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ABSTRACT
In the selective dissemination of information (or publish/
subscribe) paradigm, clients subscribe to a server with con-
tinuous queries (or profiles) that express their information
needs. Clients can also publish documents to servers. When-
ever a document is published, the continuous queries satis-
fying this document are found and notifications are sent to
appropriate clients. This paper deals with the filtering prob-
lem that needs to be solved efficiently by each server: Given
a database of continuous queries db and a document d, find
all queries q ∈ db that match d. We present data structures
and indexing algorithms that enable us to solve the filtering
problem efficiently for large databases of queries expressed
in the model AWP which is based on named attributes with
values of type text, and word proximity operators.

1. INTRODUCTION
In the selective dissemination of information (SDI or pub-

lish/subscribe) paradigm, clients subscribe to a server with
continuous queries or profiles that are expressed in some
well-defined language and capture their information needs.
Clients can also publish documents to servers. When a doc-
ument is published, the continuous queries satisfying the
document are found and notifications are sent to appropri-
ate clients.

This paper deals with the filtering problem that needs to
be solved efficiently by each server: Given a database of
continuous queries db and a document d, find all queries
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q ∈ db that match d. This functionality is crucial for a
server because we expect deployed SDI systems to han-
dle millions of client queries. We concentrate on selective
dissemination of textual information using the data model
AWP originally presented in [13, 12]. Data model AWP
is based on named attributes with values of type text, and
its query language includes attributes, comparison operators
“equals” and “contains” and word proximity operators from
the Boolean model of Information Retrieval (IR) [3]. By
using linguistically motivated concepts such as word instead
of arbitrary strings, AWP strives to be useful to certain
applications e.g., alert systems for digital libraries or other
commercial systems where similar models are supported al-
ready for retrieval. In work presented in [11] and [12], we
discuss the distributed alert system DIAS and its ancestor,
the peer-to-peer system P2P-DIET1 [10] that uses AWP
as its meta-data model for describing and querying digital
resources and a new filtering algorithm named BestFitTrie
for matching incoming documents against stored continuous
queries.

In this paper we develop and evaluate efficient main-memory
algorithms that are able to filter millions of continuousAWP
queries in just a few hundred milliseconds. The filtering al-
gorithms we present are the first in the literature that deal
with IR-based models like AWP. The algorithms closest to
ours are the ones employed in the Boolean version of SIFT
[16] where documents are free text and queries are conjunc-
tions of keywords. SIFT has been the inspiration for this
work and the results presented in Sections 3 and 4 extend
and improve the results of [16]. In particular, we evaluate ex-
perimentally algorithms BF, SWIN and PrefixTrie that are
extensions of the algorithms BF, Key and Tree of [16] for the
model AWP. We also discuss in detail the new algorithms
BestFitTrie and LCWTrie as alternatives to PrefixTrie, and
compare them under various experimental settings.

Work on recent filtering algorithms for XML-based query
languages [5, 2, 9] is complementary to ours. The query
languages of [5, 2, 9] cannot express word proximity as in
AWP and the same is true for other W3C XML query lan-
guages. The recent W3C working draft [14] and papers like
[8, 1, 4] are expected to pave the way for the introduction of
IR concepts in XQuery/XPath. Our work on AWP serves
a similar goal but we have chosen to work with the simple
concept of a flat document interpreted under the Boolean
model of IR, instead of XML and the vector space model.

1
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The main ideas of this paper can be transferred to languages
such as [8, 1, 4] and this is where we concentrate our current
efforts.

The rest of the paper is organized as follows. Section 2
presents the model AWP and Section 3 presents the filtering
algorithms we developed. Section 4 gives a flavor of our
query creation methodology and evaluates the algorithms
experimentally under various different parameters. Finally,
Section 5 hints at our current work.

2. THE DATA MODEL AWP
In [11] we present the data model AWP for specifying

queries and textual resource meta-data in SDI systems. AWP
is based on the concept of named attributes with values of
type text. The query language of AWP offers Boolean and
proximity operators on attribute values as in the work of [3]
which is based on the Boolean model of Information Re-
trieval (IR).
Syntax. Let Σ be a finite alphabet. A word is a finite
non-empty sequence of letters from Σ. Let V be a (fi-
nite or infinite) set of words called the vocabulary. A text
value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.

