
Dorian	
 Perkins∗†,	
 Ni/n	
 Agrawal†,	
 Akshat	
 Aranya†,	
 Cur/s	
 Yu∗,	
 Younghwan	
 Go⋆†,	

	
 Harsha	
 V.	
 Madhyastha‡,	
 and	
 Cris/an	
 Ungureanu†	
 	

NEC	
 Labs	
 America†,	
 UC	
 Riverside∗,	
 KAIST⋆,	
 U	
 Michigan‡	

	

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Clients (in thousands)

RsCloudWsCloud

 Motivation
§  Wide-­‐spread	
 use	
 of	
 data-­‐centric	
 mobile	
 apps	
 	

§  Data	
 consistency	
 is	
 a	
 primary	
 requirement	

§  App	
 devs	
 tasked	
 with	
 ensuring	
 consistency	
 of	
 user’s	
 data	

§  Current	
 solu?ons	
 are	
 inflexible	

§  Rolling	
 own	
 service	
 is	
 difficult	

§  Failures,	
 Conflicts,	
 Connec?vity,	
 Consistency,	
 etc.	

European Conference on Computer Systems (EuroSys)
April 21—24, 2015, Bordeaux, France

Difficult	
 to	
 Provide	
 Reliability	
 &	
 Consistency!	

§  Simple,	
 high-­‐level	
 	

programming	
 	
 	
 	

abstrac?ons	

§  Transparent	
 handling	

of	
 data	
 sync	
 &	
 failures	

§  Atomicity	
 across	
 	

tabular	
 &	
 object	
 data	

§  End-­‐to-­‐end	
 tunable	
 	

consistency	

§  Scalable	
 architecture	

	

 Simba Design

	
 	
 	
 	
 	
 Rise	
 of	
 data-­‐sync	
 services	

§  Data	
 management	
 for	
 files	

§  SDKs	
 for	
 CRUD	
 opera?ons	

§  Inflexible	
 consistency	
 op?ons	

§  Need	
 to	
 transparently/efficiently	
 handle	
 data	
 sync	

§  Need	
 to	
 provide	
 unified	
 tabular	
 +	
 object	
 data	
 model	

§  Need	
 to	
 enable	
 useful	
 consistency	
 seman?cs	

Simba: Tunable End-to-End Data
Consistency for Mobile Apps

Simba:
Cloud Infrastructure for Mobile Apps

 Scalability

Key	
 Features	

 Simba Table Data	
 Sync	
 Abstrac/on	

 Performance

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloudWsCloud
RTableWTable

(a) Table only.

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloudWsCloud
RTableWTable

RObjectWObject

(b) Table+object, chunk cache enabled.

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloudWsCloud
RTableWTable

RObjectWObject

(c) Table+object, chunk cache disabled.

Figure 6: sCloud performance when scaling tables.

 10

 100

 1000

 10000

 100000

10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Clients (in thousands)

RSimbaWSimba
RTableWTable

RObjectWObject

Figure 7: sCloud performance when scaling clients.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Write Sync Read

Ti
m

e
(s

ec
on

ds
)

StrongSCausalSEventualS

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

StrongS CausalS EventualS

Da
ta

 T
ra

ns
fe

r (
Ki

B)

CwCr

Figure 8: Consistency Comparison. End-to-end latency and data

transfer for each consistency scheme.

third client Cc to write an row for the same row-key as Cw,
which always occurs prior Cw’s write. We use a subscription
period of 1 second for CausalS and EventualS and ensure all
updates occur before this period is over. Only Cr has a read
subscription to the table.

Figure 8 shows the WiFi latency and associated data
transfer (3G results similar; not shown). We show three la-
tency values: 1) app perceived latency of update at Cw,
shown as “Write”, 2) sync-update latency from Cw to Cr,
shown as “Sync”, and 3) app-perceived latency for read-
ing updated data at Cr , shown as “Read”. We also plot the
total data transferred by Cw and Cr for each consistency
scheme. StrongS exhibits the smallest sync latency because
data is synced immediately, however, the client app incurs
network latency for the write operation, whereas writes are
local in case of CausalS and EventualS. Immediate sync-
ing in StrongS also causes higher data transfer because all
updates must propagate immediately (e.g., Cr must read
both updates), not benefiting from overwrites or the change
cache. Sync latency for CausalS is higher than EventualS be-
cause the former requires more RTTs to resolve conflicts.
With CausalS, data transfer is inflated because the initial up-
date from Cw fails, so Cw must read Cc’s conflicting data,
and retry his update after performing conflict resolution;

EventualS has the lowest data transfer since last writer wins
and Cr reads only the latest version after the read period
expires. Without conflicts, the sync latencies and data trans-
ferred for CausalS and EventualS are similar (not shown). Fi-
nally, read latencies are similar for all consistency schemes
because reads are local; even with StrongS, the local replica
is kept up-to-date and reads do not communicate with the
server.

