
SPANStore: Cost-Effective Geo-Replicated Storage Spanning
Multiple Cloud Services

Zhe Wu⇤, Michael Butkiewicz⇤, Dorian Perkins⇤, Ethan Katz-Bassett†, and Harsha V. Madhyastha⇤
UC Riverside⇤ and USC†

Abstract
By offering storage services in several geographically
distributed data centers, cloud computing platforms en-
able applications to offer low latency access to user data.
However, application developers are left to deal with the
complexities associated with choosing the storage ser-
vices at which any object is replicated and maintaining
consistency across these replicas.

In this paper, we present SPANStore, a key-value store
that exports a unified view of storage services in geo-
graphically distributed data centers. To minimize an ap-
plication provider’s cost, we combine three key princi-
ples. First, SPANStore spans multiple cloud providers to
increase the geographical density of data centers and to
minimize cost by exploiting pricing discrepancies across
providers. Second, by estimating application workload
at the right granularity, SPANStore judiciously trades off
greater geo-distributed replication necessary to satisfy
latency goals with the higher storage and data propaga-
tion costs this entails in order to satisfy fault tolerance
and consistency requirements. Finally, SPANStore min-
imizes the use of compute resources to implement tasks
such as two-phase locking and data propagation, which
are necessary to offer a global view of the storage ser-
vices that it builds upon. Our evaluation of SPANStore
shows that it can lower costs by over 10x in several sce-
narios, in comparison with alternative solutions that ei-
ther use a single storage provider or replicate every ob-
ject to every data center from which it is accessed.

1 Introduction
Today, several cloud providers offer storage as a ser-
vice. Amazon S3 [1], Google Cloud Storage (GCS) [3],
and Microsoft Azure [8] are notable examples. All of
these services provide storage in several data centers dis-
tributed around the world. Customers can store and re-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522730

trieve data via PUTs and GETs without dealing with the
complexities associated with setting up and managing
the underlying storage infrastructure.

Ideally, web applications should be able to provide
low-latency service to their clients by leveraging the
distributed locations for storage offered by these ser-
vices. For example, a photo sharing webservice de-
ployed across Amazon’s data centers may serve every
user from the data center closest to the user.

However, a number of realities complicate this goal.
First, almost every storage service offers an isolated pool
of storage in each of its data centers, leaving replication
across data centers to applications. For example, even
though Amazon’s cloud platform has 8 data centers, cus-
tomers of its S3 storage service need to read/write data at
each data center separately. If a user in Seattle uploads a
photo to a photo sharing webservice deployed on all of
Amazon’s data centers, the application will have to repli-
cate this photo to each data center to ensure low latency
access to the photo for users in other locations.

Second, while replicating all objects to all data cen-
ters can ensure low latency access [26], that approach
is costly and may be inefficient. Some applications may
value lower costs over the most stringent latency bounds,
different applications may demand different degrees of
data consistency, some objects may only be popular in
some regions, and some clients may be near to multi-
ple data centers, any of which can serve them quickly.
All these parameters mean that no single deployment
provides the best fit for all applications and all objects.
Since cloud providers do not provide a centralized view
of storage with rich semantics, every application needs
to reason on its own about where and how to replicate
data to satisfy its latency goals and consistency require-
ments at low cost.

To address this problem, we design and implement
SPANStore (“Storage Provider Aggregating Networked
Store”), a key-value store that presents a unified view of
storage services present in several geographically dis-
tributed data centers. Unlike existing geo-replicated
storage systems [26, 27, 32, 19], our primary focus in de-
veloping SPANStore is to minimize the cost incurred by
latency-sensitive application providers. Three key prin-
ciples guide our design of SPANStore to minimize cost.

First, SPANStore spans data centers across multiple
cloud providers due to the associated performance and

cost benefits. On one hand, SPANStore can offer lower
latencies because the union of data centers across multi-
ple cloud providers results in a geographically denser set
of data centers than any single provider’s data centers.
On the other hand, the cost of storage and networking
resources can significantly differ across cloud providers.
For example, when an application hosted in the US
serves a user in China, storing the user’s data in S3’s Cal-
ifornia data center is more expensive ($0.105 per GB)
than doing so in GCS ($0.085 per GB), whereas the price
for serving data to the user has the opposite trend ($0.12
per GB in S3 vs. $0.21 per GB in GCS). SPANStore
exploits these pricing discrepancies to drive down the
cost incurred in satisfying application providers’ latency,
consistency, and fault tolerance goals.

Second, to minimize cost, SPANStore judiciously de-
termines where to replicate every object and how to per-
form this replication. Replicating objects to a larger di-
versity of locations reduces GET latencies by moving
copies closer to clients, but this additional replication
increases both storage costs and the expenses necessary
to pay for the bandwidth required to propagate updates.
For every object that it stores, SPANStore addresses this
trade-off by taking into consideration several factors: the
anticipated workload for the object (i.e., how often dif-
ferent clients access it), the latency guarantees specified
by the application that stored the object in SPANStore,
the number of failures that the application wishes to tol-
erate, the level of data consistency desired by the ap-
plication (e.g., strong versus eventual), and the pricing
models of storage services that SPANStore builds upon.

Lastly, SPANStore further reduces cost by minimiz-
ing the compute resources necessary to offer a global
view of storage. These compute resources are used to
implement tasks such as two-phase locking while offer-
ing strong consistency and propagation of updates when
offering eventual consistency. To keep costs low, we en-
sure that all data is largely exchanged directly between
application virtual machines (VMs) and the storage ser-
vices that SPANStore builds upon; VMs provisioned by
SPANStore itself—rather than by application provider—
are predominantly involved only in metadata operations.

We have developed and deployed a prototype of
SPANStore that spans all data centers in the S3, Azure,
and GCS storage services. In comparison to alterna-
tive designs for geo-replicated storage (such as using
the data centers in a single cloud service or replicating
every object in every data center from which it is ac-
cessed), we see that SPANStore can lower costs by over
10x in a range of scenarios. We have also ported two
applications with disparate consistency requirements (a
social networking webservice and a collaborative docu-
ment editing application), and we find that SPANStore is
able to meet latency goals for both applications.

2 Problem formulation
Our overarching goal in developing SPANStore is to en-
able applications to interact with a single storage service,
which underneath the covers uses several geographically
distributed storage services. Here, we outline our vision
for how SPANStore simplifies application development
and the challenges associated with minimizing cost.

2.1 Setting and utility
We assume an application employing SPANStore for
data storage uses only the data centers of a single cloud
service to host its computing instances, even though (via
SPANStore) it will use multiple cloud providers for data
storage. This is because different cloud computing plat-
forms significantly vary in the abstractions that applica-
tions can build upon; an application’s implementation
will require significant customization in order for it be
deployable across multiple cloud computing platforms.
For example, applications deployed on Amazon EC2
can utilize a range of services such as Simple Queue-
ing Service, Elastic Beanstalk, and Elastic Load Balanc-
ing. Other cloud computing platforms such as Azure and
GCE do not offer direct equivalents of these services.

To appreciate the utility of developing SPANStore,
consider a collaborative document editing webservice
(similar to Google Docs) deployed across all of EC2’s
data centers. Say this application hosts a document that
is shared among three users who are in Seattle, China,
and Germany. The application has a range of choices as
to where this document could be stored. One option is
to store copies of the document at EC2’s Oregon, Tokyo,
and Ireland data centers. While this ensures that GET
operations have low latencies, PUTs will incur latencies
as high as 560ms since updates need to be applied to all
copies of the document in order to preserve the docu-
ment’s consistency. Another option is to maintain only
one copy of the document at EC2’s Oregon data cen-
ter. This makes it easier to preserve consistency and also
reduces PUT latencies to 170ms, but increases GET la-
tencies to the same value. A third alternative is to store
a single copy of the document at Azure’s data center on
the US west coast. This deployment reduces PUT and
GET latencies to below 140ms and may significantly re-
duce cost, since GET and PUT operations on EC2 cost
4x and 50x, respectively, what they do on Azure.

Thus, every application has a range of replication
strategies to choose from, each of which presents a dif-
ferent trade-off between latency and cost. Today, the
onus of choosing from these various options on a object-
by-object basis is left to individual application develop-
ers. By developing SPANStore, we seek to simplify the
development of distributed applications by presenting a
single view to geo-replicated storage and automating the
process of navigating this space of replication strategies.

 0

 5

 10

 15

 20

 25

50 100 150 200 250 300#
of

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
S3-only

 0

 5

 10

 15

 20

 25

50 100 150 200 250 300#
of

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
Azure-only

 0

 5

 10

 15

 20

50 100 150 200 250 300

of

 c
he

ap
er

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
S3-only

 0

 5

 10

 15

 20

50 100 150 200 250 300

of

 c
he

ap
er

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
Azure-only

(a) EC2 (b) Azure (c) EC2 (d) Azure
Figure 1: For applications deployed on a single cloud service (EC2 or Azure), a storage service that spans multiple cloud
services offers a larger number of data centers (a and b) and more cheaper data centers (c and d) within a latency bound.

2.2 Goals
Four objectives guide our synthesis of geographically
distributed storage services into a single key-value store.
• Minimize cost. Our primary goal is to minimize costs

for applications that use SPANStore. For this, we
need to minimize the total cost across SPANStore’s
use of 1) the storage services that it unifies, and 2)
the compute resources offered by the corresponding
providers.