Let I be a set of (distance) intervals I = {[l, u] : l, u ∈
N, l ≥ 0 and l ≤ u}∪{[l,∞) : l ∈ N and l ≥ 0}. A proximity
formula is an expression of the form w1 ≺i1 · · · ≺in−1 wn

where w1, . . . , wn are words of V and i1, . . . , in are intervals
of I. Operators ≺i are called proximity operators and are
generalizations of the traditional IR operators kW and kN
[3]. Proximity operators are used to capture the concepts of
order and distance between words in a text document. The
proximity word pattern w1 ≺[l,u] w2 stands for “word w1 is
before w2 and is separated by w2 by at least l and at most
u words”. The interpretation of proximity word patterns
with more than one operator ≺i is similar. A word pattern
over vocabulary V is a conjunction of words and proximity
formulas. An example of a word pattern is applications ∧
selective ≺[0,0] dissemination ≺[0,3] information.

Let A be a countably infinite set of attributes called the
attribute universe. In practice attributes will come from
namespaces appropriate for the application at hand e.g.,
from the set of Dublin Core Metadata Elements2.

A document d is a set of attribute-value pairs (A, s) where
A ∈ A, s is a text value over V, and all attributes are dis-
tinct. The following set of pairs is a document:

{ (AUTHOR, “John Smith”),
(TITLE, “Selective dissemination of information in . . . ”),

(ABSTRACT, “In this paper we show that ...”) }

A query is a conjunction of the form

A1 = s1 ∧ . . . ∧ An = sn ∧ B1 w wp1 ∧ . . . ∧ Bm w wpm

where each Ai, Bi ∈ A, each si is a text value and each wpi

is a word pattern. The following formula is a query:

AUTHOR = “John Smith” ∧
TITLE w (selective ≺[0,0] dissemination ≺[0,3]

information) ∧ peer-to-peer

Semantics. The semantics of AWP have been defined in
[11] and will not be presented here in detail. It is straight-
forward to define when a document d satisfies an atomic
formula of the form A = s or B w wp, and then use this

2
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notion to define when d satisfies a query [11]. The example
document given above satisfies the example query.

3. FILTERING ALGORITHMS
In this section we present and evaluate four main memory

algorithms that solve the filtering problem for conjunctive
queries in AWP. Because our work extends and improves
previous algorithms for SIFT [16], we adopt terminology
from SIFT in many cases.

3.1 The Algorithm BestFitTrie
BestFitTrie uses two data structures to represent each

published document d: the occurrence table OT (d) and the
distinct attribute list DAL(d). OT (d) is a hash table that
uses words as keys, and is used for storing all the attributes
of the document in which a specific word appears, along
with the positions that each word occupies in the attribute
text. DAL(d) is a linked list with one element for each dis-
tinct attribute of d. The element of DAL(d) for attribute
A points to another linked list, the distinct word list for A
(denoted by DWL(A)) which contains all the distinct words
that appear in A(d).

To index queries BestFitTrie utilises an array, called the
attribute directory (AD), that stores pointers to word direc-
tories. AD has one element for each distinct attribute in the
query database. A word directory WD(Bi) is a hash table
that provides fast access to roots of tries in a forest that
is used to organize sets of words – the set of words in wpi

(denoted by words(wpi)) for each atomic formula Bi w wpi

in a query. The proximity formulas contained in each wpi

are stored in an array called the proximity array (PA). PA
stores pointers to trie nodes (words) that are operands in
proximity formulas along with the respective proximity in-
tervals for each formula. There is also a hash table, called
equality table (ET), that indexes all text values si that ap-
pear in atomic formulas of the form Ai = si.

When a new query q of the form given above arrives, the
index structures are populated as follows. For each attribute
Ai, 1 ≤ i ≤ n, we hash text value si to obtain a slot in ET
where we store the value Ai. For each attribute Bj , 1 ≤ j ≤
m, we compute words(wpj) and insert them in one of the
tries with roots indexed by WD(Bj). Finally, we visit PA
and store pointers to trie nodes and proximity intervals for
the proximity formulas contained in wpj .

