BFS (4.4% for Fermi, 12.8% for Pascal and 9.85% for
Volta); and SPMV (-0.5% for Fermi, 4.9% for Pascal and 13.7% for Volta).

Effect of Task Stealing: When all the thread blocks on an SM finish early and the SM is idle, the
thread blocks on a busy SM are reassigned to the free SM for the load balancing purpose. Task
stealing is beneficial for only k-way-TS and RB-TS approach as in these approach the TB groups
are pre-assigned to the SM without accounting for the actual execution time of each SM. How-ever
in the MST-TS the load-balancing is done implicitly when the TB from the MST are assigned to the
SM in a round-robin fashion. Task stealing re-balances the workload of each SM when the kernel

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

BCS MST-TS = RB-TS

0.8
0.6
0.4
0.2

BFS
SAD

Normalised L2 Accesses in Fermi

AVG [NO]
AVG [ALL]

AVG [HIGH] ?

AVG [LOW]

0.8
0.6
0.4
0.2

SYR2K

Normalised L2 Accesses in Pascal

" a ~ — -

£ ER a 8 3

= © °

o > >
<

z <

. BCS & MST-TS S Kway-TS ERB-TS

£ 1 5 N
2 0.8 . ¥
s 0.6 ¥
H . &
g : ¢
3 0.2 EI B : §=
2 0 el N | N

4 1 = W oL = > W w p— — —_

i 5% 5 Byszrey 3 g 3

: 5 o z L S e 3
>

2 2 g H 2
High Inter-TB Locality ‘ Low Inter-TB Locality No Inter-TB Locality

Fig. 13. L2D access comparison for BCS, MST-TS, k-way-TS and RB-TS normalized w.r.t. LRR for applications
with high, low and no inter-TB locality, on Fermi (top), Pascal (middle) and Volta architectures (bottom).

is on the verge of finishing the execution and some of the SMs have already finished their work.
Average Performance benefits of 3% and 2% were observed for k-way-TS and RB-TS respectively
w.r.t no task stealing case in Fermi.
Effect of Cache Size: Increasing the cache size shall reduce the capacity misses in the cache.
However, the cache in GPUs tend to be limited in size. Since in the Fermi architecture 64KB of RAM
had configurable partitioning between shared memory and L1 Cache, we increased the L1 Cache
size from 16 KB to 48 KB to see the effect of the cache size on the performance of applications.
With increased cache size PAVER[RB-TS] outperforms the baseline configuration by 16%.
Miss Rates: Figure 12 shows the L1 miss rate of different TB scheduling methods explored in this
paper; MST-TS, k-way-TS, RB-TS, BCS and LRR. It can be seen that our recursive bipartitioning
method reduces the L1 miss rate over LRR by 43.3% (high inter TB locality), 10% (low inter TB
locality) and 21% (all applications), contributing to the speedup. The L1 miss rate shown in Figure
12 is proportional to the L2 accesses shown in Figure 13 (Fermi). Hence, we excluded the L1 miss
rate results for Pascal and Volta as normalised L2 accesses accounts for that.

The average conflict and capacity miss for all the benchmarks is 9% and the cold miss constitutes
91% of the total miss at L2. Hence, we observe very minimal reduction in L2 misses as majority

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

20 Tripathy et al.

of them are cold misses, however the accesses to L2 are reduced by 21% as the graph-based TB
policies reduce the misses at L1. Reduced accesses to L2 cache and shorter execution time leads to
energy saving. Figure 13 shows the L2 accesses for all the TB scheduling policies normalized to
baseline LRR. In Fermi (Figure 13(top), TB policies MST-TS, k-way-TS and RB-TS lead to reduced
L2 accesses of 78.4%, 61.4% and 56.7% for high inter-TB benchmarks; 95%, 91.88% and 90.22% for
low inter-TB benchmarks; and 89.6%, 81.7% and 79.3% overall for all applications. In Pascal (Figure
13(middle)), TB policies MST-TS, k-way-TS and RB-TS lead to reduced L2 accesses of 79%, 67%
and 51.59% for high inter-TB benchmarks; 94.2%, 92.6% and 89.1% for low inter-TB benchmarks;
and 89.6%, 84.3% and 76.94% overall for different inter-TB locality applications. L2 transactions are
reduced for Volta (Figure 13 (bottom)) , where MST-TS, k-way-TS and RB-TS reduce accesses by
significant fraction of 76.4%, 65% and 59.8% for high inter-TB benchmarks; 90.9%, 85.5% and 85.3%
for low inter-TB benchmarks; and 87%, 80.5% and 78.3% overall for all applications.

