
Dorian	 Perkins∗†,	 Ni/n	 Agrawal†,	 Akshat	 Aranya†,	 Cur/s	 Yu∗,	 Younghwan	 Go⋆†,	
	 Harsha	 V.	 Madhyastha‡,	 and	 Cris/an	 Ungureanu†	 	

NEC	 Labs	 America†,	 UC	 Riverside∗,	 KAIST⋆,	 U	 Michigan‡	

	

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Clients (in thousands)

RsCloudWsCloud

 Motivation
§  Wide-‐spread	 use	 of	 data-‐centric	 mobile	 apps	 	
§  Data	 consistency	 is	 a	 primary	 requirement	

§  App	 devs	 tasked	 with	 ensuring	 consistency	 of	 user’s	 data	
§  Current	 solu?ons	 are	 inflexible	
§  Rolling	 own	 service	 is	 difficult	

§  Failures,	 Conflicts,	 Connec?vity,	 Consistency,	 etc.	

European Conference on Computer Systems (EuroSys)
April 21—24, 2015, Bordeaux, France

Difficult	 to	 Provide	 Reliability	 &	 Consistency!	

§  Simple,	 high-‐level	 	
programming	 	 	 	
abstrac?ons	

§  Transparent	 handling	
of	 data	 sync	 &	 failures	

§  Atomicity	 across	 	
tabular	 &	 object	 data	

§  End-‐to-‐end	 tunable	 	
consistency	

§  Scalable	 architecture	
	

 Simba Design

	 	 	 	 	 Rise	 of	 data-‐sync	 services	
§  Data	 management	 for	 files	
§  SDKs	 for	 CRUD	 opera?ons	
§  Inflexible	 consistency	 op?ons	

§  Need	 to	 transparently/efficiently	 handle	 data	 sync	
§  Need	 to	 provide	 unified	 tabular	 +	 object	 data	 model	
§  Need	 to	 enable	 useful	 consistency	 seman?cs	

Simba: Tunable End-to-End Data
Consistency for Mobile Apps

Simba:
Cloud Infrastructure for Mobile Apps

 Scalability

Key	 Features	

 Simba Table Data	 Sync	 Abstrac/on	

 Performance

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloudWsCloud
RTableWTable

(a) Table only.

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloudWsCloud
RTableWTable

RObjectWObject

(b) Table+object, chunk cache enabled.

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloudWsCloud
RTableWTable

RObjectWObject

(c) Table+object, chunk cache disabled.

Figure 6: sCloud performance when scaling tables.

 10

 100

 1000

 10000

 100000

10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Clients (in thousands)

RSimbaWSimba
RTableWTable

RObjectWObject

Figure 7: sCloud performance when scaling clients.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Write Sync Read

Ti
m

e
(s

ec
on

ds
)

StrongSCausalSEventualS

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

StrongS CausalS EventualS

Da
ta

 T
ra

ns
fe

r (
Ki

B)

CwCr

Figure 8: Consistency Comparison. End-to-end latency and data

transfer for each consistency scheme.

third client Cc to write an row for the same row-key as Cw,
which always occurs prior Cw’s write. We use a subscription
period of 1 second for CausalS and EventualS and ensure all
updates occur before this period is over. Only Cr has a read
subscription to the table.

Figure 8 shows the WiFi latency and associated data
transfer (3G results similar; not shown). We show three la-
tency values: 1) app perceived latency of update at Cw,
shown as “Write”, 2) sync-update latency from Cw to Cr,
shown as “Sync”, and 3) app-perceived latency for read-
ing updated data at Cr , shown as “Read”. We also plot the
total data transferred by Cw and Cr for each consistency
scheme. StrongS exhibits the smallest sync latency because
data is synced immediately, however, the client app incurs
network latency for the write operation, whereas writes are
local in case of CausalS and EventualS. Immediate sync-
ing in StrongS also causes higher data transfer because all
updates must propagate immediately (e.g., Cr must read
both updates), not benefiting from overwrites or the change
cache. Sync latency for CausalS is higher than EventualS be-
cause the former requires more RTTs to resolve conflicts.
With CausalS, data transfer is inflated because the initial up-
date from Cw fails, so Cw must read Cc’s conflicting data,
and retry his update after performing conflict resolution;

EventualS has the lowest data transfer since last writer wins
and Cr reads only the latest version after the read period
expires. Without conflicts, the sync latencies and data trans-
ferred for CausalS and EventualS are similar (not shown). Fi-
nally, read latencies are similar for all consistency schemes
because reads are local; even with StrongS, the local replica
is kept up-to-date and reads do not communicate with the
server.

