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 Motivation 
§  Wide-‐spread	  use	  of	  data-‐centric	  mobile	  apps	  	  
§  Data	  consistency	  is	  a	  primary	  requirement	  

§  App	  devs	  tasked	  with	  ensuring	  consistency	  of	  user’s	  data	  
§  Current	  solu?ons	  are	  inflexible	  
§  Rolling	  own	  service	  is	  difficult	  

§  Failures,	  Conflicts,	  Connec?vity,	  Consistency,	  etc.	  
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Difficult	  to	  Provide	  Reliability	  &	  Consistency!	  

§  Simple,	  high-‐level	  	  
programming	  	  	  	  
abstrac?ons	  

§  Transparent	  handling	  
of	  data	  sync	  &	  failures	  

§  Atomicity	  across	  	  
tabular	  &	  object	  data	  

§  End-‐to-‐end	  tunable	  	  
consistency	  

§  Scalable	  architecture	  
	  

 Simba Design 

	  	  	  	  	  Rise	  of	  data-‐sync	  services	  
§  Data	  management	  for	  files	  
§  SDKs	  for	  CRUD	  opera?ons	  
§  Inflexible	  consistency	  op?ons	  

§  Need	  to	  transparently/efficiently	  handle	  data	  sync	  
§  Need	  to	  provide	  unified	  tabular	  +	  object	  data	  model	  
§  Need	  to	  enable	  useful	  consistency	  seman?cs	  

Simba: Tunable End-to-End Data  
Consistency for Mobile Apps 

Simba:  
Cloud Infrastructure for Mobile Apps 

 Scalability 

Key	  Features	  

 Simba Table Data	  Sync	  Abstrac/on	  

 Performance 
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(b) Table+object, chunk cache enabled.
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(c) Table+object, chunk cache disabled.

Figure 6: sCloud performance when scaling tables.
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Figure 7: sCloud performance when scaling clients.
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Figure 8: Consistency Comparison. End-to-end latency and data

transfer for each consistency scheme.

third client Cc to write an row for the same row-key as Cw,
which always occurs prior Cw’s write. We use a subscription
period of 1 second for CausalS and EventualS and ensure all
updates occur before this period is over. Only Cr has a read
subscription to the table.

Figure 8 shows the WiFi latency and associated data
transfer (3G results similar; not shown). We show three la-
tency values: 1) app perceived latency of update at Cw,
shown as “Write”, 2) sync-update latency from Cw to Cr,
shown as “Sync”, and 3) app-perceived latency for read-
ing updated data at Cr , shown as “Read”. We also plot the
total data transferred by Cw and Cr for each consistency
scheme. StrongS exhibits the smallest sync latency because
data is synced immediately, however, the client app incurs
network latency for the write operation, whereas writes are
local in case of CausalS and EventualS. Immediate sync-
ing in StrongS also causes higher data transfer because all
updates must propagate immediately (e.g., Cr must read
both updates), not benefiting from overwrites or the change
cache. Sync latency for CausalS is higher than EventualS be-
cause the former requires more RTTs to resolve conflicts.
With CausalS, data transfer is inflated because the initial up-
date from Cw fails, so Cw must read Cc’s conflicting data,
and retry his update after performing conflict resolution;

EventualS has the lowest data transfer since last writer wins
and Cr reads only the latest version after the read period
expires. Without conflicts, the sync latencies and data trans-
ferred for CausalS and EventualS are similar (not shown). Fi-
nally, read latencies are similar for all consistency schemes
because reads are local; even with StrongS, the local replica
is kept up-to-date and reads do not communicate with the
server.

6.5 Writing Simba Apps

Writing a multi-consistent app: We used an existing app,
Todo.txt [8], to qualitatively evaluate the effort of writing an
app that benefits from multiple consistency models. Todo.txt
uses Dropbox to maintain and sync two files containing ac-
tive tasks and archived tasks. We modified the app to store its
data in two sTables. Active tasks can be modified frequently,
so they are maintained with StrongS consistency, which en-
sures quick and consistent sync. Archived tasks cannot be
modified, so it is sufficient to use EventualS consistency. Any
change to the archived task list is not immediately reflected
on another device, but this is not critical to the operation of
the app. Modifying Todo.txt to use Simba simplified the sync
logic by eliminating the need for user-triggered sync, and al-
lowed the app to use appropriate consistency models for its
needs.
Fixing an inconsistent app: An open-source app in our
study, Universal Password Manager (UPM), uses Dropbox
to sync an encrypted database for user accounts. The app
shows inconsistency when account information is changed
concurrently on two devices and the database is synced with
Dropbox; changes performed on one device get silently over-
written. To fix this inconsistency, we ported UPM to use
Simba. We tried two approaches:

• Store the entire account database as an object in a sTable.
This required fewer modifications; we simply used Simba
instead of Dropbox to sync the database. However, con-
flict resolution is complex because conflicts occur at full-
database granularity, so resolution needs to compare indi-
vidual account information.

• Store each account as a separate row in a sTable; UPM no
longer needs to implement its own database which elimi-
nates the necessary logic for serialization and parsing the
database file. Conflict resolution is made relatively simple
because conflicts occur on a per-account granularity and
can be easily handled.