It is noteworthy that in both k-way partitioning (k-way-TS) and recursive bipartitioning (RB-TS),
in cases where the number of TBs are less than the total SM capacity, i.e. total TBs that all SMs
can hold, all thread blocks are assigned to their respective SMs immediately after the kernel’s
initialization. This means that both schedulers would perform the same.

Locality captured in each partition is compared k-way-TS and RB-TS. Locality is expressed

in-terms of the sum of the edge weights of the sub-graph in the partition. The more is the edge
weight of each partition, more is the locality captured. In k-way the partition size is huge and the
concurrently running TB might not necessarily have the maximum sharing within the partition.
How-ever in RB-TS we reach a sweet-spot where all the concurrently running TB i.e. all the TB
inside a partition are likely to have maximum sharing. This is why we observe lower L1 miss rates
in RB-TS as compared to k-way-TS.
Comparison with cache-fit graph partitioning policy : A prior work [9] has employed cache-
fit policy on SPMV application using edge-partitioning and kernel-splitting. To perform a com-
parison, we evaluated SPMV application in Parboil benchmark suite for cache-fit policy using
GPGPU-Sim. Through benchmarking of the SPMV execution, the TB size was found out to be 15
KB. Since the default L1 size in Fermi is 16KB, 1 TB is mapped to the SM in the cache-fit policy. In
our policy, we had employed 5 TBs based on the register and threads usage per TB. Similarly, the
number of TBs per SM was reduced to 3 and 2 for Pascal and Volta architectures so that the working
set of the concurrent TBs fits into the L1 cache. Overall, we observed that the normalized speedup
is reduced in the cache-fit policy compared to the baseline LRR policy. They are 58% (Fermi), 91.24%
(Volta) of the baseline. Reducing the number of concurrent TBs in the SM in cache-fit policy helps
reduce the pressure on L1 cache, resulting in lower L1 cache misses. However, it also results in the
under utilization of a SM and starvation of the other SM resources resulting in increased execution
time. In Pascal, the number of TBs mapped to SM is set to 3 due to a larger L1 size, resulting in a
speed-up of 109.73% over baseline. However, it may be reminded that the RB-TS policy in PAVER is
even better than the baseline LRR by 99.4% (Fermi), 104.94% (Pascal) and 114.9% (Volta). In cache-fit
policy, the normalised L1 miss rate is reduced compared to the baseline, 42.72% (Fermi), 87.32%
(Pascal), 100.6% (Volta) of the baseline, similarly, in RB-TS, the normalized L1 miss rate is reduced
compared to the baseline, 86.18% (Fermi), 94% (Pascal), 99% (Volta) of the baseline. However, the
L1 miss-rates are reduced in our RB-TS for all architectures without under-utilizing the other SM
resources, resulting in a high speedup.

7 RELATED WORK

Cache Locality: Koo et al [25] categorize the load instructions into deterministic, where the
address is calculated using thread ID, thread block ID, etc., and non-deterministic (from user input,
etc.) Deterministic loads are observed to have a more coalesced access pattern in a stark contrast to

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

21

the non-deterministic loads which can create far more reservation fails in the cache. They then
suggest solutions to alleviate the issue with such loads, such as prefetching for indirect addresses
[27], reworking the cache hierarchy, and assigning neighboring TBs with data locality to the same
SM, the last one being the focus of our work. Vijaykumar et al [59] has also shown the potential
of exploiting locality by proposing the ‘Locality Descriptor’, which enables definition of locality
abstractions on software by the programmer, and utilization thereof by the hardware, improving
performance when exploiting locality in the caches. Our work lifts the requirement of software
abstraction definition from the programmer, and instead seeks to use a generalized compiler-based
approach to extract the block locality among the TBs and utilize them when assigning SMs.

