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Abstract—Exploiting data locality in GPGPUs is critical for
efficiently using the smaller data caches and handling the
memory bottleneck problem. This paper proposes a thread
block-centric locality analysis, which identifies the locality
among the thread blocks (TBs) in terms of a number of
common data references. In LocalityGuru, we seek to employ
a detailed just-in-time (JIT) compilation analysis of the static
memory accesses in the source code and derive the mapping
between the threads and data indices at kernel-launch-time.
Our locality analysis technique can be employed at multiple
granularities such as threads, warps, and thread blocks in a
GPU Kernel. This information can be leveraged to help make
smarter decisions for locality-aware data-partition, memory
page data placement, cache management, and scheduling in
single-GPU and multi-GPU systems.

The results of the LocalityGuru PTX analyzer are then
validated by comparing with the Locality graph obtained
through profiling. Since the entire analysis is carried out by the
compiler before the kernel launch time, it does not introduce
any timing overhead to the kernel execution time.

Index Terms—GPGPU, Cache management, Data locality,
Syntax tree

I. INTRODUCTION

General-purpose graphics processing units (GPGPUs)
have evolved as widely used accelerators delivering high
performance and throughput to many important application
domains like scientific computing, graph processing and
machine learning [1]. However, the modern day GPGPUs
suffer from memory contention, lack of parallelism and
load imbalancing resulting in under-utilization and energy
inefficiency [2]–[4]. Hence, efficient use of the memory
system as well as co-locating the compute and data together
is important for exploiting the massive computational ca-
pability offered by GPGPUs to their full potential. A key
approach to efficiently improve the memory bandwidth is
data locality – (i) increasing the data reuse within the SM
at the thread, warp and thread block (TB) levels, thereby
reusing the L1 cache lines before it is evicted; and (ii)
placing the data close to the computation so as to reduce the
communication across multiple SMs within a GPU or even
multiple GPUs. There is no generalized technique which
exploits the data locality present in various applications
to improve the efficiency of cache and memory system
usage. There have been prior research on addressing the

memory bottleneck issues, including prefetching [5], [6],
cache management [7], locality-aware schedulers [8], [9],
memory-level parallelism [10]–[12] etc. However, all these
techniques need the data locality information which is either
known a priori using profiling techniques, or learnt and
predicted during the kernel execution [13].

Limitations of Prior Works: Some of the recent works use
programming language constructs to associate a thread to
the mapped data in order to extract the data address range
accessed by the thread [14]–[17]. However, these approaches
add to the programmer’s burden of learning a new language
and using it to rewrite the program. Locality Descriptor [18]
expresses the data locality using program semantics, which
needs the programmer to explicitly specify the static tile
dimensions, compute and data mapping and data sharing
pattern. CODA [19] uses static analysis to compute the stride
distance between two consecutive thread blocks at runtime.
This information is used to determine the size of the data
accessed by a TB and ensure that the TBs and the data
they access are co-located on the same GPU. Though this
approach captures the TB index range in case of the 2D
regular grid applications exhibiting strided accesses, a more
detailed analysis of the code is needed to account for other
access patterns in various applications. TAFE [20] estimates
the thread address footprints of the static as well as dynamic
data-dependent applications before kernel launch. The thread
to data address index range relation coefficients are extracted
by manual inspection of the application source code. LADM
[21] classifies the TB locality pattern in the application into
one of seven patterns using static compiler analysis to check
for loop variance of array indices. However, this process
uses the CUDA source code, which may not be always
available to the user, whereas LocalityGuru seeks to find
the relationships between the GPU registers through PTX
analysis.

The static analysis helps us determine the stride distance
between two consecutive thread blocks in the grid as well
as the data-dependency between the TBs due to the loop
iterations. In LocalityGuru, we perform a detailed static
compiler analysis to automatically extract the thread to index
range relationship from the intermediate representation (IR)
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Fig. 1. Control flow graph of the PTX basic blocks (bb) for matrix multipli-
cation. Basic block 3 (highlighted) contains the ld.global instructions
and has a self-loop.

of the source code (in PTX format). This paper makes the
following contributions:
• We analyze the PTX code at JIT compilation time

before the kernel launch and perform the detailed static
index analysis to derive the equation for the thread/TB
mapping to data element indices accessed.