6.5 Writing Simba Apps

Writing a multi-consistent app: We used an existing app,
Todo.txt [8], to qualitatively evaluate the effort of writing an
app that benefits from multiple consistency models. Todo.txt
uses Dropbox to maintain and sync two files containing ac-
tive tasks and archived tasks. We modified the app to store its
data in two sTables. Active tasks can be modified frequently,
so they are maintained with StrongS consistency, which en-
sures quick and consistent sync. Archived tasks cannot be
modified, so it is sufficient to use EventualS consistency. Any
change to the archived task list is not immediately reflected
on another device, but this is not critical to the operation of
the app. Modifying Todo.txt to use Simba simplified the sync
logic by eliminating the need for user-triggered sync, and al-
lowed the app to use appropriate consistency models for its
needs.
Fixing an inconsistent app: An open-source app in our
study, Universal Password Manager (UPM), uses Dropbox
to sync an encrypted database for user accounts. The app
shows inconsistency when account information is changed
concurrently on two devices and the database is synced with
Dropbox; changes performed on one device get silently over-
written. To fix this inconsistency, we ported UPM to use
Simba. We tried two approaches:

• Store the entire account database as an object in a sTable.
This required fewer modifications; we simply used Simba
instead of Dropbox to sync the database. However, con-
flict resolution is complex because conflicts occur at full-
database granularity, so resolution needs to compare indi-
vidual account information.

• Store each account as a separate row in a sTable; UPM no
longer needs to implement its own database which elimi-
nates the necessary logic for serialization and parsing the
database file. Conflict resolution is made relatively simple
because conflicts occur on a per-account granularity and
can be easily handled.

Efficient	
 Syncing	
 via	
 Change-­‐sets	

Sync	
 overhead	
 under	
 concurrent	
 write	
 conflicts	

Upstream	
 (from	
 client)	

16	
 Gateways	
 and	
 16	
 Stores,	
 500	
 ops/sec	

Logical	
 Abstrac?on	

Physical	
 Layout	
 	

§  Unified	
 tabular	
 +	
 object	
 rows	

§  Row-­‐level	
 atomicity	

§  Per-­‐table	
 consistency	
 scheme	

§  Strong,	
 Causal,	
 or	
 Eventual	

§  Offline	
 support	

§  Conflict	
 detec?on/resolu?on	

Mobile	
 App	
 Consistency	
 Study	

Simba	
 Client	
 	
 [FAST	
 2015]	

Change	
 cache	
 enables	
 	

sync	
 of	
 only	
 modified	
 	

row	
 data	
 (e.g.,	
 update	
 	

of	
 a	
 single	
 64	
 KiB	
 chunk	
 	

in	
 a	
 1	
 MiB	
 object)	

Stronger	
 consistency	
 increases	
 per-­‐row	
 performance	
 overhead	

 1

 10

 100

 1000

 10000

 100000

1 4 16 64 256 1024

La
te

nc
y

(m
s)

Clients

No cache
Key cache
Key+Data cache

(a) Per-operation latency.

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 4 16 64 256 1024

Th
ro

ug
hp

ut
 (M

iB
/s

)

Clients

No cache
Key cache
Key+Data cache

(b) Aggregate node throughput.

 1

 10

 100

Da
ta

 T
ra

ns
fe

rre
d

(M
iB

)

No cache
Key cache

Key+Data cache

(c) Aggregate data transferred.

Figure 4: Downstream sync performance for one Gateway and Store.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
PS

Clients

(a) Gateway only.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
PS

Clients

(b) Store with table-only.

 0

 10

 20

 30

 40

 50

 60

1 4 16 64 256 1024

IO
PS

Clients

(c) Store with table+object.

Figure 5: Upstream sync performance for one Gateway and Store.