TB Scheduling: Making use of the locality among thread blocks can prove challenging since
very little is known about the exact underlying TB scheduling architecture. Several cache locality
algorithms and structures have been proposed for GPGPUs in recent years which include some
form of a thread block scheduler within. As mentioned earlier, most of them have a rather naive
approach as they develop heuristics based on workload behavior (e.g. data layout) to exploit data
locality. Another drawback is that many of them target specific structures only, e.g. grid applications
[57]. Our work, however, focuses on a more generalized approach to exploit data locality where
there is no need to know the application’s access patterns, making it effective for applications with
all types of structures.

Chen et al [8] propose a hardware-software approach for applications with structural data access,
both row- and column-major applications. It checks the address ranges of the ready TBs and issues
the TB with the maximum overlapping address range with the TBs already executing on that
SM, increasing data reuse and improving the performance. The maximum overlapping address is
determined with the assumption that each TB accesses a continuous 2D space in the cache, whereas
our work has a more generalized approach.

Also, in [55], Abdulaziz et al. devise a sharing-aware TB scheduler. Based on their observation
that around 70% of data sharing takes place between consecutive thread block IDs. It assigns TB
groups of consecutive TB IDs to the SMs while maintaining load balance among SMs. To aid the
scheduler, they also devise a cache replacement policy in L1 and L2 levels which prevents cache
block duplication in L1 and L2. Most of their performance benefits come from efficient cache
replacement policies as compared to their TB scheduling policy. The idea of temporal locality could
also be extended to dynamic parallelism [19]. Wang et al [60] propose a locality-aware scheduler
specifically for dynamic parallelism, in which the TBs belonging to child kernel will be scheduled
on the same SM as those of the parent kernel are on.This paper shows that similar to parallel TBs,
locality among parent and child TBs can also be high and therefore exploited.

Graph Partitioning based on Resource: In some of the emerging architectures, graph par-
titioning algorithms can be used to assign tasks to the best execution unit available. In [44], a
wafer-scale architecture is proposed to minimize communication overheads and memory access
latency. It aims to schedules thread blocks with high data sharing to adjacent processing modules.
The partitioning algorithm used seeks to minimize the number of edges moving across the par-
titions, i.e. shared data references. However, for non-neighboring devices to share data, multiple
“hops” are required among the modules, which can dramatically reduce the performance.

Warp Scheduling: Augmenting the warp schedulers exists in many works for different applica-
tions, including exploitation of data locality within the TB. In [49], the warp scheduler rearranges
the access patterns of different warps as well as the threads in the warps to reduce the L1 cache
misses and thrashing significantly, resulting in 24% performance improvement. The same authors
proposed [50] which checks the control flow of the execution and divergences, and uses a predictive
approach to schedule threads such that the L1 cache size usage and the likelihood of thrashing is
minimized, resulting in a 26% improvement over [49].

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

22 Tripathy et al.

Oh et al [43] propose a locality-aware warp scheduler coupled with a prefetching scheme, yielding
31.7% performance improvement over the baseline. In this work, cache access patterns are analyzed
and warps accessing the same cache line in the same time frame are grouped. If the first warp of
the group hits the cache, the rest of the group will also be prioritized under the assumption that
their accesses would also be hits, increasing data utilization before eviction. Should the first warp
miss, the prefetcher would attempt to pre-load the data for the other warps in the group as well.

It must be pointed out that we consider only spatial locality among the TBs because the temporal
localities depend on the warp scheduling policies inside a streaming multiprocessor (SM). These
are best handled by warp scheduling policies, such as CCWS [49], which can work orthogonal to
the TB scheduling policies. When applied with PAVER, they will further improve the performance.