• Respect latency SLOs. We design SPANStore to
serve latency-sensitive applications that have geo-
graphically distributed deployments, and therefore
stand to benefit from the geo-replicated storage of-
fered by SPANStore. However, the service level objec-
tives (SLOs)1 for GET/PUT latencies may vary across
applications. While minimizing cost for any particu-
lar application, SPANStore must strive to meet appli-
cations’ latency goals.

• Flexible consistency. Different applications can also
vary in their requirements for the consistency of
the data they store. For example, a collaborative
document editing service requires strong consistency
whereas eventual consistency suffices for a social net-
working service. SPANStore should respect require-
ments for strong consistency and exploit cases where
eventual consistency suffices to offer lower latencies.

• Tolerate failures. Applications seek to tolerate fail-
ures of data centers and Internet paths. However, app-
lications may differ in the cost that they are willing to
bear for increased fault tolerance. SPANStore should
account for an application’s fault tolerance require-
ments while storing objects written by the application.

2.3 Challenges
Satisfying these goals is challenging for several reasons.

Inter-dependencies between goals. To minimize
cost, it is critical that SPANStore jointly considers an
application’s latency, consistency, and fault tolerance
requirements. For example, if an application desires
strongly consistent data, the most cost-effective strategy

1We use the term SLO instead of SLA because violations of the
latency bounds are not fatal, but need to be minimized.

is for SPANStore to store all of the application’s data in
the cheapest storage service. However, serving all PUTs
and GETs from a single replica may violate the appli-
cation’s latency requirements, since this replica may be
distant from some of the data centers on which the app-
lication is deployed. On the other hand, replicating the
application’s data at all data centers in order to reduce
PUT/GET latencies will increase the cost for SPANStore
to ensure strong consistency of the data.

Dependence on workload. Even if two applications
have the same latency, fault tolerance, and consistency
requirements, the most cost-effective solution for storing
their data may differ. The lowest cost configuration for
replicating any object depends on several properties of
an application’s workload for that object:

• The set of data centers from which the application
accesses the object, e.g., an object accessed only by
users within the US can be stored only on data centers
in the US, whereas another object accessed by users
worldwide needs wider replication.

• The number of PUTs and GETs issued for that object
at each of these data centers, e.g., to reduce network
transfer costs, it is more cost-effective to replicate the
object more (less) if the workload is dominated by
GETs (PUTs).

• The temporal variation of the workload for the object,
e.g., the object may initially receive a high fraction of
PUTs and later be dominated by GETs, thus requiring
a change in the replication strategy for the object.

Multi-dimensional pricing. Cost minimization is
further complicated by the fact that any storage service
prices its use based on several metrics: the amount of
data stored, the number of PUTs and GETs issued, and
the amount of data transferred out of the data center in
which the service is hosted. No single storage service
is the cheapest along all dimensions. For example, one
storage service may offer cheap storage but charge high
prices for network transfers, whereas another may offer
cheap network bandwidth but be expensive per PUT and
GET to the service. Moreover, some storage services
(e.g., GCS) charge for network bandwidth based on the
location of the client issuing PUTs and GETs.

3 Why multi-cloud?
A key design decision in SPANStore is to have it span the
data centers of multiple cloud service providers. In this
section, we motivate this design decision by presenting
measurements which demonstrate that deploying across
multiple cloud providers can potentially lead to reduced
latencies for clients and reduced cost for applications.

3.1 Lower latencies

We first show that using multiple cloud providers can en-
able SPANStore to offer lower GET/PUT latencies. For
this, we instantiate VMs in each of the data centers in
EC2, Azure, and GCE. From the VM in every data cen-
ter, we measure GET latencies to the storage service in
every other data center once every 5 minutes for a week.
We consider the latency between a pair of data centers
as the median of the measurements for that pair.

Figure 1 shows how many other data centers are
within a given latency bound of each EC2 [1(a)] and
Azure [1(b)] data center. These graphs compare the
number of nearby data centers if we only consider the
single provider to the number if we consider all three
providers—Amazon, Google, and Microsoft. For a
number of latency bounds, either graph depicts the mini-
mum, median, and maximum (across data centers) of the
number of options within the latency bound.

For nearly all latency bounds and data centers, we
find that deploying across multiple cloud providers in-
creases the number of nearby options. SPANStore can
use this greater choice of nearby storage options to meet
tighter latency SLOs, or to meet a fixed latency SLO us-
ing fewer storage replicas (by picking locations nearby
to multiple frontends). Intuitively, this benefit occurs be-
cause different providers have data centers in different
locations, resulting in a variation in latencies to other
data centers and to clients.

3.2 Lower cost

Deploying SPANStore across multiple cloud providers
also enables it to meet latency SLOs at potentially lower
cost due to the discrepancies in pricing across providers.
Figures 1(c) and 1(d) show, for each EC2 and Azure data
center, the number of other data centers within a given
latency bound that are cheaper than the local data cen-
ter along some dimension (storage, PUT/GET requests,
or network bandwidth). For example, nearby Azure data
centers have similar pricing, and so, no cheaper options
than local storage exist within 150ms for Azure-based
services. However, for the majority of Azure-based fron-
tends, deploying across all three providers yields multi-
ple storage options that are cheaper for at least some op-
erations. Thus, by judiciously combining resources from
multiple providers, SPANStore can use these cheaper op-
tions to reduce costs.

Data center 1

Application
VMs Storage

Service

Placement
Manager

Data
center 3

Storage
Service

PUT/GET requests

Data center 2

Storage
Service

SPANStore
VMs

Metadata lookups/inserts

Replication policies

Aggregate workload
and latencies

Application

SPANStore
Library

Application VM

Storage
Service

Figure 2: Overview of SPANStore’s architecture.

4 Overview
We design SPANStore such that every application uses
a separate deployment of SPANStore. Figure 2 summa-
rizes SPANStore’s deployment for any particular appli-
cation. At every data center in which the application
is deployed, the application issues PUT and GET re-
quests for objects to a SPANStore library that the ap-
plication links to. The SPANStore library serves these
requests by 1) looking up in-memory metadata stored in
the SPANStore-instantiated VMs in the local data center,
and thereafter 2) issuing PUTs and GETs to underlying
storage services. To issue PUTs to remote storage ser-
vices, the SPANStore library may choose to relay PUT
operations via SPANStore VMs in other data centers.

The manner in which SPANStore VMs should serve
PUT/GET requests for any particular object is dictated
by a central PlacementManager (PMan). We divide time
into fixed-duration epochs; an epoch lasts one hour in
our current implementation. At the start of every epoch,
all SPANStore VMs transmit to PMan a summary of the
application’s workload and latencies to remote data cen-
ters measured in the previous epoch. PMan then com-
putes the optimal replication policies to be used for the
application’s objects based on its estimate of the appli-
cation’s workload in the next epoch and the application’s
latency, consistency, and fault tolerance requirements. In
our current implementation, PMan estimates the appli-
cation’s workload in a particular epoch to be the same
as that observed during the same period in the previous
week. PMan then communicates the new replication
policies to SPANStore VMs at all data centers. These
replication policies dictate how SPANStore should serve
the application’s PUTs (where to write copies of an ob-
ject and how to propagate updates) and GETs (where to
fetch an object from) in the next epoch.

5 Determining replication policies
In this section, we discuss PMan’s determination of the
replication policies used in SPANStore’s operation. We
first describe the inputs required by PMan and the format

Placement
ManagerSPANStore characterization

Application-specific inputs

1. Inter-DC latencies
2. Pricing policies of
storage services

3. Latency SLOs
4. Consistency requirement
5. Fault tolerance requirements
6. Aggregate workload per
 access set

Replication policy for
each access set

Figure 3: Overview of PMan’s inputs and output.

in which it outputs replication policies. We then present
the algorithms used by PMan in two different data con-
sistency scenarios.

5.1 Inputs and output

As shown in Figure 3, PMan requires three types of in-
puts: 1) a characterization of SPANStore’s deployment,
2) the application’s latency, fault tolerance, and consis-
tency requirements, and 3) a specification of the appli-
cation’s workload.

Characterization of SPANStore deployment. PMan
requires two pieces of information about SPANStore’s
deployment. First, it takes as input the distribution of
latencies between every pair of data centers on which
SPANStore is deployed. These latencies include mea-
surements of PUTs, GETs, and pings issued from a VM
in one data center to the storage service or a VM in an-
other data center. Second, PMan needs the pricing pol-
icy for the resources used by SPANStore. For each data
center, we specify the price per byte of storage, per PUT
request, per GET request, and per hour of usage for the
type of virtual machine used by SPANStore in that data
center. We also specify, for each pair of data centers, the
price per byte of network transfer from one to the other,
which is determined by the upload bandwidth pricing at
the source data center.

Application requirements. PMan also needs as input
the application’s latency, data consistency, and fault tol-
erance requirements. For the latency goals, we let the ap-
plication separately specify SLOs for latencies incurred
by PUT and GET operations. Either SLO is specified by
a latency bound and the fraction of requests that should
incur a latency less than the specified bound.