We run the Store in three configurations: (1) No caching,
(2) Change cache with row keys only, and (3) Change cache
with row keys and chunk data. The chunk size is set to 64

KiB. For reference, we show the server-side sync processing
time in Table 8. In order to populate the Store with data, a
writer client inserts rows with 10 tabular columns totaling
1 KiB of tabular data, and 1 object column having 1 MiB

objects; it then updates exactly 1 chunk per-object. We then
instantiate one or more reader clients, partitioned evenly
over up to 16 nodes, to sync only the most recent change
for each row.

Figure 4(a) shows the client-perceived latency, as we vary
the number of clients on the x-axis. As expected, with no
caching in the system, clients experience the worst latency.
When the change cache stores keys only, the latency for
drops for 1024 clients by a factor of 14.8; when caching both
keys and data, latency drops by a further factor of 1.53, for
a cumulative factor of 22.8.

Figure 4(b) plots throughput on the y-axis in MiB/s.
Firstly, with increasing number of clients, the aggregate
throughput continues to increase up to 35 MiB/s for 256

clients. At this point, we reach the 64 KiB random read
bandwidth of the disks. The throughput begins to decline
for 1024 clients showing the scalability limits of a single
Store node in this setting. Somewhat counter-intuitively, the
throughput with the key cache appears to be less than with
no cache at all; however, this is due to the very design of
the Store. In the absence of a key cache, Store has to return
the entire 1 MiB object, since it has no information of what
chunks have changed, rather than only the single 64 KiB

chunk which was updated. The throughput is higher simply
because the Store sends entire objects; for the overall sys-
tem, the important metrics are also client-latency, and the
amount of data transferred over the network.

Figure 4(c) measures the data transferred over the net-
work for a single client reading 100 rows. The graph shows
that a no-cache system sends orders of magnitude more data
compared to one which knows what chunks have changed.
The amount of data transferred over the network is the same
for the two caching strategies; the data cache only helps in
reducing chunk data that needs to be fetched from Swift.
Since Simba compresses data, the total data transferred over
the network is less than the cumulative size.

6.2.2 Upstream Sync

Next, we evaluate the performance of upstream sync. We
run multiple writer clients partitioned evenly over up to 16
nodes. Each client performs 100 write operations, with a de-
lay of 20 ms between each write, to simulate wireless WAN
latency. We measure the total operations/second serviced for
a varying number of clients. Note that due to the sync proto-
col, a single operation may require more than one message.

Figure 5 presents the client-perceived upstream perfor-
mance. The first test stresses the Gateway alone by sending
small control messages which the Gateway directly replies
so that Store is not the bottleneck (Figure 5(a)). The fig-
ure shows that Gateway scales well up to 4096 clients. In
the second test, we wrote rows with 1 KiB tabular data and
no objects. This exercises Store with Cassandra but without
Swift. As shown in Figure 5(b), Store performance peaks
at 1024 clients, after which Cassandra latency starts becom-
ing the bottleneck. For the third test, we wrote rows with 1

KiB of tabular data and one 64 KiB object. This exercises
Store with both Cassandra and Swift. In Figure 5(c), we ob-
serve that the rate of operations is much lower as compared
to table-only. This is due to two reasons: the amount of data
being written is two orders of magnitude higher, and Swift
exhibits high latency for concurrent 64 KiB object writes. In

1	
 MiB	
 64	
 KiB	

Simba	
 Cloud	
 scales	
 well	
 with	
 increasing	
 tables	
 and	
 clients	

Immediate	

sync	
 required	

for	
 every	
 row	
 1	
 second	

sync	

period	

Research	
 Session	
 2:	
 	

4/22	
 @	
 12	
 PM	

DO
RI
AN

	

N
IT
IN
	

§  Limited	
 offline	
 support	

§  Inadequate	
 error	
 	

propaga?on	

§  Atomicity	
 viola?ons	
 of	
 	

inter-­‐dependent	
 data	

Simba	
 Source	
 Code:	
 heps://github.com/SimbaService/Simba	

Project	
 Homepage:	
 hep://?nyurl.com/SimbaService	

	

 Consistency Study
We	
 studied	
 23	
 popular	
 mobile	
 apps	
 and	
 found	
 that	
 	
 	

half	
 of	
 them	
 exhibit	
 undesirable	
 behavior!	

	

 Study Findings
§  Diverse	
 consistency	
 	

requirements	

§  Sync	
 seman?cs	
 ogen	

oblivious	
 to	
 consistency	
 	