Locality in CPU-related works: The idea of using data locality to improve the performance
and reduce the memory bottleneck started in the realm of CPUs and continued to multicores. As the
cores have become more complex, so have the cache hierarchies, which means that any unnecessary
cache action can now leave more of a negative impact on the performance and the energy efficiency
[61]. According to [64], even though exploiting inter-core cache locality is in progress, it should
not be without taking intra-core locality into account, for it could actually perform worse than
only exploiting intra-core locality. There have been analyses of the tradeoff between cache reuse
and vectorization on CPUs, but in the end, they should be used in the right place and it mainly
depends on the application type and the architecture [52]. Kandemir et al [20] argue that different
cache hierarchies in different architectures makes it difficult for the programmer to optimize the
application for all architectures, and presents a compiler-based method in which loop iterations are
assigned to different cores and scheduled based on the cache topology and cache access pattern.

In [64], Zhang et al. use a compiler-based strategy to create a computation block dependency
graph, targeting data reuse on multicore CPUs. Their observation on data reuse balance leads them
to develop a task mapping and scheduling policy that balances inter-core and intra-core data reuse.

Task stealing has also been incorporated and explored in recent literature. Yoo et al [61] propose a
locality-aware scheduler for unstructured parallel applications in a multi-core CPU which increases
the speedup and reduces the energy consumption for a 32-core system by 2.05x and 47% respectively,
and shows that the benefit will increase as the number of cores increase, an additional 1.83x for
1024 cores. They capture the data sharing of an application using special programming APIs and
use this information to create a task sharing graph. Then, they generate task groups to be launched
on each core keeping the cache topology in consideration. They also perform task reordering to
capture temporal locality and task stealing for load balancing.

The work proposed by Lifflander et al [33] increases cache locality for recursive programs
by tracking data reuse opportunities and, using work stealing, interleaving the execution of the
function that can use them.

8 CONCLUSION

In this paper, we have shown that the inter-TB locality can be exploited to improve the perfor-
mance substantially. Unstructured parallelism is a part of many GPU applications today and newer
architectures should take advantage of the data locality among the thread blocks. To this end, we
performed compiler analysis to measure the data reference sharing among TBs for various appli-
cations. Then we proposed three generalized graph-based TB scheduling policies based on MST,
k-way partitioning, and recursive bipartitioning. Our scheduling techniques reduce L2 accesses
by 43.3%, 48.5%, 40.21% and increase the average performance speedup by 29%, 49.1% and 41.2% .
We believe the results can be further improved by taking the time of data reference sharing into
consideration.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

23

ACKNOWLEDGMENT

We would like to thank Dr. V. Krishna Nandivada for identifying the locality information for the
locality graph generation problem. This work is partly supported by NSF Grants CCF-1815643 and
CCF-1907401.

REFERENCES

[1] 2009. https://github.com/gpgpu-sim/ispass2009-benchmarks. Accessed: 2018-04-11.
[2] AmirAli Abdolrashidi, Devashree Tripathy, Mehmet E Belviranli, Laxmi N Bhuyan, and Daniel Wong. 2017. Wireframe:

[11

(12

[13

[14
[15

(16

[17

[18

[19
[20

—

—

[tr}

=

]

]
]

[t

Supporting Data-dependent Parallelism through Dependency Graph Execution in GPUs. In 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 50). 600-611.

Umut A Acar, Guy E Blelloch, and Robert D Blumofe. 2000. The data locality of work stealing. In Proceedings of the
twelfth annual ACM symposium on Parallel algorithms and architectures. ACM, 1-12.

Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin, John Mellor-Crummey, and Nathan R
Tallent. 2010. HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685-701.

Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt. 2009. Analyzing CUDA workloads
using a detailed GPU simulator. In Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. IEEE, 163-174.

Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter, and Laxmi N Bhuyan. 2018. Juggler: a dependence-aware task-based
execution framework for GPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, 54-67.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.
Rodinia: A benchmark suite for heterogeneous computing. In Workload Characterization, 2009. ISWC 2009. IEEE
International Symposium on. leee, 44-54.

Li-Jhan Chen, Hsiang-Yun Cheng, Po-Han Wang, and Chia-Lin Yang. 2017. Improving GPGPU Performance via Cache
Locality Aware Thread Block Scheduling. IEEE Computer Architecture Letters 16, 2 (2017), 127-131.