• We validate the results of the TB locality graph ob-
tained through automated LocalityGuru PTX analyzer
by comparing with the profiling data-locality results.
Our approach imposes zero timing overhead on the
kernel execution time.

The paper is organized as follows: Section II describes the
PTX analysis background. Section III discusses the process
of constructing the syntax trees and using them to extract
the locality behaviour of the kernel at the Thread-Block (TB)
level. Our results are discussed in Section IV. We describe
related work in Section V and we conclude in Section VI.

II. BACKGROUND

Static analysis for a GPU application has to take into
account the parallel nature of thread block executions and
data accesses. Otherwise, it is little different from a static
analysis meant for a sequential application.

A benefit of analyzing a flat IR such as PTX code
over the CUDA source code is that it has fewer program
constructs and simpler program semantics. For example,
CUDA constructs such as “for loop” and “while loop” that
are syntactically different, but semantically equivalent, tend
to correspond to similar PTX. Similarly, the conditional
“if-else” and “ternary” statements that have syntactically
different but semantically equivalent CUDA source code are
compiled to similar PTX code. PTX representation uses an
assembly-like structure for a virtual GPU architecture, and
therefore is at a much more abstract level than the SASS
format which executes on a specific GPU architecture.

Target architecture-independent PTX programs have an
assembly-language-style syntax with instruction operation
codes (opcodes) and operands. A common way of rep-
resenting PTX code is through the use of control flow
graphs (CFGs). Example of CFG for matrix multiplication
is shown in Figure 1. Nodes of a CFG represent basic

{
mov.u16 %rh1, %ctaid.x;
mov.u16 %rh2, %ntid.x;
cvt.u32.u16 %r3, %tid.x;
mov.u16 %rh3, %ctaid.y;
mov.u16 %rh4, %ntid.y;
cvt.u32.u16 %r5, %tid.y;
ld.param.s32 %r7, [N];
ld.param.u64 %rd3, [*B];
ld.param.u64 %rd7, [*A];
…
LOOP BB# 3: 
ld.global.f32 %f2, [%rd10+0];
ld.global.f32 %f3, [%rd6+0];
…
}

PTX

CUDA

__global__ void MatrixMultiplication(*A,*B,*C, N){
int ROW = blockIdx.y * blockDim.y + threadIdx.y;
int COL = blockIdx.x * blockDim.x + threadIdx.x;
If (ROW < N && COL < N){

For (int i = 0; i < N; i++) {
tempSum += A[ROW * N + i] * B[I * N + COL]

}
C[ROW * N + COL] = tempSum

} 
}

Fig. 2. CUDA source code and PTX IR for for Matrix Multiplication
Application

blocks, which are sequences of instructions without any
control flow statements in between. Edges are directed from
a source basic block to a target basic block showing the
possibility for control to jump from the source block to
the target block. There can be up to two possible edges
from a given basic block (in case of a conditional jump,
leading to a true block and a false block.) A great deal
of information can be derived from the CFG structure,
including the registers accessing a certain memory block,
their order, and sometimes the frequency, of those accesses.
In this work, we aim to extract this information before
runtime in order to help with the GPU’s cache management
and locality-aware task scheduling.

III. LOCALITYGURU

This section discusses a PTX analysis based approach to
determine the locality of threads, warps and TBs at just-in-
time (JIT) compilation time using syntax trees.