To capture consistency needs, we ask the application
developer to choose between strong and eventual con-
sistency. In the strong consistency case, we provide lin-
earizability, i.e., all PUTs for a particular object are or-
dered and any GET returns the data written by the last
committed PUT for the object. In contrast, if an applica-
tion can make do with eventual consistency, SPANStore
can satisfy lower latency SLOs. Our algorithms for
the eventual consistency scenario are extensible to other
consistency models such as causal consistency [26] by
augmenting data transfers with additional metadata.

In both the eventual consistency and strong consis-

tency scenarios, the application developer can specify
the number of failures—either of data centers or of Inter-
net paths between data centers—that SPANStore should
tolerate. As long as the number of failures is less than the
specified number, SPANStore should ensure the avail-
ability of all GET and PUT operations while also satis-
fying the application’s consistency and latency require-
ments. When the number of failures exceeds the spec-
ified number, SPANStore may make certain operations
unavailable or violate latency goals in order to ensure
that consistency requirements are preserved.

Workload characterization. Lastly, PMan accounts
for the application’s workload in two ways. First, for
every object stored by an application, we ask the ap-
plication to specify the set of data centers from which
it will issue PUTs and GETs for the object. We refer
to this as the access set for the object. An application
can determine the access set for an object based on the
sharing pattern of that object across users. For exam-
ple, a collaborative online document editing webservice
knows the set of users with whom a particular document
has been shared. The access set for the document is then
the set of data centers from which the webservice serves
these users. In cases where the application itself is un-
sure which users will access a particular object (e.g., in
a file hosting service like Rapidshare), it can specify the
access set of an object as comprising all data centers on
which the application is deployed; this uncertainty will
translate to higher costs. In this work, we consider ev-
ery object as having a fixed access set over its lifetime.
SPANStore could account for changes in an object’s ac-
cess set over time, but at the expense of a larger number
of latency SLO violations; we defer the consideration of
this scenario to future work.

Second, SPANStore’s VMs track the GET and PUT
requests received from an application to characterize
its workload. Since the GET/PUT rates for individual
objects can exhibit bursty patterns (e.g., due to flash
crowds), it is hard to predict the workload of a partic-
ular object in the next epoch based on the GETs and
PUTs issued for that object in previous epochs. There-
fore, SPANStore instead leverages the stationarity that
typically exists in an application’s aggregate workload,
e.g., many applications exhibit diurnal and weekly pat-
terns in their workload [11, 17]. Specifically, at every
data center, SPANStore VMs group an application’s ob-
jects based on their access sets. In every epoch, for every
access set, the VMs at a data center report to PMan 1)
the number of objects associated with that access set and
the sum of the sizes of these objects, and 2) the aggregate
number of PUTs and GETs issued by the application at
that data center for all objects with that access set.

To demonstrate the utility of considering aggregate
workloads in this manner, we analyze a Twitter dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F
of

 a
na

ly
ze

d
ho

ur
s

Relative difference in posted tweets

All users
User 1
User 2
User 3
User 4
User 5

Figure 4: Comparison at different granularities of the sta-
tionarity in the number of posted tweets.

that lists the times at which 120K users in the US posted
on Twitter over a month [25]. We consider a scenario
in which every user is served from the EC2 data cen-
ter closest to the user, and consider every user’s Twit-
ter timeline to represent an object. When a user posts a
tweet, this translates to one PUT operation on the user’s
timeline and one PUT each on the timelines of each of
the user’s followers. Thus, the access set for a particular
user’s timeline includes the data centers from which the
user’s followers are served.

Here, we consider those users whose timelines have
their access set as all EC2 data centers in the US. Fig-
ure 4 presents the stationarity in the number of PUTs
when considering the timelines of all of these users in
aggregate and when considering five popular individual
users. In either case, we compare across two weeks the
number of PUTs issued in the same hour on the same
day of the week, i.e., for every hour, we compute the
difference between the number of tweets in that hour
and the number of tweets in the same hour the previous
week, normalized by the latter value. Aggregate across
all users, the count for every hour is within 50% of the
count for that hour the previous week, whereas individ-
ual users often exhibit 2x and greater variability. The
greater stationarity in the aggregate workload thus en-
ables more accurate prediction based on historical work-
load measurements.

Replication policy. Given these inputs, at the begin-
ning of every epoch, PMan determines the replication
policy to be used in the next epoch. Since we capture
workload in aggregate across all objects with the same
access set, PMan determines the replication policy sep-
arately for every access set, and SPANStore employs the
same replication strategy for all objects with the same
access set. For any particular access set, the replication
policy output by PMan specifies 1) the set of data cen-
ters that maintain copies of all objects with that access
set, and 2) at each data center in the access set, which
of these copies SPANStore should read from and write
to when an application VM at that data center issues a
GET or PUT on an object with that access set.

Thus, the crux of SPANStore’s design boils down
to: 1) in each epoch, how does PMan determine the

replication policy for each access set, and 2) how does
SPANStore enforce PMan-mandated replication policies
during its operation, accounting for failures and changes
in replication policies across epochs? We next describe
separately how SPANStore addresses the first question in
the eventual consistency and strong consistency cases,
and then tackle the second question in the next section.

5.2 Eventual consistency

When the application can make do with eventual con-
sistency, SPANStore can trade-off costs for storage,
PUT/GET requests, and network transfers. To see why
this is the case, let us first consider the simple replica-
tion policy where SPANStore maintains a copy of every
object at each data center in that object’s access set (as
shown in Figure 5(a)). In this case, a GET for any ob-
ject can be served from the local storage service. Simi-
larly, PUTs can be committed to the local storage service
and updates to an object can be propagated to other data
centers in the background; SPANStore considers a PUT
as complete after writing the object to the local storage
service because of the durability guarantees offered by
storage services. By serving PUTs and GETs from the
storage service in the same data center, this replication
policy minimizes GET/PUT latencies, the primary bene-
fit of settling for eventual consistency. In addition, serv-
ing GETs from local storage ensures that GETs do not
incur any network transfer costs.

However, as the size of the access set increases, repli-
cating every object at every data center in the access set
can result in high storage costs. Furthermore, as the frac-
tion of PUTs in the workload increase, the costs associ-
ated with PUT requests and network transfers increase
as more copies need to be kept up-to-date.

To reduce storage costs and PUT request costs,
SPANStore can store replicas of an object at fewer data
centers, such that every data center in the object’s access
set has a nearby replica that can serve GETs/PUTs from
this data center within the application-specified latency
SLOs. For example, as shown in Figure 5(b), instead of
storing a local copy, data center A can issue PUTs and
GETs to the nearby replica at Q.

However, SPANStore may incur unnecessary net-
working costs if it propagates a PUT at data center A
by having A directly issue a PUT to every replica. In-
stead, we can capitalize on the discrepancies in pricing
across different cloud services (see Section 3) and re-
lay updates to the replicas via another data center that
has cheaper pricing for upload bandwidth. For example,
in Figure 5(c), SPANStore reduces networking costs by
having A send each of its updates to P, which in turn
issues a PUT for this update to all the replicas that A
has not written to directly. In some cases, it may be
even more cost-effective to have the replica to which A

B

A

C

D

F

E
B

A

C

D

F

E

Q

R

S
B

A

C

D

F

E

Q

R

S

P

B

A

C

D

F

E

Q

R

S

P

(a) Full replication (b) Partial replication (c) Relayed update propagation (d) Two-hop relaying may
minimizes latency reduces costs reduces bandwidth costs reduce costs further

Figure 5: When eventual consistency suffices, illustration of different replication policies for access set {A, B, C, D, E,
F}. In all cases, we show how PUTs from data center A are propagated. Shaded circles are data centers that host replicas,
and dotted circles represent data centers that propagate updates. Solid arrows correspond to transfers that impact PUT
latencies, and dotted arrows represent asynchronous propagation.

commits its PUTs relay updates to a data center that has
cheap network pricing, which in turn PUTs the update to
all other replicas, e.g., as shown in Figure 5(d).

PMan addresses this trade-off between storage, net-
working, and PUT/GET request costs by formulating
the problem of determining the replication policy for a
given access set AS as a mixed integer program (shown
in Appendix A; for simplicity, we present the formula-
tion without including VM costs). For every data cen-
ter i 2 AS, PMan chooses f + 1 data centers (out of all
those on which SPANStore is deployed) which will serve
as the replicas to which i issues PUTs and GETs (line
27). SPANStore then stores copies of all objects with ac-
cess set AS at all data centers in the union of PUT/GET
replica sets (line 29).

The integer program used by PMan imposes several
constraints on the selection of replicas and how updates
made by PUT operations propagate. First, whenever an
application VM in data center i issues a PUT, SPANStore
synchronously propagates the update to all the data cen-
ters in the replica set for i (line 31) and asynchronously
propagates the PUT to all other replicas of the object
(line 33). Second, to minimize networking costs, the
integer program used by PMan allows for both syn-
chronous and asynchronous propagation of updates to
be relayed via other data centers. Synchronous relaying
of updates must satisfy the latency SLOs (lines 13 and
14), whereas in the case of asynchronous propagation of
updates, relaying can optionally be over two hops (line
15), as in the example in Figure 5(d). Finally, for every
data center i in the access set, PMan identifies the paths
from data centers j to k along which PUTs from i are
transmitted during either synchronous or asynchronous
propagation (lines 35 and 36).