Efficient	  Syncing	  via	  Change-‐sets	  

Sync	  overhead	  under	  concurrent	  write	  conflicts	  

Upstream	  (from	  client)	  
16	  Gateways	  and	  16	  Stores,	  500	  ops/sec	  

Logical	  Abstrac?on	  

Physical	  Layout	  	  

§  Unified	  tabular	  +	  object	  rows	  
§  Row-‐level	  atomicity	  
§  Per-‐table	  consistency	  scheme	  

§  Strong,	  Causal,	  or	  Eventual	  
§  Offline	  support	  
§  Conflict	  detec?on/resolu?on	  

Mobile	  App	  Consistency	  Study	  

Simba	  Client	  	  [FAST	  2015]	  

Change	  cache	  enables	  	  
sync	  of	  only	  modified	  	  
row	  data	  (e.g.,	  update	  	  
of	  a	  single	  64	  KiB	  chunk	  	  

in	  a	  1	  MiB	  object)	  

Stronger	  consistency	  increases	  per-‐row	  performance	  overhead	  
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(a) Per-operation latency.
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(b) Aggregate node throughput.
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Figure 4: Downstream sync performance for one Gateway and Store.
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Figure 5: Upstream sync performance for one Gateway and Store.

We run the Store in three configurations: (1) No caching,
(2) Change cache with row keys only, and (3) Change cache
with row keys and chunk data. The chunk size is set to 64

KiB. For reference, we show the server-side sync processing
time in Table 8. In order to populate the Store with data, a
writer client inserts rows with 10 tabular columns totaling
1 KiB of tabular data, and 1 object column having 1 MiB

objects; it then updates exactly 1 chunk per-object. We then
instantiate one or more reader clients, partitioned evenly
over up to 16 nodes, to sync only the most recent change
for each row.

Figure 4(a) shows the client-perceived latency, as we vary
the number of clients on the x-axis. As expected, with no
caching in the system, clients experience the worst latency.
When the change cache stores keys only, the latency for
drops for 1024 clients by a factor of 14.8; when caching both
keys and data, latency drops by a further factor of 1.53, for
a cumulative factor of 22.8.

Figure 4(b) plots throughput on the y-axis in MiB/s.
Firstly, with increasing number of clients, the aggregate
throughput continues to increase up to 35 MiB/s for 256

clients. At this point, we reach the 64 KiB random read
bandwidth of the disks. The throughput begins to decline
for 1024 clients showing the scalability limits of a single
Store node in this setting. Somewhat counter-intuitively, the
throughput with the key cache appears to be less than with
no cache at all; however, this is due to the very design of
the Store. In the absence of a key cache, Store has to return
the entire 1 MiB object, since it has no information of what
chunks have changed, rather than only the single 64 KiB

chunk which was updated. The throughput is higher simply
because the Store sends entire objects; for the overall sys-
tem, the important metrics are also client-latency, and the
amount of data transferred over the network.

Figure 4(c) measures the data transferred over the net-
work for a single client reading 100 rows. The graph shows
that a no-cache system sends orders of magnitude more data
compared to one which knows what chunks have changed.
The amount of data transferred over the network is the same
for the two caching strategies; the data cache only helps in
reducing chunk data that needs to be fetched from Swift.
Since Simba compresses data, the total data transferred over
the network is less than the cumulative size.

6.2.2 Upstream Sync

Next, we evaluate the performance of upstream sync. We
run multiple writer clients partitioned evenly over up to 16
nodes. Each client performs 100 write operations, with a de-
lay of 20 ms between each write, to simulate wireless WAN
latency. We measure the total operations/second serviced for
a varying number of clients. Note that due to the sync proto-
col, a single operation may require more than one message.

Figure 5 presents the client-perceived upstream perfor-
mance. The first test stresses the Gateway alone by sending
small control messages which the Gateway directly replies
so that Store is not the bottleneck (Figure 5(a)). The fig-
ure shows that Gateway scales well up to 4096 clients. In
the second test, we wrote rows with 1 KiB tabular data and
no objects. This exercises Store with Cassandra but without
Swift. As shown in Figure 5(b), Store performance peaks
at 1024 clients, after which Cassandra latency starts becom-
ing the bottleneck. For the third test, we wrote rows with 1

KiB of tabular data and one 64 KiB object. This exercises
Store with both Cassandra and Swift. In Figure 5(c), we ob-
serve that the rate of operations is much lower as compared
to table-only. This is due to two reasons: the amount of data
being written is two orders of magnitude higher, and Swift
exhibits high latency for concurrent 64 KiB object writes. In

1	  MiB	   64	  KiB	  

Simba	  Cloud	  scales	  well	  with	  increasing	  tables	  and	  clients	  

Immediate	  
sync	  required	  
for	  every	  row	   1	  second	  

sync	  
period	  
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§  Limited	  offline	  support	  
§  Inadequate	  error	  	  

propaga?on	  
§  Atomicity	  viola?ons	  of	  	  

inter-‐dependent	  data	  

Simba	  Source	  Code:	  heps://github.com/SimbaService/Simba	  
Project	  Homepage:	  hep://?nyurl.com/SimbaService	  

	  

 Consistency Study 
We	  studied	  23	  popular	  mobile	  apps	  and	  found	  that	  	  	  

half	  of	  them	  exhibit	  undesirable	  behavior!	  
	  

 Study Findings 
§  Diverse	  consistency	  	  

requirements	  
§  Sync	  seman?cs	  ogen	  

oblivious	  to	  consistency	  	  