A. PTX Analysis with Syntax Trees
Abstract syntax trees (referred to as syntax trees in the

paper) are used to represent the syntactic structure of PTX
code. The trees of the programming constructs like arith-
metic and logical expressions, and control flow statements
are grouped into operators (root nodes) and operands (leaves
of the root nodes). For example, the syntax for instructions
in PTX are as follows:

opcode.type dst,src1,src2[,src3]

where .type represents the type of the source operands.
(.type ∈ {.u16, .u32, .u64, .s16, .s32, .s64}). The syntax tree
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rd10 = f(*A, N, ntid.y, ctaid.y, tid.y); rd6 = f(*B, ntid.x, ctaid.x, tid.x)

*A
rd7

N
r7

ntid.y
rh4

ctaid.y
rh3

tid.y
r5

* r2

+
r6*

r16

4

*
rd9

+
rd10

ld4

+

LOOP 
BB# 3: 
N times

r4

N

*B
rd3

ntid.x
rh2

ctaid.x
rh1

tid.x
r3

*
r1 +4

*
rd5

+
rd6

ld r7

*

4

+

Fig. 3. Abstract Syntax for Matrix Multiplication Application

Algorithm 1: Syntax Trees for global load registers
// ST:Syntax Tree

1 function BuildSyntaxTree(I, ST)
2 if dst(I) in S then
3 node← lea f _node_in_ST
4 node.opcode← I.opcode
5 Erase dst(I) from S
6 node.le f t← create_new_node(I.src1)
7 node.right← create_new_node(I.src2)
8 node.third← create_new_node(I.src3)
9 end

10 function TraceBasicBlocks(BB, ST)
11 if BB has predecessors then
12 for BB j in BB_predecessors do
13 for I in BB j_inst_reversed do
14 BuildSyntaxTree(I, ST)
15 end
16 TraceBasicBlocks(BB j, ST)
17 end
18 end

// The main function
19 function GetAllSyntaxTrees(PT Xinstructions)
20 for I in PT Xinstructions do
21 if I.opcode is ld.global then

// ld_reg = src(I)
// Initialize syntax tree for load

register: ld_reg
22 ST ← create_new_node(ld_reg)
23 Insert ld_reg into S
24 for Ii in BB_inst_reversed do

// BB is the basic block
containing global load
Instruction

25 BuildSyntaxTree(Ii, ST)
26 end
27 TraceBasicBlocks(BB, ST)
28 end
29 end
30 return ST

expression for the instruction will have the opcode as the
root node, destination operand (dst) as the result, and source
operands 1 and 2 (src1 and src2) as the left and right
child nodes respectively. Note that PTX also supports a

third source operand for some operations, such as multiply-
and-add (mad_op), in which dst = (src1∗ src2)+ src3. The
construction of the syntax trees is explained in Section III-B.

Figure 2 shows the example of the translation of the
CUDA source code into the PTX intermediate representation
in the matrix multiplication application. The CUDA source
code is converted to its PTX representation during the offline
compilation phase, and the kernel parameters are ready
just before the kernel launch during the JIT compilation.
After the kernel arguments are known, PTX is converted
to architecture-specific SASS for execution. The advantage
of doing locality analysis at PTX instead of SASS is
that PTX is hardware agnostic and has added information
from the kernel parameters. LocalityGuru works at the JIT
compilation time to extract the thread-level address-data
footprint using the abstract syntax tree. In some applications,
the kernel parameters such as the GridDim, BlockDim
and input data size N are dependent on the user input
and are determined only at JIT-compilation time. In matrix
multiplication, the exact values of the matrix size N and the
base addresses of input/output matrices A, B, C are known
after malloc in GPU. When the grid size and TB size
become available, so do the ranges of the existing thread-
specific values, namely threadIdx and blockIdx. The
load address range accessed per thread is stored in the
source operand of the global memory read instructions,
e.g., ld.global. The control flow graph (CFG) derived
from matrix multiplication’s PTX is shown in Figure 1. We
start from the basic block with the ld.global instruction
(BB 3) and recursively parse the instructions in all its
predecessors until the leaf nodes consist of immediate values
and kernel parameters only.