Let us now explain how each word directory WD(Bj) and
its forest of tries are organised. The main idea behind this
data structure is to store sets of words compactly by exploit-
ing their common elements. In this way, memory space is
preserved and filtering becomes more efficient as we will see
below.

Definition 1. Let S be a set of sets of words and s1, s2 ∈
S with s2 ⊆ s1. We say that s2 is an identifying subset of
s1 with respect to S iff s2 = s1 or @ r ∈ S such that s2 ⊆ r.

The sets of identifying subsets of two sets of words s1 and
s2 with respect to a set S is the same if and only if s1 is
identical to s2. Table 1 shows some examples that clarify
these concepts.

The sets of words words(wpi) are organised in the word
directory WD(Bi) as follows. Let S be the set of sets of
words currently in WD(Bi). When a new set of words s
arrives, BestFitTrie selects the best trie in the forest of tries



Id Query Bi w wpi Identifying Subsets

0 Bi w databases {databases}
1 Bi w relational ≺[0,2] databases {databases, relational}
2 Bi w databases ∧ relational {databases, relational}
3 Bi w (software ≺[0,2] neural ≺[0,0] networks) ∧

(software ≺[0,3] relational ≺[0,0] databases)
{databases, relational, neural}, ...

4 Bi w optimal ∧ (artificial ≺[0,0] intelligence) ∧
relational ∧ databases

{databases, relational, artificial, in-
telligence, optimal}, ...

5 Bi w artificial ∧ relational ∧ intelligence ∧
databases ∧ knowledge

{databases, relational, artificial, in-
telligence, knowledge }, ...

Table 1: Identifying subsets of words(wpi) with respect to S = {words(wpi), i = 0, . . . , 5}.

of WD(Bi), and the best location the that trie to insert
s. The algorithm for choosing t depends on the current
organization of the word directory and will be given below.

Throughout its existence, each trie T of WD(Bi) has the
following properties. The nodes of T store sets of words and
other data items related to these sets. Let sets-of -words(T )
denote the set of all sets of words stored by the nodes of T .
A node of T stores more than one set of words if and only
if these sets are identical. The root of T (at depth 0) stores
sets of words with an identifying subset of cardinality one.
In general, a node n of T at depth i stores sets of words with
an identifying subset of cardinality i + 1. A node n of T at
depth i storing sets of words equal to s is implemented as a
structure consisting of the following fields:

• Word(n): the (i + 1)-th word wi of identifying sub-
set {w0, . . . , wi−1, wi} of s where w0, . . . , wi−1 are the
words of nodes appearing earlier on the path from the
root to node n.

• Query(n): a linked list containing the identifier of
query q that contained word pattern wp for which
{w0, . . . , wi} is the identifying subset of sets-of -words(T ).

• Remainder(n): if node n is a leaf, this field is a linked
list containing the words of s that are not included in
{w0, . . . , wi}. If n is not a leaf, this field is empty.

• Children(n): a linked list of pairs (wi+1, ptr), where
wi+1 is a word such that {w0, . . . , wi, wi+1} is an iden-
tifying subset for the sets of words stored at a child
of wi and ptr is a pointer to the node containing the
word wi+1.

The sets of words stored at node n of T are equal to
{w0, . . . , wn}∪Remainder(n), where w0, . . . , wn are the words
on the path from the root of T to n. An identifying sub-
set of these sets of words is {w0, . . . , wn}. Figure 1 shows
the general form of our index structure (we have omitted
ET and PA). The part of WD(Bi) corresponding to the
queries of Table 1 is shown in full including lists Query(n)
and Remainder(n). The purpose of Remainder(n) is to al-
low for the delayed creation of nodes in trie. This delayed
creation lets us choose which word from Remainder(n) will
become the child of current node n depending on the sets of
words that will arrive later on.