PMan solves this integer program with the objective
of minimizing total cost, which is the sum of storage
cost and the cost incurred for serving GETs and PUTs.
The storage cost is simply the cost of storing one copy
of every object with access set AS at each of the replicas

B

A

C

Q

R

S

T

Figure 6: Example use of asymmetric quorum sets. Solid
unshaded circles represent data centers in the access set,
and shaded circles are data centers that host replicas. Di-
rected edges represent transfers to PUT replica sets, and
dashed ovals represent GET replica sets.

chosen for that access set (line 24). For every GET oper-
ation at data center i, SPANStore incurs the price of one
GET request at each of i’s replicas and the cost of trans-
ferring the object over the network from those replicas
(line 20). In contrast, every PUT operation at any data
center i incurs the price of one PUT request each at all
the replicas chosen for access set AS, and network trans-
fer costs are incurred on every path along which i’s PUTs
are propagated (line 22).

5.3 Strong consistency

When the application using SPANStore for geo-
replicated storage requires strong consistency of data,
we rely on quorum consistency [20]. Quorum consis-
tency imposes two requirements to ensure linearizabil-
ity. For every data center i in an access set, 1) the subset
of data centers to which i commits each of its PUTs—
the PUT replica set for i—should intersect with the PUT
replica set for every other data center in the access set,
and 2) the GET replica set for i should intersect with the
PUT replica set for every data center in the access set.
The cardinality of these intersections should be greater
than the number of failures that the application wants
SPANStore to tolerate.

In our design, we use asymmetric quorum sets [31]
to instantiate quorum consistency as above. With asym-
metric quorum sets, the PUT and GET replica sets for

any particular data center can differ. We choose to use
asymmetric quorum sets due to the non-uniform geo-
graphic distribution of data centers. For example, as
seen in Figure 1(a), EC2 data centers have between 2
and 16 other data centers within 200ms of them. Fig-
ure 6 shows an example where, due to this non-uniform
geographic distribution of data centers, asymmetric quo-
rum sets reduce cost and help meet lower latency SLOs.

The integer program that PMan uses for choosing
replication policies in the strong consistency setting
(shown in Appendix B) mirrors the program for the
eventual consistency case in several ways: 1) PUTs can
be relayed via other data centers to reduce networking
costs (lines 10 and 11, and 27–30), 2) storage costs are
incurred for maintaining a copy of every object at ev-
ery data center that is in the union of the GET and PUT
replica sets of all data centers in the access set (lines
7, 18, and 32), and 3) for every GET operation at data
center i, one GET request’s price and the price for trans-
ferring a copy of the object over the network is incurred
at every data center in i’s GET replica set (line 14).

However, the integer program for the strong con-
sistency setting does differ from the program used in
the eventual consistency case in three significant ways.
First, for every data center in the access set, the PUT and
GET replica sets for that data center may differ (lines 5
and 6). Second, PMan constrains these replica sets so
that every data center’s PUT and GET replica sets have
an intersection of at least 2 f + 1 data centers with the
PUT replica set of every other data center in the access
set (lines 20–26). Finally, PUT operations at any data
center i are propagated only to the data centers in i’s
PUT replica set, and these updates are propagated via
at most one hop (line 16).

6 SPANStore dynamics
Next, we describe SPANStore’s operation in terms of the
mechanisms it uses to execute PUTs and GETs, to tol-
erate failures, and to handle changes in the application’s
workload across epochs. First, we discuss the metadata
stored by SPANStore to implement these mechanisms.

6.1 Metadata

At every data center, SPANStore stores in-memory meta-
data across all the VMs that it deploys in that data center.
At the beginning of an epoch, PMan computes the new
replication policy to use in that epoch, and it transmits
to every data center the replication policy information
needed at that data center. A data center A needs, for
every access set AS that contains A, the PUT and GET
replica sets to be used by A for objects with access set
AS. Whenever the application issues a PUT for a new
object at data center A, it needs to specify the access set
for that object. SPANStore then inserts an (object name

...
m {A, B}

...

{A, B}

...
b

...

Replication Version

{A, C, D}

Object Access Set
a

{C,D}

{A, B}
{E}{A, C, D}

... ...

{A, D}
Replicas

{C,D}

Put Set
{A, D} {A}

Access Set Get Set

{B, E}
{A, B, E}

{B, E}

......
{D}

{B, D}

{A, B}
{A}{A, C, D}

... ...

{C, D}
Replicas

{B,D}

Put Set
{C, D} {D}

Access Set Get Set

{A, F}
{A, B, E}

{A}

......
{D}

...
y
x 1

Object
a 1

Object Version

...

...
3

2
...

b

(b)

(a)

(c)

Version 1

Version 2

Figure 7: At any data center A, SPANStore stores an (a)
in-memory version mapping for objects stored at A. If the
application is deployed at A, SPANStore also stores (b) the
access set mapping for objects whose access set includes A,
and (c) replication policy versions for different epochs.

! access set) mapping into the in-memory metadata at
every data center in the access set.

As we describe later in Section 6.4, when serving
the first operation for an object in a particular epoch,
SPANStore needs to account for both the replication pol-
icy currently in use for that object and the new repli-
cation policy computed by PMan for the current epoch.
Therefore, we store both current and historical versions
of the (access set ! replica sets) mapping. As shown in
Figure 7, the access set mapping for an object includes
the replication policy version that currently applies for
that object. SPANStore eventually destroys an old repli-
cation policy when no object is using it.

In addition, at any data center, SPANStore also stores
an in-memory version mapping for all objects stored in
the storage service at that data center. Note that, at any
data center A, the set of objects stored at A can differ
from the set of objects whose access set includes A.

6.2 Serving PUTs and GETs

Any application uses SPANStore by linking to a li-
brary that implements SPANStore’s protocol for per-
forming PUTs and GETs. If the application configures
SPANStore to provide eventual consistency, the library
looks up the local metadata for the current PUT/GET
replica set for the queried object. Upon learning which
replicas to use, the SPANStore library issues PUT/GET
requests to the storage services at those replicas and re-
turns an ACK/the object’s data to the application as soon
as it receives a response from any one of those replicas.

When using strong consistency, SPANStore uses two
phase locking (2PL) to execute PUT operations. First,
the SPANStore library looks up the object’s metadata to
discover the set of replicas that this data center must
replicate the object’s PUTs to. The library then acquires
locks for the object at all data centers in this replica set.
If it fails to acquire any of the locks, it releases the locks
that it did acquire, backs off for a random period of time,

1. Acquire lock

Storage Service

3. Return version

4. Relay data

6. ACK

5. Write data

7. Release
lock

2. Insert locks
and lookup version

8. Delete locks

A B

C

Figure 8: Illustration of SPANStore’s two-phase locking
protocol. Solid lines impact PUT latency, whereas opera-
tions along dashed lines are performed asynchronously.

and then retries. Once the library acquires locks at all
data centers in the PUT replica set, it writes the new ver-
sion of the object to the storage services at those data
centers and releases the locks.

The straightforward implementation of this protocol
for executing PUTs can be expensive. Consider a VM at
data center A performing a PUT operation on a replica
set that includes data center B. The VM at A can first
send a request to a VM at B to acquire the lock and to
obtain the version of the object stored at data center B.
The VM at A can then send the data for the object being
updated to the VM at B (possibly via another data center
C that relays the data). The VM at B can write the data to
the local data center, release the lock, and update the in-
memory version mapping for the object. However, this
requires SPANStore’s VMs to receive object data from
remote data centers. To meet the bandwidth demands of
doing so, we will need to provision a large number of
VMs, thus inflating cost.

Instead, we employ a modified 2PL protocol as shown
in Figure 8. As before, the VM at A communicates with
a VM at B to acquire the lock and obtain the version
number of B’s copy of the object. To acquire the lock
for object o, the VM at B inserts two objects into the lo-
cal in-memory metadata cluster—LT

o that times out after
5 seconds, and LU

o that does not have any timeout. Once
it acquires the lock, the VM at A directly issues a PUT
to the storage service at data center B, rather than ask-
ing the VM at B to perform this PUT. While writing the
object, we prepend the version number to the object’s
data. Once the PUT to the storage service is complete,
SPANStore lazily requests a VM at B to release the lock
by deleting both LT

o and LU
o , and to also update the ver-

sion number stored in memory for the updated object.
In the case where the Internet path from A to B fails

after the new version of the object has been written to B
or if the VM at A that is performing the PUT fails before
it releases the locks, the VM at A cannot explicitly delete
LT

o and LU
o at B, yet LT

o will timeout. When a VM at B
receives a request to lock object o in the future and finds

that LT
o is absent but LU

o is present, it issues a GET for
the object to the local storage service and updates the in-
memory version mapping for o to the version prepended
to the object’s data.

This modified 2PL protocol eliminates the need for
SPANStore’s VMs to send or receive object data, other
than when PUTs are relayed via another data center.
As a result, our 2PL protocol is significantly more cost-
effective than the strawman version, e.g., a small VM on
EC2 can handle 105 locking operations per second, but
can only receive and write to the local storage service 30
100KB objects per second.

