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 Motivation 
§  Wide-­‐spread	
  use	
  of	
  data-­‐centric	
  mobile	
  apps	
  	
  
§  Data	
  consistency	
  is	
  a	
  primary	
  requirement	
  

§  App	
  devs	
  tasked	
  with	
  ensuring	
  consistency	
  of	
  user’s	
  data	
  
§  Current	
  solu?ons	
  are	
  inflexible	
  
§  Rolling	
  own	
  service	
  is	
  difficult	
  

§  Failures,	
  Conflicts,	
  Connec?vity,	
  Consistency,	
  etc.	
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Difficult	
  to	
  Provide	
  Reliability	
  &	
  Consistency!	
  

§  Simple,	
  high-­‐level	
  	
  
programming	
  	
  	
  	
  
abstrac?ons	
  

§  Transparent	
  handling	
  
of	
  data	
  sync	
  &	
  failures	
  

§  Atomicity	
  across	
  	
  
tabular	
  &	
  object	
  data	
  

§  End-­‐to-­‐end	
  tunable	
  	
  
consistency	
  

§  Scalable	
  architecture	
  
	
  

 Simba Design 

	
  	
  	
  	
  	
  Rise	
  of	
  data-­‐sync	
  services	
  
§  Data	
  management	
  for	
  files	
  
§  SDKs	
  for	
  CRUD	
  opera?ons	
  
§  Inflexible	
  consistency	
  op?ons	
  

§  Need	
  to	
  transparently/efficiently	
  handle	
  data	
  sync	
  
§  Need	
  to	
  provide	
  unified	
  tabular	
  +	
  object	
  data	
  model	
  
§  Need	
  to	
  enable	
  useful	
  consistency	
  seman?cs	
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(b) Table+object, chunk cache enabled.
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(c) Table+object, chunk cache disabled.

Figure 6: sCloud performance when scaling tables.
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Figure 7: sCloud performance when scaling clients.
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Figure 8: Consistency Comparison. End-to-end latency and data

transfer for each consistency scheme.

third client Cc to write an row for the same row-key as Cw,
which always occurs prior Cw’s write. We use a subscription
period of 1 second for CausalS and EventualS and ensure all
updates occur before this period is over. Only Cr has a read
subscription to the table.

Figure 8 shows the WiFi latency and associated data
transfer (3G results similar; not shown). We show three la-
tency values: 1) app perceived latency of update at Cw,
shown as “Write”, 2) sync-update latency from Cw to Cr,
shown as “Sync”, and 3) app-perceived latency for read-
ing updated data at Cr , shown as “Read”. We also plot the
total data transferred by Cw and Cr for each consistency
scheme. StrongS exhibits the smallest sync latency because
data is synced immediately, however, the client app incurs
network latency for the write operation, whereas writes are
local in case of CausalS and EventualS. Immediate sync-
ing in StrongS also causes higher data transfer because all
updates must propagate immediately (e.g., Cr must read
both updates), not benefiting from overwrites or the change
cache. Sync latency for CausalS is higher than EventualS be-
cause the former requires more RTTs to resolve conflicts.
With CausalS, data transfer is inflated because the initial up-
date from Cw fails, so Cw must read Cc’s conflicting data,
and retry his update after performing conflict resolution;

EventualS has the lowest data transfer since last writer wins
and Cr reads only the latest version after the read period
expires. Without conflicts, the sync latencies and data trans-
ferred for CausalS and EventualS are similar (not shown). Fi-
nally, read latencies are similar for all consistency schemes
because reads are local; even with StrongS, the local replica
is kept up-to-date and reads do not communicate with the
server.

6.5 Writing Simba Apps

Writing a multi-consistent app: We used an existing app,
Todo.txt [8], to qualitatively evaluate the effort of writing an
app that benefits from multiple consistency models. Todo.txt
uses Dropbox to maintain and sync two files containing ac-
tive tasks and archived tasks. We modified the app to store its
data in two sTables. Active tasks can be modified frequently,
so they are maintained with StrongS consistency, which en-
sures quick and consistent sync. Archived tasks cannot be
modified, so it is sufficient to use EventualS consistency. Any
change to the archived task list is not immediately reflected
on another device, but this is not critical to the operation of
the app. Modifying Todo.txt to use Simba simplified the sync
logic by eliminating the need for user-triggered sync, and al-
lowed the app to use appropriate consistency models for its
needs.
Fixing an inconsistent app: An open-source app in our
study, Universal Password Manager (UPM), uses Dropbox
to sync an encrypted database for user accounts. The app
shows inconsistency when account information is changed
concurrently on two devices and the database is synced with
Dropbox; changes performed on one device get silently over-
written. To fix this inconsistency, we ported UPM to use
Simba. We tried two approaches:

• Store the entire account database as an object in a sTable.
This required fewer modifications; we simply used Simba
instead of Dropbox to sync the database. However, con-
flict resolution is complex because conflicts occur at full-
database granularity, so resolution needs to compare indi-
vidual account information.