Yanhao Chen, Ari B Hayes, Chi Zhang, Timothy Salmon, and Eddy Z Zhang. 2018. Locality-aware software throttling
for sparse matrix operation on GPUs. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18). 413-426.
Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and Nathan Clark. 2010. Ocelot: a dynamic
optimization framework for bulk-synchronous applications in heterogeneous systems. In Proceedings of the 19th
international conference on Parallel architectures and compilation techniques. ACM, 353-364.

Hodjat Asghari Esfeden, Amirali Abdolrashidi, Shafiur Rahman, Daniel Wong, and Nael Abu-Ghazaleh. 2020. BOW:
Breathing operand windows to exploit bypassing in GPUs. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 996-1008.

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J Knight, Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez,
Manman Ren, Alex Aiken, William J Dally, et al. 2006. Sequoia: Programming the memory hierarchy. In Proceedings of
the 2006 ACM/IEEE conference on Supercomputing. ACM, 83.

Naznin Fauzia, Louis-Noél Pouchet, and P Sadayappan. 2015. Characterizing and enhancing global memory data
coalescing on GPUs. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Computer Society, 12-22.

Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. 2010. SLAW: a scalable locality-aware adaptive work-stealing
scheduler for multi-core systems. In ACM Sigplan Notices, Vol. 45. ACM, 341-342.

Bruce Hendrickson and Robert Leland. 1993. The Chaco users guide. Version 1.0. Technical Report. Sandia National
Labs., Albuquerque, NM (United States).

Muhammad Huzaifa, Johnathan Alsop, Abdulrahman Mahmoud, Giordano Salvador, Matthew D Sinclair, and Sarita V
Adve. 2020. Inter-kernel Reuse-aware Thread Block Scheduling. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 17, 3 (2020), 1-27.

Ali Jahanshahi, Hadi Zamani Sabzi, Chester Lau, and Daniel Wong. 2020. GPU-NEST: Characterizing Energy Efficiency
of Multi-GPU Inference Servers. IEEE Computer Architecture Letters 19, 2 (2020), 139-142.

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K Mishra, Mahmut T Kandemir, Onur Mutlu,
Ravishankar Iyer, and Chita R Das. 2013. OWL: cooperative thread array aware scheduling techniques for improving
GPGPU performance. In ACM SIGPLAN Notices, Vol. 48. ACM, 395-406.

Stephen Jones. 2012. Introduction to dynamic parallelism. In GPU Technology Conference Presentation S, Vol. 338. 2012.
Mahmut Kandemir, Taylan Yemliha, SaiPrashanth Muralidhara, Shekhar Srikantaiah, Mary Jane Irwin, and Yuanrui
Zhnag. 2010. Cache topology aware computation mapping for multicores. In ACM Sigplan Notices, Vol. 45. ACM,
74-85.

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

https://github.com/gpgpu-sim/ispass2009-benchmarks

24 Tripathy et al.

[21] George Karypis and Vipin Kumar. 1998. A software package for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices. University of Minnesota, Department of Computer Science and
Engineering, Army HPC Research Center, Minneapolis, MN (1998).

Mahmoud Khairy, Vadim Nikiforov, David Nellans, and Timothy G Rogers. 2020. Locality-Centric Data and Threadblock

Management for Massive GPUs. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

IEEE, 1022-1036.

[23] Farzad Khorasani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani, Nuwan Jayasena, and Vivek Sarkar. 2018.

Regmutex: Inter-warp gpu register time-sharing. In 2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 816-828.

Hyunjun Kim, Sungin Hong, Hyeonsu Lee, Euiseong Seo, and Hwansoo Han. 2019. Compiler-Assisted GPU Thread

Throttling for Reduced Cache Contention. In Proceedings of the 48th International Conference on Parallel Processing.

1-10.

[25] Gunjae Koo, Hyeran Jeon, and Murali Annavaram. 2015. Revealing critical loads and hidden data locality in gpgpu
applications. In Workload Characterization (IISWC), 2015 IEEE International Symposium on. IEEE, 120-129.

[26] Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings

of the American Mathematical society 7, 1 (1956), 48—50.

Nagesh B Lakshminarayana and Hyesoon Kim. 2014. Spare register aware prefetching for graph algorithms on GPUs.