6.5 Writing Simba Apps

Writing a multi-consistent app: We used an existing app,
Todo.txt [8], to qualitatively evaluate the effort of writing an
app that benefits from multiple consistency models. Todo.txt
uses Dropbox to maintain and sync two files containing ac-
tive tasks and archived tasks. We modified the app to store its
data in two sTables. Active tasks can be modified frequently,
so they are maintained with StrongS consistency, which en-
sures quick and consistent sync. Archived tasks cannot be
modified, so it is sufficient to use EventualS consistency. Any
change to the archived task list is not immediately reflected
on another device, but this is not critical to the operation of
the app. Modifying Todo.txt to use Simba simplified the sync
logic by eliminating the need for user-triggered sync, and al-
lowed the app to use appropriate consistency models for its
needs.
Fixing an inconsistent app: An open-source app in our
study, Universal Password Manager (UPM), uses Dropbox
to sync an encrypted database for user accounts. The app
shows inconsistency when account information is changed
concurrently on two devices and the database is synced with
Dropbox; changes performed on one device get silently over-
written. To fix this inconsistency, we ported UPM to use
Simba. We tried two approaches:

• Store the entire account database as an object in a sTable.
This required fewer modifications; we simply used Simba
instead of Dropbox to sync the database. However, con-
flict resolution is complex because conflicts occur at full-
database granularity, so resolution needs to compare indi-
vidual account information.

• Store each account as a separate row in a sTable; UPM no
longer needs to implement its own database which elimi-
nates the necessary logic for serialization and parsing the
database file. Conflict resolution is made relatively simple
because conflicts occur on a per-account granularity and
can be easily handled.

Efficient	 Syncing	 via	 Change-‐sets	

Sync	 overhead	 under	 concurrent	 write	 conflicts	

Upstream	 (from	 client)	
16	 Gateways	 and	 16	 Stores,	 500	 ops/sec	

Logical	 Abstrac?on	

Physical	 Layout	 	

§  Unified	 tabular	 +	 object	 rows	
§  Row-‐level	 atomicity	
§  Per-‐table	 consistency	 scheme	

§  Strong,	 Causal,	 or	 Eventual	
§  Offline	 support	
§  Conflict	 detec?on/resolu?on	

Mobile	 App	 Consistency	 Study	

Simba	 Client	 	 [FAST	 2015]	

Change	 cache	 enables	 	
sync	 of	 only	 modified	 	
row	 data	 (e.g.,	 update	 	
of	 a	 single	 64	 KiB	 chunk	 	

in	 a	 1	 MiB	 object)	

Stronger	 consistency	 increases	 per-‐row	 performance	 overhead	

 1

 10

 100

 1000

 10000

 100000

1 4 16 64 256 1024

La
te

nc
y

(m
s)

Clients

No cache
Key cache
Key+Data cache

(a) Per-operation latency.

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 4 16 64 256 1024

Th
ro

ug
hp

ut
 (M

iB
/s

)

Clients

No cache
Key cache
Key+Data cache

(b) Aggregate node throughput.

 1

 10

 100

Da
ta

 T
ra

ns
fe

rre
d

(M
iB

)

No cache
Key cache

Key+Data cache

(c) Aggregate data transferred.

Figure 4: Downstream sync performance for one Gateway and Store.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
PS

Clients

(a) Gateway only.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
PS

Clients

(b) Store with table-only.

 0

 10

 20

 30

 40

 50

 60

1 4 16 64 256 1024

IO
PS

Clients

(c) Store with table+object.

Figure 5: Upstream sync performance for one Gateway and Store.