In the strong consistency setting, serving GETs is sim-
pler than serving PUTs. When an application VM at
a particular data center issues a GET, the SPANStore
library on that VM looks up the GET replica set for
that object in the local in-memory metadata, and it then
fetches the copy of the requested object from every data
center in that set. From the retrieved copies of the object,
the library then returns the latest version of the object to
the application. We could reduce networking costs by
first querying the in-memory metadata at every replica
for the current version of the object at that data center,
and then fetching a copy of the object only from the near-
est data center which has the latest version. However,
for small objects whose data can fit into one IP packet,
querying the version first and then fetching the object
will double the wide-area RTT overhead.

6.3 Fault tolerance

SPANStore needs to respect the application’s fault-
tolerance needs, which PMan accounts for when it de-
termines replication policies. In the eventual consistency
case, every data center in the access set is associated with
f + 1 replicas, and SPANStore considers a GET/PUT
as complete once the operation successfully completes
on any one of the replicas chosen by PMan. It suffices
for SPANStore to consider a PUT as complete even af-
ter writing the update to a single replica because of the
durability guarantees offered by the storage services that
SPANStore builds upon. Every storage service replicates
objects across servers within a data center to ensure that
it is very unlikely to lose an update committed by a PUT.

When configured for strong consistency, SPANStore
relies on the fault tolerance offered by our use of quo-
rum sets. An intersection of at least 2 f + 1 data centers
between the PUT replica set of every data center and the
PUT and GET replica sets of every other data center in
the access set enables SPANStore to be resilient to up to
f failures [30]. This is because, even if every data center
is unable to reach a different set of f replicas, the in-
tersection larger than 2 f + 1 between PUT-PUT replica
set pairs and GET-PUT replica set pairs ensures that ev-
ery pair of data centers in the access set has at least one

common replica that they can both reach.
Thus, in the strong consistency setting, the SPANStore

library can tolerate failures as follows when executing
PUT and GET operations. At any data center A, the li-
brary initiates a PUT operation by attempting to acquire
the lock for the specified object at all the data centers in
A’s PUT replica set for this object. If the library fails to
acquire the lock at some of these data centers, for every
other data center B in the object’s access set, the library
checks whether it failed to acquire the lock at at most f
replicas in B’s PUT and GET replica sets for this object.
If this condition is true, the library considers the object
to be successfully locked and writes the new data for the
object. If not, the PUT operation cannot be performed
and the library releases all acquired locks.

The SPANStore library executes GETs in the strong
consistency setting similarly. To serve a GET issued
at data center A, the library attempts to fetch a copy of
the object from every data center in A’s GET replica set
for the specified object. If the library is unsuccessful
in fetching copies of the object from a subset S of A’s
replica set, it checks to see whether S has an intersec-
tion of size greater than f with the PUT replica set of
any other data center in the object’s access set. If yes,
the library determines that the GET operation cannot be
performed and returns an error to the application.

6.4 Handling workload changes

The replication policy for an access set can change when
there is a significant change in the aggregate workload
estimated for objects with that access set. When PMan
mandates a new replication policy for a particular ac-
cess set at the start of a new epoch, SPANStore switches
the configuration for an object with that access set at the
time of serving the first GET or PUT request for that ob-
ject in the new epoch. SPANStore can identify the first
operation on an object in the new epoch based on a ver-
sion mismatch between the replication policy associated
with the object and the latest replication policy.

In a new epoch, irrespective of whether the first op-
eration on an object is a GET or a PUT, the SPANStore
library on the VM issuing the request attempts to acquire
locks for the object at all data centers in the object’s ac-
cess set. In the case of a PUT, SPANStore commits the
PUT to the new PUT replica set associated with the ob-
ject. In the case of a GET, SPANStore reads copies of the
object from the current GET set and writes the latest ver-
sion among these copies to the new PUT set. SPANStore
then switches the replication policy for the object to the
current version at all data centers in its access set. There-
after, all the PUTs and GETs issued for the object can be
served based on the new replication policy.

This procedure for switching between replication
policies leads to latency SLO violations and cost over-

head (due to the additional PUTs incurred when the first
request for an object in the new epoch is a GET). How-
ever, we expect the SLO violations to be rare and the
cost overhead to be low since only the first operation on
an object in a new epoch is affected.

7 Implementation
We have implemented and deployed a prototype of
SPANStore that spans all the data centers in Amazon S3,
Microsoft Azure, and Google Cloud Storage. Our imple-
mentation has three components—1) PMan, 2) a client
library that applications can link to, and 3) an XMLRPC
server that is run in every VM run by SPANStore. In ad-
dition, in every data center, we run a memcached cluster
across all SPANStore instances in that data center to store
SPANStore’s in-memory metadata.

PMan initially bootstraps its state by reading in a
configuration file that specifies the application’s latency,
consistency, and fault tolerance requirements as well as
the parameters (latency distribution between data cen-
ters, and prices for resources at these data centers) that
characterize SPANStore’s deployment. To determine op-
timal replication policies, it then periodically invokes
the CPLEX solver to solve the formulation (Appendix A
or Appendix B) appropriate for the application’s consis-
tency needs. PMan also exports an XMLRPC interface
to receive workload and latency information from every
data center at the end of every epoch.

The client library exports two methods: GET(key) and
PUT(key, value, [access set]). The library implements
these methods as per the protocols described in Sec-
tion 6. To lookup the metadata necessary to serve GET
and PUT requests, the library uses DNS to discover the
local memcached cluster.

The XMLRPC server exports three interfaces. First,
it exports a LOCK(key) RPC for the client library to ac-
quire object-specific locks. Second, its RELAY(key, data,
dst) enables the library or a SPANStore VM to indirectly
relay a PUT in order to reduce network bandwidth costs.
Lastly, the XMLRPC server receives replication policy
updates from PMan.

In addition, the XMLRPC server 1) gathers statis-
tics about the application’s workload and reports this
information to PMan at the end of every epoch, and
2) exchanges heartbeats and failure information with
SPANStore’s VMs in other data centers. Both the client
library and the XMLRPC server leverage open-source
libraries for issuing PUT and GET requests to the S3,
Azure, and GCS storage services.

8 Evaluation
We evaluate SPANStore from four perspectives: the cost
savings that it enables, the cost-optimality of its replica-
tion policies, the cost necessary for increased fault toler-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10

C
D

F
of

 a
cc

es
s

se
ts

(cost w/ single cloud)/(cost w/ SPANStore)

30,100,10
30,100,0.1

1,100,10
1,100,0.1

30,1,10
30,1,0.1

1,1,10
1,1,0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
of

 a
cc

es
s

se
ts

(cost w/ single cloud)/(cost w/ SPANStore)

30,100,10
30,100,0.1

1,100,10
1,100,0.1

30,1,10
30,1,0.1

1,1,10
1,1,0.1

(a) Strong, 90%ile G-SLO=250ms (b) Strong, 90%ile G-SLO=100ms
Figure 9: Cost with SPANStore compared to that possible using the data
centers of a single cloud service. Legend indicates GET:PUT ratio, average
object size (in KB), and overall data size (in TB).

Av
er

ag
e

si
ze

 (K
B)

Overall size

Request Networking Storage

 0.1

 1

 10

 100

 1000

 10000

1GB 32GB 1TB 32TB 1PB

Figure 10: Variation in the dominant
component of SPANStore’s cost as a func-
tion of the application’s workload.

ance, and the scalability of PMan. Here, we show results
for the case where the application is deployed across
EC2’s data centers, and SPANStore is deployed across
the storage services offered by S3, Azure, and GCS. Our
results are qualitatively similar when we consider appli-
cation deployments on Azure or GCE.

8.1 Cost savings
Workload and SLOs. To evaluate the cost savings en-
abled by SPANStore, we consider all 18 combinations
of a) GET:PUT ratios of 1, 10, and 30, b) average ob-
ject sizes of 1 KB and 100 KB, and c) aggregate data
size of 0.1 TB, 1 TB and 10 TB. Our choice of these
workload parameters is informed by the GET:PUT ratio
of 30:1 and objects typically smaller than 1 KB seen in
Facebook’s workload [14]. For brevity, we omit here the
results for the intermediate cases where GET:PUT ratio
is 10 and overall data size is 1 TB. In all workload set-
tings, we fix the number of GETs at 100M and compute
cost over a 30 day period.

When analyzing the eventual consistency setting, we
consider two SLOs for the 90th percentile values of GET
and PUT latencies—100 ms and 250 ms; 250 ms is the
minimum SLO possible with a single replica for ev-
ery object and 100 ms is less than half of that. In the
strong consistency case, we consider two SLO combina-
tions for the 90th percentile GET and PUT latencies—1)
100ms and 830ms, and 2) 250 ms and 830 ms; 830 ms
is the minimum PUT SLO if every object was replicated
at all data centers in its access set. Since the cost sav-
ings enabled by SPANStore follow similar trends in the
eventual consistency and strong consistency settings, we
show results only for the latter scenario for brevity.