The algorithm for inserting a new set of words s in a
word directory is as follows. The first set of words to ar-
rive will create a trie with a randomly chosen word as the
root and the rest stored as the remainder. The second
set of words will consider being stored at the existing trie

or create a trie of its own. In general, to insert a new
set of words s, BestFitTrie iterates through the words in
s and utilises the hash table implementation of the word
directory to find all candidate tries for storing s: the tries
with root a word of s. To store sets as compactly as pos-
sible, BestFitTrie then looks for a trie node n such that
the set of words ({w0, . . . , wn} ∪Remainder(n)) ∩ s, where
{w0, . . . , wn} is the set of words on the path from the root
to n, has maximum cardinality. There may be more than
one node that satisfies this requirements and such nodes
might belong to different tries. Thus BestFitTrie performs
a depth-first search down to depth |s| − 1 in all candidate
tries in order to decide the optimal node n. The path from
the root to n is then extended with new nodes containing
the words in τ = (s \ {w0, . . . , wn}) ∩ Remainder(n). If
s ⊆ {w0, . . . , wn} ∪ Remainder(n), then the last of these
nodes l becomes a new leaf in the trie with Query(l) =
Query(n) ∪ {q} (q is the new query from which s was ex-
tracted) and Remainder(l) = Remainder(n)\τ . Otherwise,
the last of these nodes l points to two child nodes l1 and l2.
Node l1 will have Word(l1) = u, where u ∈ Remainder(n)\
τ, Query(l1) = Query(n) and Remainder(l1) = Remainder(n)\
(τ ∪ {u}). Similarly node l2 will have Word(l2) = v, where
v ∈ s\({w0, . . . , wn}∪τ), Query(l2) = q and Remainder(l2) =
s \ ({w0, . . . , wn} ∪ τ ∪ {u}). The complexity of inserting a
set of words in a word directory is linear in the size of the
word directory.

The filtering procedure utilises two arrays named Total
and Count. Total has one element for each query in the
database and stores the number of atomic formulas con-
tained in that query. Array Count is used for counting how
many of the atomic formulas of a query match the corre-
sponding attributes of a document. Each element of array
Count is set to zero at the beginning of the filtering algo-
rithm. If at algorithm termination, a query’s entry in array
Total equals its entry in Count, then the query matches the
published document, since all of its atomic formulas match
the corresponding document attributes.

When a document d is published at the server, filtering
proceeds as follows. BestFitTrie hashes the text value C(d)
contained in each document attribute C and probes the
ET to find matching atomic formulas with equality. Then
for each attribute C in DAL(d) and for each word w in
DWL(C), the trie of WD(C) with root w is traversed in a
breadth-first manner. Only subtrees having as root a word
contained in C(d) are examined, and hash table OT (d) is
used to identify them quickly. At each node n of the trie, the
list Query(n) gives implicitly all atomic formulas C w wpi

that can potentially match C(d) if the proximity formulas
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Figure 2: PrefixTrie organisation of the atomic
queries of Table 1

in wpi are also satisfied. This is repeated for all the words
in DWL(C), to identify all the qualifying atomic formu-
las for attribute C. Then the proximity formulas for each
qualifying query are examined using the polynomial time al-
gorithm prox from [13]. For each atomic formula satisfied
by C(d), the corresponding query element in array Count
is increased by one. At the end of the filtering algorithm
arrays Total and Count are traversed and the values stored
for each query are compared. The equal entries in the two
arrays give us the queries satisfied by d.

3.2 Other Filtering Algorithms
To evaluate the performance of BestFitTrie we have also

implemented algorithms BF, SWIN and PrefixTrie. BF (Brute
Force) has no indexing strategy and scans the query database
sequentially to determine matching queries. SWIN (Single
Word INdex) utilises a two-level index for accessing queries
in an efficient way. A query of the form presented at the be-
ginning of this section is indexed by SWIN under all its at-
tributes A1, . . . , An, B1, . . . , Bm and also under n text values
s1, . . . , sn and m words selected randomly from wp1, . . . , wpm.
More specifically SWIN utilises an ET to index equalities
and an AD pointing to several WDs to index the atomic
containment queries. Atomic queries within a WD slot are
stored in a list. PrefixTrie is an extension of the algorithm
Tree of [16] appropriately modified to cope with attributes
and proximity information. Tree was originally proposed
for storing conjunctions of keywords in secondary storage in
the context of the SDI system SIFT. Following Tree, Pre-
fixTrie uses sequences of words sorted in lexicographic order
for capturing the words appearing in the word patterns of
atomic formulas (instead of sets used by BestFitTrie). A

trie is then used to store sequences compactly by exploiting
common prefixes [16].