We run the Store in three configurations: (1) No caching,
(2) Change cache with row keys only, and (3) Change cache
with row keys and chunk data. The chunk size is set to 64

KiB. For reference, we show the server-side sync processing
time in Table 8. In order to populate the Store with data, a
writer client inserts rows with 10 tabular columns totaling
1 KiB of tabular data, and 1 object column having 1 MiB

objects; it then updates exactly 1 chunk per-object. We then
instantiate one or more reader clients, partitioned evenly
over up to 16 nodes, to sync only the most recent change
for each row.

Figure 4(a) shows the client-perceived latency, as we vary
the number of clients on the x-axis. As expected, with no
caching in the system, clients experience the worst latency.
When the change cache stores keys only, the latency for
drops for 1024 clients by a factor of 14.8; when caching both
keys and data, latency drops by a further factor of 1.53, for
a cumulative factor of 22.8.

Figure 4(b) plots throughput on the y-axis in MiB/s.
Firstly, with increasing number of clients, the aggregate
throughput continues to increase up to 35 MiB/s for 256

clients. At this point, we reach the 64 KiB random read
bandwidth of the disks. The throughput begins to decline
for 1024 clients showing the scalability limits of a single
Store node in this setting. Somewhat counter-intuitively, the
throughput with the key cache appears to be less than with
no cache at all; however, this is due to the very design of
the Store. In the absence of a key cache, Store has to return
the entire 1 MiB object, since it has no information of what
chunks have changed, rather than only the single 64 KiB

chunk which was updated. The throughput is higher simply
because the Store sends entire objects; for the overall sys-
tem, the important metrics are also client-latency, and the
amount of data transferred over the network.

Figure 4(c) measures the data transferred over the net-
work for a single client reading 100 rows. The graph shows
that a no-cache system sends orders of magnitude more data
compared to one which knows what chunks have changed.
The amount of data transferred over the network is the same
for the two caching strategies; the data cache only helps in
reducing chunk data that needs to be fetched from Swift.
Since Simba compresses data, the total data transferred over
the network is less than the cumulative size.

6.2.2 Upstream Sync

Next, we evaluate the performance of upstream sync. We
run multiple writer clients partitioned evenly over up to 16
nodes. Each client performs 100 write operations, with a de-
lay of 20 ms between each write, to simulate wireless WAN
latency. We measure the total operations/second serviced for
a varying number of clients. Note that due to the sync proto-
col, a single operation may require more than one message.

Figure 5 presents the client-perceived upstream perfor-
mance. The first test stresses the Gateway alone by sending
small control messages which the Gateway directly replies
so that Store is not the bottleneck (Figure 5(a)). The fig-
ure shows that Gateway scales well up to 4096 clients. In
the second test, we wrote rows with 1 KiB tabular data and
no objects. This exercises Store with Cassandra but without
Swift. As shown in Figure 5(b), Store performance peaks
at 1024 clients, after which Cassandra latency starts becom-
ing the bottleneck. For the third test, we wrote rows with 1

KiB of tabular data and one 64 KiB object. This exercises
Store with both Cassandra and Swift. In Figure 5(c), we ob-
serve that the rate of operations is much lower as compared
to table-only. This is due to two reasons: the amount of data
being written is two orders of magnitude higher, and Swift
exhibits high latency for concurrent 64 KiB object writes. In

1	 MiB	 64	 KiB	

Simba	 Cloud	 scales	 well	 with	 increasing	 tables	 and	 clients	

Immediate	
sync	 required	
for	 every	 row	 1	 second	

sync	
period	

Research	 Session	 2:	 	
4/22	 @	 12	 PM	

DO
RI
AN

	

N
IT
IN
	

§  Limited	 offline	 support	
§  Inadequate	 error	 	

propaga?on	
§  Atomicity	 viola?ons	 of	 	

inter-‐dependent	 data	

Simba	 Source	 Code:	 heps://github.com/SimbaService/Simba	
Project	 Homepage:	 hep://?nyurl.com/SimbaService	

	

 Consistency Study
We	 studied	 23	 popular	 mobile	 apps	 and	 found	 that	 	 	

half	 of	 them	 exhibit	 undesirable	 behavior!	
	

 Study Findings
§  Diverse	 consistency	 	

requirements	
§  Sync	 seman?cs	 ogen	

oblivious	 to	 consistency	 	