Comparison with single-cloud deployment. First,
we compare the cost with SPANStore with the mini-
mum cost required if we used only Amazon S3’s data
centers for storage. Figure 9 shows that SPANStore’s
use of multiple cloud services consistently offers sig-
nificant cost savings when the workload includes 1 KB
objects. The small object size makes networking cost
negligible in comparison to PUT/GET requests costs,
and hence, SPANStore’s multi-cloud deployment helps

because PUT and GET requests are priced 50x and 4x
cheaper on Azure as compared to on S3. When the av-
erage object size is 100KB, SPANStore still offers cost
benefits for a sizeable fraction of access sets when the
PUT/GET ratio is 1 and overall size size is small. In
this case, since half of the workload (i.e., all PUT op-
erations) require propagation of updates to all replicas,
SPANStore enables cost savings by exploiting discrep-
ancies in network bandwidth pricing across cloud ser-
vices. Furthermore, when the total data size is 10 TB,
SPANStore reduces storage costs by storing fewer copies
of every object.

Comparison with fixed replication policies. We also
compare the cost incurred when using SPANStore with
that imposed by two fixed replication policies: Every-
where and Single. With the Everywhere policy, every
object is replicated at every data center in the object’s
access set. With the Single replication policy, any object
is stored at one data center that minimizes cost among
all single replica alternatives that satisfy the PUT and
GET latency SLOs. We consider the same workloads as
before, but ignore the cases that set the SLO for the 90th

percentile GET latency to 100ms since that SLO cannot
be satisfied when using a single replica.

In Figure 11(left), we see that SPANStore significantly
outdoes Everywhere in all cases except when GET:PUT
ratio is 30 and average object size is 100KB. On the
other hand, in Figure 11(right), we observe a bi-modal
distribution in the cost savings as compared to Single
when the object size is small. We find that this is be-
cause, for all access sets that do not include EC2’s Syd-
ney data center, using a single replica (at some data cen-
ter on Azure) proves to be cost-optimal; this is again
because the lower PUT/GET costs on Azure compen-
sate for the increased network bandwidth costs. When
the GET:PUT ratio is 1 and the average object size is
100KB, SPANStore saves cost compared to Single by ju-
diciously combining the use of multiple replicas.

Dominant cost analysis. Finally, we analyze how the
dominant component of SPANStore’s cost varies based
on the input workload. For one particular access set,

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
of

 a
cc

es
s

se
t

(cost w/ everywhere)/(cost w/ SPANStore)

30,100,0.1
30,100,10

1,100,0.1
1,100,10

30,1,10
30,1,0.1

1,1,10
1,1,0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10

C
D

F
of

 a
cc

es
s

se
ts

(cost w/ single)/(cost w/ SPANStore)

30,1,10
1,100,10

1,100,0.1
30,100,10

1,1,10
30,1,0.1

1,1,0.1
30,100,0.1

Figure 11: Cost savings enabled by SPANStore compared to Everywhere

(left) and Single (right) replication policies. Legend indicates GET:PUT
ratio, average object size (in KB), and overall data size (in TB).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
D

F
of

 a
na

ly
ze

d
ho

ur
s

Relative cost inflation

Figure 12: Cost inflation when predict-
ing workload using individual objects com-
pared with aggregate workload prediction.

Figure 10 shows which among network, storage, and re-
quest cost dominates the total cost when varying average
object size from 0.1 KB to 1 MB and total data size from
1 GB to 1 PB. Here, we use a GET:PUT ratio of 30 and
set GET and PUT SLOs as 250ms and 830ms with the
need for strong consistency, but the takeaways are simi-
lar in other scenarios.

When both the average object size and the total data
size are small, costs for PUT and GET requests initially
dominate, but network transfer costs increase as the av-
erage object size increases. However, as the average ob-
ject size increases further, SPANStore transitions to stor-
ing data locally at every data center in the access set.
This eliminates the need to use the network when serv-
ing GETs, thus making request costs the dominant com-
ponent of cost again. However, network transfers cannot
be completely eliminated due to the need to propagate
updates to all replicas. Therefore, network transfer costs
again begin to dominate for large object sizes.

When the total data size is large, SPANStore stores
a single copy of all data when the average object size
is small and storage cost is dominant. As the average
object size increases, network transfer costs initially ex-
ceed the storage cost. However, as network costs con-
tinue to increase, SPANStore begins to store multiple
replicas of every object so that many GETs can be served
from the local data center. This reduces network transfer
costs and makes storage cost dominant again. Eventu-
ally, as the average object size increases further, even if
SPANStore stores a replica of every object at every data
center in its access set, the need to synchronize replicas
results in networking costs exceeding storage costs.

8.2 Impact of aggregation of objects
SPANStore’s cost-effectiveness critically depends on its
ability to estimate the application’s workload. As dis-
cussed previously in Section 5, we choose to charac-
terize workload in aggregate across all objects with the
same access set due to the significantly greater station-
arity that exists in aggregate workloads as compared to
the workloads of individual objects. Here, we quantify
the cost benefits enabled by this design decision.

From the Twitter dataset previously described in Sec-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 3 4

C
D

F
of

 a
cc

es
s

se
ts

Relative cost inflation

f=1,G/P=1
f=1,G/P=10
f=2,G/P=1

f=2,G/P=10
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30

C
D

F
of

 a
cc

es
s

se
ts

Relative cost inflation

f=1,G/P=10
f=1,G/P=1

f=2,G/P=10
f=2,G/P=1

(a) Eventual,P-SLO=250ms (b) Strong,P-SLO=830ms
Figure 13: Cost inflation when tolerating f failures com-
pared to the cost with f = 0. SLOs are on 90th percentile
latencies and G-SLO=250ms.

tion 5, we randomly choose 10K users. Since the dataset
only specifies the times at which these users post tweets,
we generate the times at which they check their Twitter
timelines based on Twitter’s usage statistics [4]. Consid-
ering hour-long epochs, we estimate the workload in a
particular hour as being the same as that in the same hour
in the previous week. We consider workload estimation
at two granularities: 1) per-object, and 2) in aggregate
across all objects with the same access set.

Figure 12 shows the cost inflation arising from esti-
mating workloads on a per-object granularity as com-
pared to the cost when estimating aggregate workloads.
The high inflation is due to the significant variation seen
in any individual user’s usage of Twitter. Since most
users rarely post or access Twitter, the use of the per-
object workload estimator causes SPANStore to typically
choose EC2’s data centers as replicas since they have
lower storage cost. However, this often turns out to
be a mis-prediction of the workload, and when a user
does post or access her timeline, SPANStore has to incur
greater request costs that necessary by serving these re-
quests from EC2’s data centers. The greater accuracy of
estimating workloads in aggregate enables SPANStore to
replicate data in a more cost-effective manner.

8.3 Cost for fault tolerance

To tolerate failures, SPANStore provisions more data
centers to serve as replicas. As expected, this results in
higher cost. In Figure 13, we show the cost inflation for

various levels of fault-tolerance as compared to the cost
when SPANStore is provisioned to not tolerate any fail-
ures. For most access sets, the cost inflation is roughly
proportional to f +1 in the eventual consistency scenario
and proportional to 2 f +1 in the strong consistency case.
However, the need for fault tolerance increases cost by
a factor greater than f +1/2 f +1 for many other access
sets. This is because, as f increases, the need to pick
a greater number of replicas within the latency SLO for
every data center in the access set requires SPANStore to
use as replicas data centers that have greater prices for
GET/PUT requests.

In addition, in both the eventual consistency and
strong consistency scenarios, the need to tolerate fail-
ures results in higher cost inflation when the GET:PUT
ratio is low as compared to when the GET:PUT ratio is
high. This is because, when the GET:PUT ratio is low,
SPANStore can more aggressively reduce costs when
f = 0 by indirectly propagating updates to exploit dis-
crepancies in network bandwidth pricing.

8.4 Scalability of PlacementManager

Finally, we evaluate the scalability of PMan, the one
central component in SPANStore. At the start of every
epoch, PMan needs to compute the replication policy for
all access sets; there are 2N access sets for an application
deployed across N data centers. Though the maximum
number of data centers in any one cloud service is cur-
rently 8 (in EC2), we test the scalability of PMan in the
extreme case where we consider all the data centers in
EC2, Azure, and GCE as being in the same cloud ser-
vice on which the application is deployed. On a cluster
of 16 servers, each with two quad-core hyperthreaded
CPUs, we find that we can compute the replication pol-
icy within an hour for roughly 33K access sets. There-
fore, as long as the application can estimate its workload
for the next epoch an hour before the start of the epoch
(which is the case with our current way of estimation
based on the workload in the same hour in the previ-
ous week), our PMan implementation can tackle cases
where the application is deployed on 15 or fewer data
centers. For more geographically distributed application
deployments, further analysis is necessary to determine
when the new aggregate workload for a access set will
not cause a significant change in the optimal replication
policy for that set. This will enable PMan to only recom-
pute the replication policy for a subset of access sets.