Algorithm BestFitTrie constitutes an improvement over
PrefixTrie. Because PrefixTrie examines only the prefixes of
sequences of words in lexicographic order to identify com-
mon parts, it misses many opportunities for clustering (see
Figure 2). BestFitTrie keeps the main idea behind Prefix-
Trie but (a) handles the words contained in a query as a set
rather than as a sorted sequence and (b) searches exhaus-
tively the forest of trie to discover the best place to introduce
a new set of words. This allows BestFitTrie to achieve bet-
ter clustering as shown in Figures 1 and 2, where we can see
that it needs only one trie to store the set of words for the
formulas of Table 1, whereas PrefixTrie introduces redun-
dant nodes that are the result of using a lexicographic order
to identify common parts. This node redundancy can be the
cause of deceleration of the filtering process as we will show
in the next section. To improve beyond BestFitTrie it would
be interesting to consider re-organizing the word directory
every time a new set of words arrives, or periodically, but
this might turn out to be prohibitively expensive. In this
work we have not explored this approach in any depth.

4. EXPERIMENTAL EVALUATION
To carry out the experimental evaluation of the algorithms

described in the previous section, we needed data to be used
as incoming documents, as well as user queries. It may not
be difficult to collect data to use in the evaluation of fil-
tering algorithms for SDI scenarios. For the model AWP
considered in this paper there are various document sources
that one could consider: meta-data for papers on various
publisher Web sites (e.g., ACM or IEEE), electronic news-
paper articles, articles from news alerts on the Web (e.g.,
http://www.cnn.com/EMAIL) etc. However, it is rather dif-
ficult to find user queries except by obtaining proprietary
data (e.g., from CNN’s news alert system).

For our experiments we chose to use a set of documents
downloaded from ResearchIndex3 and originally compiled
in [6]. The documents are research papers in the area of
Neural Networks and we will refer to them as the NN cor-
pus4. Because no database of queries was available to us,
we developed a methodology for creating user queries us-
ing words and technical terms extracted automatically from
the Research Index documents using the C-value/NC-value
approach of [7]. The extracted multi-word technical terms
are used to create proximity formulas and also as conjunc-
tions of keywords in user queries. For the formulation of
user queries author names and words extracted from paper
abstracts are also used. The attribute universe for the ex-
periments presented in this section consists of paper title,
authors, abstract and body.

More specifically the basic concept for the query creation
in our methodology is that of a unit. Atomic queries are cre-
ated as conjunctions of units selected uniformly from unit
sets, whereas queries are created as conjunctions of atomic
queries selected from the attribute universe with a proba-
bility pCi . In our scenario four different types of units sets
exist:

3
http://www.researchindex.com

4We would like to thank Evangellos Milios and his group at Dal-
housie University for providing us the original Neural Network
Corpus.



• Author unit set. This set contains the last names of
authors appearing in the full citation graph of Re-
searchIndex. Each author appears in the author unit
set as many times as the in-degree of the papers he has
published. Thus the probability P (α) of author α to
appear in a query is P (α) = Nα/

∑
k∈Vα

Nk, where Nα

is the number of papers in the citation graph that cite
the work of author α, and Vα is the author vocabulary
obtained also by the full citation graph.

• Proximity formulas unit set. This set contains prox-
imity formulas created using the extracted multi word
terms. The technical terms with more than five words
were excluded since they were noise, and the set was
produced after applying upper and lower NC-value
cut-off thresholds for the remaining terms. The prox-
imity operators in this set contain distances according
to the number of words contained in each multi-word
term.

• Keywords from technical terms. This unit set contains
keywords extracted from technical terms. These key-
words are used as conjuncts in the creation of atomic
queries.