• Store each account as a separate row in a sTable; UPM no
longer needs to implement its own database which elimi-
nates the necessary logic for serialization and parsing the
database file. Conflict resolution is made relatively simple
because conflicts occur on a per-account granularity and
can be easily handled.
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Figure 4: Downstream sync performance for one Gateway and Store.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
PS

Clients

(a) Gateway only.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
PS

Clients

(b) Store with table-only.

 0

 10

 20

 30

 40

 50

 60

1 4 16 64 256 1024

IO
PS

Clients

(c) Store with table+object.

Figure 5: Upstream sync performance for one Gateway and Store.

We run the Store in three configurations: (1) No caching,
(2) Change cache with row keys only, and (3) Change cache
with row keys and chunk data. The chunk size is set to 64

KiB. For reference, we show the server-side sync processing
time in Table 8. In order to populate the Store with data, a
writer client inserts rows with 10 tabular columns totaling
1 KiB of tabular data, and 1 object column having 1 MiB

objects; it then updates exactly 1 chunk per-object. We then
instantiate one or more reader clients, partitioned evenly
over up to 16 nodes, to sync only the most recent change
for each row.

Figure 4(a) shows the client-perceived latency, as we vary
the number of clients on the x-axis. As expected, with no
caching in the system, clients experience the worst latency.
When the change cache stores keys only, the latency for
drops for 1024 clients by a factor of 14.8; when caching both
keys and data, latency drops by a further factor of 1.53, for
a cumulative factor of 22.8.

Figure 4(b) plots throughput on the y-axis in MiB/s.
Firstly, with increasing number of clients, the aggregate
throughput continues to increase up to 35 MiB/s for 256

clients. At this point, we reach the 64 KiB random read
bandwidth of the disks. The throughput begins to decline
for 1024 clients showing the scalability limits of a single
Store node in this setting. Somewhat counter-intuitively, the
throughput with the key cache appears to be less than with
no cache at all; however, this is due to the very design of
the Store. In the absence of a key cache, Store has to return
the entire 1 MiB object, since it has no information of what
chunks have changed, rather than only the single 64 KiB

chunk which was updated. The throughput is higher simply
because the Store sends entire objects; for the overall sys-
tem, the important metrics are also client-latency, and the
amount of data transferred over the network.

Figure 4(c) measures the data transferred over the net-
work for a single client reading 100 rows. The graph shows
that a no-cache system sends orders of magnitude more data
compared to one which knows what chunks have changed.
The amount of data transferred over the network is the same
for the two caching strategies; the data cache only helps in
reducing chunk data that needs to be fetched from Swift.
Since Simba compresses data, the total data transferred over
the network is less than the cumulative size.

6.2.2 Upstream Sync

Next, we evaluate the performance of upstream sync. We
run multiple writer clients partitioned evenly over up to 16
nodes. Each client performs 100 write operations, with a de-
lay of 20 ms between each write, to simulate wireless WAN
latency. We measure the total operations/second serviced for
a varying number of clients. Note that due to the sync proto-
col, a single operation may require more than one message.

Figure 5 presents the client-perceived upstream perfor-
mance. The first test stresses the Gateway alone by sending
small control messages which the Gateway directly replies
so that Store is not the bottleneck (Figure 5(a)). The fig-
ure shows that Gateway scales well up to 4096 clients. In
the second test, we wrote rows with 1 KiB tabular data and
no objects. This exercises Store with Cassandra but without
Swift. As shown in Figure 5(b), Store performance peaks
at 1024 clients, after which Cassandra latency starts becom-
ing the bottleneck. For the third test, we wrote rows with 1

KiB of tabular data and one 64 KiB object. This exercises
Store with both Cassandra and Swift. In Figure 5(c), we ob-
serve that the rate of operations is much lower as compared
to table-only. This is due to two reasons: the amount of data
being written is two orders of magnitude higher, and Swift
exhibits high latency for concurrent 64 KiB object writes. In
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 Consistency Study 
We	
  studied	
  23	
  popular	
  mobile	
  apps	
  and	
  found	
  that	
  	
  	
  

half	
  of	
  them	
  exhibit	
  undesirable	
  behavior!	
  
	
  

 Study Findings 
§  Diverse	
  consistency	
  	
  

requirements	
  
§  Sync	
  seman?cs	
  ogen	
  

oblivious	
  to	
  consistency	
  	
  