Some of the corresponding codes in PTX (Figure 2) and
syntax tree (Figure 3) are highlighted using matching colors.
The statements used for calculating the syntax tree of matrix
A are in brown color and the matrix B are in red color
across CUDA , PTX as well as syntax tree edge and node
color annotations. After locating the global memory access
instructions, an abstract syntax graph (ASG) is constructed
for each ld.global source register (rd10 and rd6 from
Figure 3) to identify which elements of the arrays (A and B)
are accessed by each thread, thereby determining the value
range of the memory accesses per thread/TB. In the ASG,
the leaf nodes are the registers storing the values known
at kernel-launch time, such as &A, &B, N, GridDim and
BlockDim. Using the syntax tree, rd10 is expressed as
a function of &A, N, ntid.y (same as BlockDim.y),
ctaid.y and tid.y i.e. rd10 = &A+ [ROW ∗N+ i] in
CUDA. The kernel parameters in .x and .y dimension are
in blue and green respectively in the PTX (Figure 2) and
comprise of the leaf nodes in syntax tree (Figure 3) of rd6
and rd10 respectively.

Using this, we can obtain the common set of elements
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in each matrix accessed by every TB, e.g., Ai, for T Bi, etc.
Therefore, the number of common data elements accessed
by T Bi and T B j in the locality graph (Figure 4 - matrix
multiplication) will be:

L(T Bi,T B j) = |Ai∩A j|+ |Bi∩B j|

B. Syntax Tree Construction

Algorithm 2: Locality Graph from Syntax Tree
// ST:Syntax Tree
// STloop:Syntax Tree for loop_variable
// L:Locality Graph for TB
// Map: TB_Address_map
// reg: global load register

1 function EvalSTloop (ST,Map)
2 if loop in reg.BB then
3 while EvalST(BB_label) != 0 do
4 Update loop_iterator in ST(BB_label)
5 Update leaf_node reg in STloop(reg)
6 Map[TB].insert(EvalST(reg))
7 end
8 end
9 function GetTBAddressMap(ST)

// Assign kernel parameters to leaf nodes
in ST

10 ntid← BlockDim
11 forall ctaid in GridDim do
12 T B← get_tb_id(ctaid,GridDim)
13 forall tid in BlockDim do

// Filter out idle threads in False
branch BB

14 for P not in BB_False_branch do
// P: Predicate

15 if ! EvalST(P) then
16 forall offset(reg) do
17 Insert (EvalST(reg)+offset) into

Map[T B] // BB with loops
18 EvalSTloop(ST,Map)
19 end
20 end
21 end
22 end
23 end
24 return Map

// The main function
25 function GetLocalityGraph()
26 Map← GetTBAddressMap(ST)
27 forall ctaid in GridDim do
28 if T Bi != T B j then
29 L[T Bi][T B j] = Map[T Bi]∩Map[T B j]
30 end
31 end
32 return L

Algorithm 1 shows the pseudo-code of the syntax tree
for global load source registers. We locate the global load
source registers in the PTX code by tracing the ld.global
instructions and constructing a syntax tree (ST) for each
(lines 19-30). For each instruction Ii in the basic block
containing register ld_reg, BuildSyntaxTree() looks
back for the instruction with ld_reg as its result. A node is
then created for Ii and inserted into ST (lines 1-9). After
iterating through a BB, all its predecessors are iterated
recursively (with no loops) to trace the source of the register

using TraceBasicBlocks(), and the tree is updated
accordingly (lines 10-18).

Handling Branches:
Every basic block having more than one successor ends

with a branch instruction. The true branch leads to BB
3, while the false branch avoids it. A conditional branch
instruction in PTX uses a predicate to dictate whether it
should execute the following basic block. During the locality
graph construction shown in Algorithm 2 (Line 14), if the
predicate value points to the false branch for a thread, it is
removed from the locality calculations.