• Nouns from abstracts. This set contains the nouns
used in the corpus abstracts after the cut-off of the
most and least frequent words. The rationale behind
this is that abstracts are intended to be a comprehen-
sive summary of the publication content, thus nouns
from abstracts are appropriate candidates for use in
queries.

An example of a user query created artificially from the
methodology briefly sketched above is:

(author w Riedel) ∧
(title w implementation ∧ (RBF ≺[0,3] networks))

For space reasons the full description of the methodology is
omitted but the interested reader can refer to [15].

All the algorithms were implemented in C/C++, and the
experiments were run on a PC, with a Pentium III 1.7GHz
processor, with 1GB RAM, running Linux. The results of
each experiment are averaged over 10 runs to eliminate any
fluctuations in the time measurements.

4.1 Varying the Database Size
The first experiment that we conducted to evaluate our

algorithms targeted the performance of the four algorithms
under different sizes of the query database. In this exper-
iment we randomly selected one hundred documents from
the NN corpus and used them as incoming documents in the
query databases of different sizes. The size and the match-
ing percentage for each document used was different but the
average document size was 6869 words, whereas on average
1% of the queries stored matched the incoming documents.

As we can see in Figure 3, the time taken by each algo-
rithm grows linearly with the size of the query database.
However SWIN, PrefixTrie and BestFitTrie are less sensi-
tive than Brute Force to changes in the query database size.
The trie-based algorithms outperform SWIN mainly due to
the clustering technique that allows the exclusion of more
non-matching atomic queries filtering. We can also observe
that the better exploitation of the commonalities between
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the algorithms of Section 3

queries improves the performance of BestFitTrie over Pre-
fixTrie, resulting in a significant speedup in filtering time
for large query databases. Additionally, Figure 4 contrasts
the algorithms in terms of throughput were we can see that
BestFitTrie gives the best filtering performance managing
to process a load of about 150KB per second for a query
database of 3 million queries.

In terms of space requirements BF needs about 15% less
space than the trie-based algorithms, due to the simple data
structure that poses small space requirements. Addition-
ally the rate of increase for the two trie-based algorithms
is similar to that of BF, requiring a fixed amount of extra
space each time. From the experiments above it is clear
that BestFitTrie speeds up the filtering process with a small
extra storage cost, and proves faster than the rest of the
algorithms, managing to filter as much as 3 million queries
in less the 200 milliseconds, which is about 1000% times
faster than the sequential scan method and 20% faster than
PrefixTrie.



4.2 Varying the Document Size / Matching
Percentage

In this set of experiments we wanted to observe the be-
haviour of the four algorithms in two different aspects. Ini-
tially we varied the matching percentage of the queries for
a specific document to observe the matching time varia-
tions, and secondly we varied the length of the document
to observe the sensitivity of each of the algorithms to such
a change.

For the first experiment we used two documents A and B
that contained the same number of distinct words and the
same attributes, but number of queries that matched each
document was different. Notice that the way the algorithms
are designed the important parameter of a document is the
number of distinct words contained, rather than its size.
This happens because the probing of the query index uses
the distinct words contained in the attribute text. Practi-
cally the increase in the number of distinct words, increases
the probability of a specific word contained in a query, to be
also contained in the incoming document. This in turn in-
creases the number of queries with proximity formulas that
need to be evaluated5, which is a time consuming process.
The size of the document is of smaller importance, since it
only increases the number of positions of a specific word in
the document, and thus the number of checks at proximity
evaluation time. However due to the algorithm presented
in [13] the majority of the positions of a specific word in a
document can be excluded from the proximity evaluation.

Figure 5 shows the % increase in matching time for two
documents A and B with the same number of distinct words,
but different number of queries matching them. Document
B contained 47155 words, and matched 20% more queries
than document A, which contained 42419 words. Both docu-
ments contained four (attribute, value) pairs, and the query
database contained 3 million queries. Apart from BF which
showed a 97% increase in the matching time, BestFitTrie ap-
pears to be the most sensitive to the increase in the match-
ing percentage (showing a 19% increase in filtering time),
in contrast to PrefixTrie and SWIN, which appear to be
less affected (with 13% and 9% increase respectively). This
can be explained as follows. The trie structure of Prefix-
Trie and BestFitTrie forces them to explore a big number
of child nodes when a word node appears in a document, in
contrast to SWIN that searches in either case all the nodes
that are hashed under a specific word. This means that
in higher matching percentages, the trie-based algorithms
loose some of the advantages offered by their sophisticated
data structures and show greater sensitivity to the matching
degree. However the trie-based algorithms are still signifi-
cantly faster, with BestFitTrie being the faster algorithm of
all four despite the high increase.