In High Performance Computer Architecture (HPCA), 2014 IEEE 20th International Symposium on. IEEE, 614-625.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.

In Proceedings of the international symposium on Code generation and optimization: feedback-directed and runtime

optimization. IEEE Computer Society, 75.

[29] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon Cho, and Soojung Ryu. 2014. Improving

GPGPU resource utilization through alternative thread block scheduling. In High Performance Computer Architecture

(HPCA), 2014 IEEE 20th International Symposium on. IEEE, 260-271.

Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. 2009. Fermi architecture white paper.

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk Corporaal. 2017. Locality-aware cta

clustering for modern gpus. In Proceedings of the Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems. ACM, 297-311.

Yun Liang, Xiaolong Xie, Yu Wang, Guangyu Sun, and Tao Wang. 2017. Optimizing cache bypassing and warp

scheduling for GPUs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 8 (2017),

1560-1573.

[33] Jonathan Lifflander and Sriram Krishnamoorthy. 2017. Cache locality optimization for recursive programs. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 1-16.

[34] Hoda Naghibijouybari, Khaled N Khasawneh, and Nael Abu-Ghazaleh. 2017. Constructing and characterizing covert
channels on GPGPUs. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
354-366.

[35] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu, and Yale N Patt. 2011.
Improving GPU performance via large warps and two-level warp scheduling. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 308-317.

[36] NVIDIA. 2007. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit. Accessed: 2018-04-11.

[37] NVIDIA. 2009. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. https://www.nvidia.com/content/
PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[38] NVIDIA. 2016. GeForce GTX 1080. http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_

GTX_1080_Whitepaper FINAL.pdf.

NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. http://images.nvidia.com/content/volta-architecture/

pdf/volta-architecture-whitepaper.pdf. Accessed: 2018-11-26.

NVIDIA. 2020. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/cuda-c-programming- guide/index.html#

just-in-time-compilation. Accessed: 2020-9-23.

[41] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture. https://www.nvidia.com/content/dam/en-zz/Solutions/

Data-Center/nvidia-ampere-architecture-whitepaper.pdf. Accessed: 2020-10-08.

CUDA NVIDIA. 2012. C Programming Guide, v4.2, April 2012.

Yunho Oh, Keunsoo Kim, Myung Kuk Yoon, Jong Hyun Park, Yongjun Park, Won Woo Ro, and Murali Annavaram.

2016. APRES: improving cache efficiency by exploiting load characteristics on GPUs. ACM SIGARCH Computer

Architecture News 44, 3 (2016), 191-203.

Saptadeep Pal, Daniel Petrisko, Matthew Tomei, Puneet Gupta, Subramanian S Iyer, and Rakesh Kumar. 2019. Archi-

tecting Waferscale Processors-A GPU Case Study. In 2019 IEEE International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 250-263.

[22

—

[24

[l

[27

—

[28

—

[30
[31

—

[32

—

[39

[

[40

[t

[42
[43

—

[44

[l

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#just-in-time-compilation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#just-in-time-compilation
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

25

[45] Louis-Noél Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL: http://www. cs. ucla. edu/pouchet/soft-

ware/polybench (2012).

Robert Clay Prim. 1957. Shortest connection networks and some generalizations. Bell Labs Technical Journal 36, 6

(1957), 1389-1401.

[47] K. Ranganath, A. Abdolrashidi, S. L. Song, and D. Wong. 2019. Speeding up Collective Communications Through Inter-

GPU Re-Routing. IEEE Computer Architecture Letters 18, 2 (2019), 128-131. https://doi.org/10.1109/LCA.2019.2933842

Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. 2012. Cache-conscious wavefront scheduling. In Proceedings

of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 72-83.

Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. 2012. Cache-conscious wavefront scheduling. In Proceedings

of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 72-83.

Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. 2013. Divergence-aware warp scheduling. In Proceedings of

the 46th Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 99-110.

[51] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe. 2005. Cache aware optimization of stream

programs. ACM SIGPLAN Notices 40, 7 (2005), 115-126.

Du Shen, Milind Chabbi, and Xu Liu. 2018. An Evaluation of Vectorization and Cache Reuse Tradeoffs on Modern

CPUs. In Proceedings of the 9th International Workshop on Programming Models and Applications for Multicores and

Manycores. ACM, 21-30.