9 Case studies
We have used our SPANStore prototype as the back-
end storage for two applications that can benefit from
geo-replicated storage: 1) Retwis [5] is a clone of the
Twitter social networking service, which can make do
with eventual consistency, and 2) ShareJS [6] is a col-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

C
D

F
of

 o
pe

ra
tio

ns

Latencies (ms)

GET
PUT

Insert
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 0.25 0.5 0.75 1
Latencies (s)

C
D

F
of

 o
pe

ra
tio

ns

GetSnapshot
ApplyEdit

2.5 2.75 3

(a) (b)
Figure 14: CDF of operation latencies in (a) Retwis and
(b) ShareJS applications.

laborative document editing webservice, which requires
strongly consistent data. To support both applications,
we add a few operations that are wrappers over PUTs
and GETs, such as “append to a set”, “get ith element
from a set”, and “increment a global counter”. We de-
ploy both applications across all of EC2’s data centers.2

Retwis. At each EC2 data center, we run emulated
Retwis clients which repeatedly make two types of oper-
ations: Post operations represent a user posting a tweet,
and GetRange operations fetch the last 100 tweets in a
user’s timeline (the set of tweets posted by those that the
user follows). We set the ratio of number of Post op-
erations to number of GetRange operations as 0.1, i.e.,
on average, every user makes a post every 10 times that
she checks her timeline. A GetRange operation issues
1) a GET to fetch the user’s timeline object, and then
2) GETs for the post IDs in the specified range in the
timeline. A Post operation executes the following se-
quence: 1) a PUT to store the post, 2) a GET to fetch
the list of the user’s followers, and 3) an Insert operation
to append the post’s ID to the timeline object of each of
the user’s followers. The Insert operation on an object
fetches the object by issuing GET, modifies it locally,
and then writes back the updated object with a PUT.

We run Retwis with a randomly generated social net-
work graph comprising 10K users, where every user fol-
lows a randomly chosen subset of 200 users [2]. For ev-
ery user, we assign the data center from which the user is
served at random. We run this workload on SPANStore
configured with the latency SLOs specifying that the
90th percentile PUT and GET latencies should be less
than 100ms. Figure 14(a) shows that SPANStore satis-
fies these latency goals as over 90% of all operations are
within the specified SLOs.

ShareJS. We run the ShareJS application with a sim-
ilar setup; we consider 1K documents, each of which is
associated with a randomly chosen access set. At each
EC2 data center, we then run a ShareJS client which iter-
atively issues GetSnapshot and ApplyEdit operations on

2Though ShareJS is not amenable to distributed deployment, we
modify it suitably so as to enable every user to be served from her
closest EC2 data center.

randomly chosen documents whose access set includes
the local data center. These operations correspond to
the client fetching a document and applying an edit to
a document, respectively. Since we need strong consis-
tency in this case, we use SLOs on the 90th percentile
PUT and GET latencies as 830ms and 250ms. Note that
the GetSnapshot operation directly maps to a GET, but
the ApplyEdit operation requires the application to issue
a GET for the latest version of the document and then
issue a PUT to incorporate the edit.

Figure 14(b) shows the distribution of latencies in-
curred for the GetSnapshot and ApplyEdit operations.
We can see that more than 95% of GetSnapshot oper-
ations satisfy the latency SLO, and a vast majority of
ApplyEdit operations are within the SLO, given that an
ApplyEdit includes a GET followed by a PUT. The small
minority of operations that exceed the latency bounds
are due to contention between concurrent updates to the
same document; when a writer fails on the two-phase
locking operation, it retries after 2 seconds.

10 Related work
Evaluating benefits of cloud deployments. Some re-
cent work addresses when to use cloud services, in par-
ticular examining how and when to migrate applications
from the application provider’s data center to a cloud ser-
vice [21, 33, 36]. While these efforts consider issues
such as cost and wide-area latency like we do, none of
them seek to provide a unified view to geo-replicated
storage. Some others compare the performance offered
by various cloud services [23, 7]. However, these efforts
do not consider issues such as cost and consistency.
Using multiple cloud services. Several previously de-
veloped systems (e.g., RACS [9], SafeStore [22], DEP-
SKY [16], and MetaStorage [15]) have considered the
use of multiple service providers for storing data. How-
ever, all of these systems focus on issues pertaining to
availability, durability, vendor lock-in, performance, and
consistency. Unlike SPANStore, none of these systems
seek to minimize cost by exploiting pricing discrepan-
cies across providers.

Other complementary efforts have focused on utiliz-
ing compute resources from multiple cloud providers.
AppScale enables portability of applications across
cloud services [18], but without any attempt to mini-
mize cost. Conductor [34] orchestrates the execution
of MapReduce jobs across multiple cloud providers in a
manner that minimizes cost. In contrast to these systems,
SPANStore only focuses on unifying the use of storage
resources across multiple providers.
Optimizing costs and scalable storage. Minerva [12],
Hippodrome [13], scc [28] and Rome [35] automate
the provisioning of cost-effective storage configura-
tions while accounting for workload characterizations.

Though these systems share a similar goal as ours, their
setting is restricted to storage clusters deployed within
a data center. SPANStore provides geo-replicated stor-
age, and so its deployment strategies must account for
inter-data center latencies and multiple administrative
domains. Farsite [10] provides scalable storage in an
untrusted environment and shares some techniques with
SPANStore, e.g., lazily propagating updates. However,
Farsite does not focus on optimizing cost.
Low-latency geo-replicated storage with improved
consistency. Numerous systems strive to provide
fast performance and stronger-than-eventual consistency
across the wide area. Recent examples include Wal-
ter [32], Spanner [19], Gemini [24], COPS [26], and
Eiger [27]. Given that wide-area storage systems can-
not simultaneously guarantee both the strongest forms
of consistency and low latency [29], these systems strive
to push the envelope along one or both of those dimen-
sions. However, none of these systems focus on mini-
mizing cost while meeting performance goals, which is
our primary goal. In fact, most of these systems repli-
cate all data to all data centers, and all data centers are
assumed to be under one administrative domain. We be-
lieve that SPANStore can be adapted to achieve the con-
sistency models and performance that these systems of-
fer at the lower costs that SPANStore provides.

11 Conclusions
Though the number of cloud storage services avail-
able across the world continues to increase, the onus
is on application developers to replicate data across
these services. We develop SPANStore to export a uni-
fied view of geographically distributed storage services
to applications and to automate the process of trading
off cost and latency, while satisfying consistency and
fault-tolerance requirements. Our design of SPANStore
achieves this goal by spanning data centers of multiple
cloud providers, by judiciously determining replication
policies based on workload properties, and by minimiz-
ing the use of compute resources. We have deployed
SPANStore across Amazon’s, Microsoft’s, and Google’s
cloud services and find that it can offer significant cost
benefits compared to simple replication policies.

Acknowledgments
We thank the anonymous reviewers and our shepherd Li-
dong Zhou for their valuable feedback on earlier drafts
of this paper. This work was supported in part by a Ne-
tApp Faculty Fellowship and by the National Science
Foundation under grant CNS-1150219.

References
[1] Amazon S3. http://aws.amazon.com/s3.

[2] By the numbers: 31 amazing Twitter stats. http:
//expandedramblings.com/index.php/march-2013-
by-the-numbers-a-few-amazing-twitter-stats.

[3] Google cloud storage. http://cloud.google.com/
storage.

[4] Infographic: Who is using Twitter, how of-
ten, and why? http://www.theatlantic.com/
technology/archive/2011/07/infographic-who-is-
using-twitter-how-often-and-why/241407/.

[5] Retwis. http://retwis.antirez.com.

[6] ShareJS. https://github.com/josephg/ShareJS/.

[7] VMware vFabric Hyperic. http://www.vmware.
com/products/datacenter-virtualization/vfabric-
hyperic/.

[8] Windows Azure. http://www.microsoft.
com/windowsazure.

[9] H. Abu-Libdeh, L. Princehouse, and H. Weather-
spoon. RACS: A case for cloud storage diversity.
In SOCC, 2010.

[10] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE:
Federated, available, and reliable storage for an in-
completely trusted environment. In OSDI, 2002.

[11] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and
A. Wolman. Volley: Automated data placement
for geo-distributed cloud services. In NSDI, 2010.

[12] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. A. Becker-Szendy, R. A. Golding, A. Merchant,
M. Spasojevic, A. C. Veitch, and J. Wilkes. Min-
erva: An automated resource provisioning tool for
large-scale storage systems. ACM ToCS, 2001.

[13] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. C. Veitch. Hippodrome: Running
circles around storage administration. In FAST,
2002.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[15] D. Bermbach, M. Klems, S. Tai, and M. Menzel.

[16] A. Bessani, M. Correia, B. Quaresma, F. Andre,
and P. Sousa. DEPSKY: Dependable and secure
storage in a cloud-of-clouds. In EuroSys, 2011.

[17] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and
D. A. Patterson. Characterizing, modeling, and
generating workload spikes for stateful services. In
SoCC, 2010.

[18] N. Chohan, C. Bunch, S. Pang, C. Krintz,
N. Mostafa, S. Soman, and R. Wolski. AppScale:
Scalable and open AppEngine application develop-
ment and deployment. In CloudComp, 2009.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally-distributed
database. In OSDI, 2012.

[20] D. K. Gifford. Weighted voting for replicated data.
In SOSP, 1979.

[21] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao,
K. Sripanidkulchai, and M. Tawarmalani. Cloud-
ward bound: Planning for beneficial migration of
enterprise applications to the cloud. In SIGCOMM,
2010.

[22] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A
durable and practical storage system. In USENIX
ATC, 2007.

[23] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloud-
Cmp: Comparing public cloud providers. In IMC,
2010.