In many cases, not all the threads are assigned a task due
to the input data size not being a multiple of number of
threads, resulting in some threads in the last row or column
of the grid idling throughout the kernel (idle threads). Thus,
while generating the locality graph, the idle threads need to
be filtered out in the analysis. In our matrix multiplication
example, the threads executing BB 5 and BB 7 are idle
threads (Figure 1). In order to determine whether to skip
idle threads, we should build syntax trees for the predicates
in the predecessor basic blocks to identify the threads
executing the false branch basic blocks.

Handling Loops:
In our matrix multiplication example, BB 3 has a

self-loop (i.e. a branch in which the predecessor is same as
successor) which points back to its beginning (Figure 1).
The loop has an iterator which is incremented by 1 in every
loop iteration and ends the loop when it reaches the value
of N. In every loop iteration, rd6 and rd10 represent
&A + [ROW ∗ N + i] and &B + [i ∗ N + COL] respectively
where i is the loop iteration count. A separate syntax tree
(STloop) is constructed per loop variable which captures the
formula for updating the loop variables in each iteration.
We evaluate the syntax tree for the loop as in Algorithm 2
EvalSTloop() (Line 1), where the leaf nodes of the syntax
tree are updated with the values of the loop variables in the
previous iteration, and then evaluate the syntax tree result
for the predicate at the end of the loop to decide whether
to continue to the next loop iteration by branching to its
start, or exit the loop, as shown in Algorithm 2 (Line 3).

Handling Address offsets and data-hazards in the source
register:

Multiple global load instructions may use the same source
register with different address offsets. In this case, we look
for any data hazard due to register write into that register
between the two instructions. If there is a data hazard,
then separate syntax trees are constructed for it. Otherwise,
we construct only one syntax tree, and store the register
name and address offset in a map. During the syntax tree
evaluation phase in Algorithm 2 (Line 16), the address offset
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is added to the calculated value of the syntax tree for the
register.

C. Locality Graph from Syntax Tree
Algorithm 2 shows the pseudo-code of obtaining the

locality graph from the syntax tree. The STs constructed
in Algorithm 1 are used to map thread block ID to memory
addresses it has accessed (T B_Address_map) (lines 9-24).
Since we already represented the global load source registers
in terms of kernel parameters in the syntax tree, a set of
memory addresses can be calculated for every thread ID
and TB ID. All the cases of idle threads, address offsets
in the source register, and loops are taken into account
while evaluating the syntax tree to get the address range
as described in Section III-B. Once T B_Address_map is
populated with values for all TBs and all global source
registers, the locality graph L is constructed for each kernel
by intersecting the read memory address sets of TB pairs
(lines 25-32).

The syntax trees are constructed per PTX file. However,
since each kernel can have different program body and
kernel parameters, the locality graph is constructed per
kernel which also accounts for the changed input data per
kernel.

D. Summary:
The syntax tree derives the thread-to-memory-addresses-

accessed relationship in terms of thread ID, block ID and
other kernel parameters. This information can be used to
capture inter-thread, inter-warp, inter-TB locality within the
same kernel as well as across multiple kernels. Though
we have shown an example to capture the locality due to
memory read of the same data, LocalityGuru can also be
used for data-dependency analysis among TBs in multiple
kernels. In that case, each TB shall have a T B_Address_map
for both read and write accesses. This inter-kernel TB-
level data dependency (or producer-consumer relationships)
can be used for hardware optimization techniques like TB
scheduling as discussed in [8], [22], [23]. At the intra-kernel
level, LocalityGuru can aid in the optimization techniques
proposed in [9], [24]–[28].

The applications evaluated in this paper (Section IV) con-
tain thread ID-dependent accesses. Our technique can also
be extended to be used for the indirect accesses where the
result of one memory access (thread ID-dependent primary
access) is used to calculate the address of the next memory
access (secondary access). The primary data structure can
be passed to the PTX analyzer as an argument to extract the
access patterns [20], [29].