In the second experiment we wanted to observe the be-
haviour of the four algorithms when the size of the incoming
document increases. This time two documents with about
the same number of queries matching them were chosen,
and the variations in the performance of the four algorithms
were examined. Document A was 75344 words long and
contained 1864 distinct words, whereas document B was
148609 words long and contained 2304 distinct words, that

5Remember that the evaluation of an atomic query is done in
two phases; the existence of keywords is checked first and the
evaluation of the proximity formulas follows.
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Figure 5: % increase in filtering time for a 20% in-
crease in the number of matching queries

is about 24% more words than document A. The differ-
ences in the performance were below 5% in matching time
for SWIN, PrefixTrie and BestFitTrie, whereas BF showed
an increase of about 50%. The insensitivity of SWIN, Pre-
fixTrie and BestFitTrie in the document size is mainly due
to the hash representation of the document and the way
the matching process is carried out. During the matching
process we actually consider only the distinct words of the
document (that are obviously significantly less than the doc-
ument itself for large documents), and check the existence
of a word in the document using a hash function, which pro-
vides fast answer times. Moreover the proximity evaluation
is not greatly affected from the large number of word posi-
tions inside a document due to the well-designed proximity
evaluation algorithm of [13] that allows the omission of a
large number of word positions in a document.

Since in an SDI scenario one may not always have to
deal with large documents (for example, if AWP is used
for describing metadata about research papers) we carried
out experiments with documents with smaller size. More
specifically experiments with documents of mean size of 551
words, show that BestFitTrie performs even better in terms
of filtering time, being 1.75 times faster that PrefixTrie and
about 86 times faster that BF (as opposed to 1.2 and about
10 times faster respectively for documents of mean size 6869
words).

4.3 Updating the Query Database
In this experiment we investigated the update time for

the four different algorithms. To measure the average time
needed to insert a single query in the database we worked as
follows. Starting with the empty database, we measured the
total time needed to populate it with 500K queries, and pro-
ceeded in a similar way by adding “bulks” of 500K queries
in our database and measuring the total insertion time per
bulk. Subsequently the average insertion time per query
for a given bulk of queries can be found simply by dividing
the total time measured with the population of the bulk to
produce a single point in the graph of Figure 6.

It should be clear that for BF and SWIN the query in-
sertion time will be constant on average, since BF does a
simple insertion at the end of a list, while SWIN utilises
a hash table and inserts each atomic query in the begin-
ning of the list pointed to by the hash table slot. For the
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Figure 6: Query insertion time for different query
database sizes

trie-based algorithms the query insertion is a more complex
process that involves the examination of lists at every level
of the trie. While PrefixTrie examines only a single path
in a single trie of the forest, BestFitTrie needs to examine
several paths in the trie and also several tries (in the usual
case as many tries as the number of words in a profile). Our
is remarks are verified by the graph in Figure 6 that shows
the average insertion time in milliseconds for a query q for a
given database size. In this figure we can see that BestFit-
Trie needs about 20% more time than PrefixTrie to insert a
query in a database with 2.5 million profiles. This is a stan-
dard tradeoff where the algorithm spends some extra time
at indexing to save it at query execution.

4.4 Incorporating Ranking Information
To examine the performance of the two trie-based algo-

rithms (namely PrefixTrie and BestFitTrie), we modified
them in order to take into account information about the
frequency of occurrence of words in documents. More specif-
ically we use the document frequency of a word wi (de-
noted by dfi), which represents the number of documents
in a collection that contain wi, to identify the frequent and
infrequent words among the documents. In an SDI sce-
nario where no document collection is available, we can com-
pute dfi on the collection of recently processed documents
[17] (say k most recent documents arrived, where k is large
enough). Using these information we created variations of
the trie-based algorithms that use different heuristics for
storing user queries in tries.