[24] C. Li, D. Porto, A. Clement, R. Rodrigues,
N. Preguia, and J. Gehrke. Making geo-replicated
systems fast as possible, consistent when neces-
sary. In OSDI, 2012.

[25] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C.
Chang. Towards social user profiling: Unified and
discriminative influence model for inferring home
locations. In KDD, 2012.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, and
D. G. Andersen. Don’t settle for eventual: Scal-
able causal consistency for wide-area storage with
COPS. In SOSP, 2011.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and
D. G. Andersen. Stronger semantics for low-
latency geo-replicated storage. In NSDI, 2013.

[28] H. V. Madhyastha, J. C. McCullough, G. Porter,
R. Kapoor, S. Savage, A. C. Snoeren, and A. Vah-
dat. scc: Cluster storage provisioning informed

by application characteristics and SLAs. In FAST,
2012.

[29] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency,
availability, convergence. Technical report, Univ.
of Texas, 2011.

[30] D. Malkhi and M. Reiter. Byzantine quorum sys-
tems. In STOC, 1997.

[31] J.-P. Martin, L. Alvisi, and M. Dahlin. Small
byzantine quorum systems. In DSN, 2002.

[32] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems.
In SOSP, 2011.

[33] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam.
To move or not to move: The economics of cloud
computing. In HotCloud, 2011.

[34] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues.
Orchestrating the deployment of computations in
the cloud with Conductor. In NSDI, 2012.

[35] J. Wilkes. Traveling to Rome: QoS specifica-
tions for automated storage system management.
In IWQoS, 2001.

[36] T. Wood, E. Cecchet, K. Ramakrishnan, P. Shenoy,
J. van der Merwe, and A. Venkataramani. Disaster
recovery as a cloud service: Economic benefits &
deployment challenges. In HotCloud, 2010.

A Replication policy selection for eventual
consistency

1: Inputs:
2: T = Duration of epoch
3: AS = Set of data centers that issue PUTs and GETs
4: f = Number of failures that SPANStore should tolerate
5: SLO, p = SLO on pth percentile of PUT/GET latencies
6: LC

i j = pth percentile latency between VMs in data centers i
and j

7: LS
i j = pth percentile latency between a VM in data center i

and the storage service in data center j
8: PUTsi,GETsi = Total no. of PUTs and GETs issued at data

center i across all objects with access set AS
9: Sizeavg,Sizetotal = Avg. and total size of objects with ac-

cess set AS
10: PriceGET

i ,PricePUT
i ,PriceStorage

i = Prices at data center i
per GET, per PUT, and per byte per hour of storage

11: PriceNet
i j = Price per byte of network transfer from data

center i to j

12: Variables:
13: 8i 2 AS, j s.t. LS

i j SLO : Ri j // whether j is a replica to
which i issues PUTs and GETs; only permitted if a VM
at i can complete a GET/PUT on the storage service at j
within the SLO

14: 8i 2 AS, j,k s.t. pth percentile of LC
i j + LS

jk SLO : PS
i jk

// whether i synchronously forwards its PUTs to k via j;
only permitted if a VM at i can forward data to the storage
service at j via a VM at k within the SLO

15: 8i 2 AS, j,k,m : PA
i jkm // whether i’s PUTs are asyn-

chronously forwarded to m via j and k
16: 8i 2 AS, j,k s.t. j 6= k : Fi jk // whether PUTs from i are

relayed to k via j
17: 8 j : Cj //whether j is a replica

18: Objective: Minimize (Cost for GETs + Cost for PUTs +
Storage cost)

19: // GETs issued at i fetch data only from i’s replicas
20: Cost for GETs = Â

i
GETsi · (Â

j
(Ri j · (PriceGET

j +

PriceNet
ji ·Sizeavg)))

21: // Every PUT is propagated to all replicas
22: Cost for PUTs = Â

i
PUTsi · (Â

j
(Cj ·PricePUT

j)+Â
j,k

(Fi jk ·

PriceNet
jk ·SizeAvg))

23: // every replica stores one copy of every object
24: Storage cost = Â

j
(Cj ·PriceStorage

j ·SizeTotal ·T)

25: Constraints:
26: // Every data center in the access set has f + 1 GET/PUT

replicas
27: 8i 2 AS : Â

j
Ri j = f +1

28: // j is a replica if it is a GET/PUT replica for any i in the
access set

29: 8 j : (Cj = 1) iff (Â
i2AS

Ri j > 0) 3

30: // i’s PUTs must be synchronously forwarded to k iff k is
one of i’s replicas

31: 8i 2 AS,k : (Rik = 1) iff (Â
j

PS
i jk > 0)

32: // For every data center in access set, its PUTs must reach
every replica

33: 8i 2 AS,m : Cm = Â
j
(PS

i jm +Â
k

PA
i jkm)

34: // PUTs from i can be forwarded over the path from j to k
as part of either synchronous or asynchronous forwarding

35: 8i, j,k s.t. i 6= j : (Fi jk = 1) iff (PS
i jk +Â

m
(PA

i jkm +PA
im jk) >

0)
36: 8i,k : (Fiik = 1) iff (PS

iik +Â
m

PS
ikm + Â

m,n
PA

ikmn > 0)

B Replication policy selection for strong
consistency

1: Inputs:
2: Same as the inputs in the eventual consistency scenario,

except
3: SLOGET ,SLOPUT = SLOs on GET and PUT latencies

4: Variables:
5: 8i 2 AS, j : PRi j // whether j is in i’s PUT replica set

3We implement constraints of the form (X = 1) iff (Y > 0) as X
Y max(Y) ·X .

6: 8i 2 AS, j s.t. LS
i j SLOGET : GRi j // whether j is in i’s

GET replica set; only permitted if a VM at i can complete
a GET on the storage service j within the SLO

7: 8 j : Cj // whether j is a replica
8: 8i, j 2 AS,k : UP

i jk // whether k is in the union of i’s and j’s
PUT replica sets

9: 8i, j 2 AS,k : UG
i jk // whether k is in the union of i’s GET

replica set and j’s PUT replica set
10: 8i 2 AS, j,k s.t. pth percentile of LC

i j + LC
ik + LS

k j
SLOPUT : Fik j // whether i forwards its PUTs to j via k;
only permitted if a VM at i can acquire the lock on a VM
at j and then forward data to the storage service at j via a
VM at k within the SLO

11: 8i 2 AS,k : Rik // whether k serves as a relay from i to any
of i’s PUT replicas

12: Objective: Minimize (Cost for GETs + Cost for PUTs +
Storage cost)

13: // at each of i’s GET replicas, every GET from i incurs one
GET request’s cost and the network cost of transferring
the object from the replica to i

14: Cost for GETs = Â
i

GETsi · (Â
j
(GRi j · (PriceGET

j +

PriceNet
ji ·Sizeavg)))

15: // every PUT from i incurs one PUT request’s cost at each
of i’s PUT replicas and the network cost of transferring
the object to these replicas

16: Cost for PUTs = Â
i

PUTsi · Â
k

(Rik · PriceNet
ik · Sizeavg +

Â
j
(Fik j · (PricePUT

j +PriceNet
k j ·Sizeavg)))

17: // every replica stores one copy of every object
18: Storage cost = Â

j
(Cj ·PriceStorage

j ·Sizetotal ·T)

19: Constraints:
20: // k is in the union of i’s and j’s PUT replica sets if it is in

either set
21: 8i, j 2 AS,k : (UP

i jk = 1) iff (PRik +PR jk > 0)
22: // for the PUT replica sets of any pair of data centers in

access set, the sum of their cardinalities should exceed the
cardinality of their union by 2 f

23: 8i, j 2 AS : Â
k

(PRik +PR jk) > Â
k

UP
i jk +2 f

24: // for any pair of data centers in access set, GET replica
set of one must have intersection larger than 2 f with PUT
replica set of the other

25: 8i, j 2 AS,k : (UG
i jk = 1) iff (GRik +PR jk > 0)

26: 8i, j 2 AS : Â
k

(GRik +PR jk) > Â
k

UG
i jk +2 f

27: // a PUT from i is relayed to k iff k is used to propagate i’s
PUT to any of i’s PUT replicas

28: 8i 2 AS,k : (Rik = 1) iff (Â
j

Fik j > 0)

29: // some k must forward i’s PUTs to j iff j is in i’s PUT
replica set

30: 8i 2 AS, j : PRi j = Â
k

Fik j

31: // a data center is a replica if it is either a PUT replica or
a GET replica for any data center in access set

32: 8 j : (Cj = 1) iff (Â
i2AS

(GRi j +PRi j) > 0)

	Introduction
	Problem formulation
	Setting and utility
	Goals
	Challenges

	Why multi-cloud?
	Lower latencies
	Lower cost

	Overview
	Determining replication policies
	Inputs and output
	Eventual consistency
	Strong consistency

	SPANStore dynamics
	Metadata
	Serving PUTs and GETs
	Fault tolerance
	Handling workload changes

	Implementation
	Evaluation
	Cost savings
	Impact of aggregation of objects
	Cost for fault tolerance
	Scalability of PlacementManager

	Case studies
	Related work
	Conclusions
	Replication policy selection for eventual consistency
	Replication policy selection for strong consistency