IV. RESULTS AND DISCUSSION

Methodology: We implement and perform the PTX analysis
for thread-level address footprint using the built-in PTX
parser in GPGPU-Sim [30]. Our analysis algorithm is

generic and can be implemented in any compiler framework
that supports PTX, such as LLVM [31] and GPUOcelot
[32]. It is fully automated to do the locality analysis on
any unknown application in CUDA or OpenCL which
generates PTX. In our experiments, 12 benchmarks used
were selected from 3 different benchmark suites NVIDIA
CUDA SDK [33] (Matrix Multiplication), Rodinia [34]
(Hotspot) and Polybench [35] (SYRK, SYR2K, 2MM,
GEMM, BICG, Covariance, Convolution 3D/2D, MVT,
Gram-Schmidt).

Understanding the Patterns: The terminology used in our
discussion is as follows:
bx: blockIdx.x, by: blockIdx.y,
tx: threadIdx.x, ty: threadIdx.y,
indexx: (bx * blockDim.x + tx),
indexy: (by * blockDim.y + ty)
If a global load address is only dependent on indexx or
indexy, it is referred to as an indexx-only or indexy-only
pattern here. When the address is dependent on indexx and
indexy, it is referred to as indexxy pattern. When the address
is dependent on cxindexx + cyindexy, it is referred to as
indexx+y pattern, where ci,c j are constants.

In matrix multiplication, for input size of 200,
GridDim=13x13 and BlockDim=16x16, the accesses to
input matrices are A[indexy ∗200+ i] and B[i∗200+ indexx]
where i ∈ {0, ...,199}. Therefore 13 consecutive TBs in the
same column of the TB grid share 16× 200 = 3200 data
elements (shown as the triangles in the diagonal of the matrix
multiplication in Figure 4). Similarly, the TBs in the same
row of the TB grid share 3200 data elements, which is shown
as accesses by a strided distance of 13 (i.e. GridDim.x)
in the figure.

In 2MM, for input size N of 256, GridDim=8x32
and BlockDim=32x8, the read accesses to matrices are
A[indexy ∗ N+ (0...N− 1)], B[(0...N− 1) ∗ N+ indexx] and
C[indexx ∗N+ indexy]. The TBs in the same row of the TB
grid exhibit indexy-only pattern and share blockDim.y ∗
N= 2048 elements and in the same column exhibit indexx-
only pattern and share blockDim.x∗N= 8192 elements.
No sharing is observed for matrix C which has indexx+y .

Similarly, in GEMM, for input size N of 64,
GridDim=2x8 and BlockDim=32x8, as the matrices A
and B have similar access patterns as 2MM and ma-
trix multiplication, row-wise sharing among the TBs is
blockDim.y∗N= 512 elements and in the same column
share blockDim.x∗N= 2048 elements.

In case of Gram-Schmidt, kernels 2/5/8 have GridDim=4
and BlockDim=256, and accesses input matrices a[indexx∗
N+k] and r[k∗N+k] where k is a kernel paremeter. Here
as matrix r indices are not a function of bx or by, it would
be accessed by all the TBs and an indexx-only pattern of
sharing would be observed. Now since the TBs are arranged
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Matrix Multiplication SYR2K/SYR2K Hotspot

Covariance (K2) MVT/ BICG/ Gram Schmidt (K2,5,8…)

Convolution3D GEMM Convolution2D

2MM

TB #

TB
 #

Fig. 4. TB locality graph results for different applications. The numbers in brackets represent the Kernel #. The adjacency matrix representation of locality
graph is symmetric and has been shown as a lower triangular matrix. The TB # are shown in the x axis (increasing order) and y axis (decreasing order).
The number of common memory addresses accessed by any two TBs is shown as the red color intensity in the heatmap. The more intense red color refers
to more data-locality among the TBs.

in a 1D grid, we observe that the locality graph is fully
connected i.e. every TB is connected to rest of the TBs
in the kernel. Similarly, MVT has 1D kernel and accesses
matrices x1[indexx], a[indexx ∗N+0...N−1] and y1[0...N].
indexx-only pattern sharing in a 1D Kernel (along the x-axis)
in applications like Gram-Schmidt, MVT and BICG results
in fully connected locality graph.