[53] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. 2018. CUDAAdvisor: LLVM-based runtime profiling for modern
GPUs. In Proceedings of the 2018 International Symposium on Code Generation and Optimization. ACM, 214-227.

[54] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu,

and Wen-mei W Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial throughput computing.

Center for Reliable and High-Performance Computing 127 (2012).

Abdulaziz Tabbakh, Murali Annavaram, and Xuehai Qian. 2017. Power Efficient Sharing-Aware GPU Data Management.

In Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 698-707.

Devashree Tripathy, Hadi Zamani, Debiprasanna Sahoo, Laxmi N Bhuyan, and Manoranjan Satpathy. 2020. Slumber:

static-power management for gpgpu register files. In Proceedings of the ACM/IEEE International Symposium on Low

Power Electronics and Design. 109-114.

S. Tripathy, D. Sahoo, and M. Satpathy. 2019. Multidimensional Grid Aware Address Prediction for GPGPU. In 2019

32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID).

263-268. https://doi.org/10.1109/VLSID.2019.00064

[58] Dominic A Varley. 1993. Practical experience of the limitations of gprof. Software: Practice and Experience 23, 4 (1993),

461-463.

Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B Gibbons, and Onur Mutlu. 2018. The Locality Descriptor:

A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs. ISCA.

[60] Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili. 2016. LaPerm: Locality Aware Scheduler for

Dynamic Parallelism on GPUs. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium

on. IEEE, 583-595.

Richard M Yoo, Christopher] Hughes, Changkyu Kim, Yen-Kuang Chen, and Christos Kozyrakis. 2013. Locality-aware

task management for unstructured parallelism: A quantitative limit study. In Proceedings of the twenty-fifth annual

ACM symposium on Parallelism in algorithms and architectures. 315-325.

[62] Hadi Zamani, Yuanlai Liu, Devashree Tripathy, Laxmi N. Bhuyan, and Zizhong Chen. 2019. GreenMM: energy efficient
GPU matrix multiplication through undervolting. In Proceedings of the ACM International Conference on Supercomputing,
ICS 2019, Phoenix, AZ, USA, June 26-28, 2019. 308-318. https://doi.org/10.1145/3330345.3330373

[63] Hadi Zamani, Devashree Tripathy, Laxmi Bhuyan, and Zizhong Chen. 2020. SAOU: safe adaptive overclocking and
undervolting for energy-efficient GPU computing. In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design. 205-210.

[64] Yuanrui Zhang, Mahmut Kandemir, and Taylan Yemliha. 2011. Studying inter-core data reuse in multicores. In
Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems.
ACM, 25-36.

[65] Intel Developer Zone. 2017. Intel VTune Amplifier, 2017. Documentation at the URL: https://software. intel. com/en-
us/intel-vtune-amplifier-xe-support/documentation (2017).

[46

—

[48

—

[49

—

[50

—

[52

—

[55

[

[56

—

[57

—

[59

—

(61

—

ACM Trans. Arch. Code Optim., Vol. , No. , Article . Publication date: February 2021.

https://doi.org/10.1109/LCA.2019.2933842
https://doi.org/10.1109/VLSID.2019.00064
https://doi.org/10.1145/3330345.3330373

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Baseline GPGPU architecture
	2.2 L1/L2 hit and miss distribution

	3 Generating Locality Graphs
	3.1 PAVER overview
	3.2 Locality Graph:
	3.3 Identifying Locality Information

	4 PAVER Thread Block (TB) Scheduling
	4.1 Maximum Spanning Tree-based TB Scheduler (MST-TS)
	4.2 k-way Partition-based TB Scheduler (Kway-TS)
	4.3 Recursive Bi-partition-based TB Scheduler (RB-TS)

	5 PAVER Runtime
	5.1 Hardware Implementation
	5.2 Task Stealing
	5.3 Generalized Runtime Algorithm for all TB Policies

	6 Evaluation
	6.1 Methodology
	6.2 Benchmarks
	6.3 Results

	7 Related Work
	8 Conclusion
	References