The rank heuristic stores the most frequent words among
the documents (that is the words with the highest df) near
the roots of the tries, while the less frequent words (that is
the words with the lowest df) are pushed deeper in them
resulting in relatively few big and “wide” tries (since their
roots will exist in more queries). The algorithms using the
rank heuristic are PrefixTrie-rank and BestFitTrie-rank.

Contrary to rank, the inverse rank heuristic (irank) [17]
stores the least frequent words of the queries near the roots
of the tries, while the frequent ones are pushed deeper in the
tries, resulting in many narrow tries. Thus more queries are
put in subtrees of words occurring less frequently, resulting
in less lookups during filtering time. The algorithms us-
ing the irank heuristic are PrefixTrie-irank and BestFitTrie-
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Figure 7: Incorporating word frequency information
into the trie-based algorithms, and its effect in fil-
tering time

irank.
The probability that any word wi appears in an incom-

ing document d is defined to follow probability distribution
D(wi), where 0 ≤ D(wi) ≤ 1. The number of nodes N that
will be examined within each trie depends on the clustering
heuristic and is equal to

N = D(w1)N1 + D(w2)N2 + . . . + D(w|V |)N|V | (1)

where Ni is the number of nodes in the trie that have word
wi as root node, and |V | is the size of our vocabulary. The
sum

N1 + N2 + . . . + N|V | (2)

is positive and it is always less than or equal to the number
of words in the query database.

From Equations 1 and 2 we can see that the number N of
nodes examined is minimised if we assign more words to WD
slots pointing to words (trie roots) with smaller probability
to appear in a document. Based on the above observation
we created a modification of BestFitTrie, called LCWTrie
(Least Common Word) by limiting BestFitTrie to consider
only one candidate trie during insertion: the one that has the
least frequent word of the atomic query as root. This way,
the atomic query can only be inserted in that trie (or that
trie will be created if it does not exist), while the remainder
of the words of the atomic query will be organised following
the insertion algorithm of BestFitTrie (this will give us the
best organisation considering only this trie instead of the
whole forest).

In Figure 7 we present the performance of PrefixTrie and
BestFitTrie and their ranking variations. We can see that
using the rank heuristic the performance of both algorithms
deteriorates, due to the creation of large tries that need big-
ger exploration time. We can also observe that the irank
heuristic improves the performance of both trie-based al-
gorithms, with the greater effect shown on PrefixTrie that
becomes faster than BestFitTrie-irank. This improvement
in performance for both algorithms was expected as shown
earlier in this section.

Figure 8 presents the performance of the three faster al-
gorithms, namely PrefixTrie-irank, BestFitTrie-irank and
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Figure 8: Performance of LCWTrie in comparison
to the two faster filtering algorithms

LCWTrie. BestFitTrie-irank prioritises clustering over fre-
quency information by examining all candidate tries and
choosing the one that has the most common words. Word
frequency information plays a secondary role, allowing the
algorithm to choose between tries with the same common
words the trie that has the highest ranked word as a root.
On the other hand, PrefixTrie-irank and LCWTrie are de-
signed to show a preference in frequency information against
clustering. More specifically both algorithms examine ex-
actly one candidate trie, that with the least frequent word
as root. Additionally, LCWTrie organises the query within
that trie in the best possible way, taking into account com-
mon words between the queries already stored. In contrast,
PrefixTrie-irank does not care about clustering and stores
the query according to frequency information only, that is
the word with the lowest rank goes deeper in the trie.

Our observations about the significance of frequency infor-
mation presented in the beginning of the section are verified.
From the experiments of Figure 8 we see that LCWTrie per-
forms similarly with PrefixTrie-irank, although it presents a
slight advantage for large query databases, due to the clus-
tering within the trie. Additionally both algorithms out-
perform BestFitTrie that owes its performance mainly to
clustering, giving little consideration to frequency informa-
tion.

5. OUTLOOK
We are currently working on SDI with data models based

on XML and queries based on XQuery/XPath with IR fea-
tures (phrases, word proximity, similarity etc.).
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