In case of SYR2K, for input size N of 256,
GridDim=8x32 and BlockDim=32x8, the read accesses
to matrices are A[indexy ∗N+ i], A[indexx ∗N+ i], B[indexx ∗
N+ i], B[indexy ∗ N+ i] and C[indexx ∗ N+ indexy], where
i ∈ {0, ...,N− 1}. Here, the sharing pattern for both the
matrices A and B is indexxy. No sharing is observed for
matrix C. Since there are some common elements from
indexx ∩ indexy, we observe a different pattern for indexxy
as compared to indexx only or indexy only.

In case of Convolution2D, the kernel is 2D with
GridDim=2x8 and BlockDim=32x8 and the read accesses

to matrices are A[(indexx + i) ∗N+ indexy + j] where i, j ∈
{−1,0,1}. It has a stencil computation behavior where every
pixel computation involves read accesses to all its neigh-
boring pixels in xy-plane. Hence we observe that every TB
shares elements with its neighboring TBs in both dimensions
and has indexx+y pattern.

In Covariance, kernel 2 is 2D with GridDim=64x64
and BlockDim=32x8, the read accesses to matrices are
mean[indexx + 1] and data[indexy ∗ (N + 1) + indexx],
where i ∈ {0, ...,N}. We observe the TB-to-data mapping
is in column-major order, hence the slope is reversed
compared to the row-wise data mapping locality pattern
seen in MM, GEMM and 2MM.

Validating the Results: In order to validate the results of
LocalityGuru, the locality graphs were constructed for all
kernels using profiling by running benchmarks in GPGPU-
Sim and recording the memory addresses accessed by each
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TB. We perform an element-wise comparison between the
resulting locality graph from LocalityGuru and the simula-
tor’s generated locality graph. No differences were noted.

V. RELATED WORK

Prior works have proposed various methods to improve
data locality in different applications. In some works, the
programmer provides hints in the code which would be
used to optimize locality [18], [20], [29], [36]–[38]. Locality
Descriptor [18] lets the user express and use the data locality
information in GPUs through software to allow optimization
for the programmer, combined with hardware to leverage
the data locality in the application. Sometimes, new pro-
gramming languages have been proposed to support the
expression of data locality [14]–[17], [39]–[41]. However,
LocalityGuru aims to minimize the programmer burden to
either rewrite the code in a new abstraction or even add
compiler directives to the already written code.

Compiler analysis has already been used by several works
for data locality [21], [42]–[44]. Index analysis in compilers
has been utilized to perform loop transformations in the
source code targetted at improving data locality [45]–[47].
However, in this work, we choose to utilize the PTX
intermediate code which is architecture-agnostic and holds
the control and data flow information better than source
code, which may not be always available to the user.

TAFE [20] allows the programmer to send static kernel
data and dynamic memory information to the device in
order to extract their data locality information, and contains
hardware to track data-dependent accesses, reducing the
software overhead. Therefore, indirect memory accesses can
be obtained, albeit through user APIs in the code.

TB scheduling has also been used to improve data locality
in GPUs. LaPerm [23] uses TB scheduling hardware for dy-
namic parallelism execution to improve cache performance
by binding child TBs to the hardware resources used by their
parent TB. Li et al. [26] employs a CTA clustering technique
in order to maximize inter-CTA data reuse. These methods
would be able to work orthogonally with our proposal in
order to further improve their performance.

VI. CONCLUSION

In this paper, we aim to derive the relationship between
the thread blocks and the memory addresses accessed by
them. A detailed compiler analysis is performed on the
PTX intermediate representation using syntax trees to extract
the data locality in terms of the number of common data
elements shared between all thread block pairs in a kernel.
Our locality analysis technique can be employed at multiple
granularities such thread-, warp- or TB-level in a GPU
kernel. This information can be leveraged to help make
optimizations for locality-aware data-partition, memory page
data placement, prefetching, cache management and TB as
well as warp scheduling in single or multi GPUs.
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