
Simba: Tunable End-to-End Data Consistency for Mobile Apps

Dorian Perkins∗†, Nitin Agrawal†, Akshat Aranya†, Curtis Yu∗,
Younghwan Go⋆†, Harsha V. Madhyastha‡, Cristian Ungureanu†

NEC Labs America†, UC Riverside∗, KAIST⋆, and U Michigan‡

Abstract

Developers of cloud-connected mobile apps need to ensure

the consistency of application and user data across multiple

devices. Mobile apps demand different choices of distributed

data consistency under a variety of usage scenarios. The

apps also need to gracefully handle intermittent connectivity

and disconnections, limited bandwidth, and client and server

failures. The data model of the apps can also be complex,

spanning inter-dependent structured and unstructured data,

and needs to be atomically stored and updated locally, on

the cloud, and on other mobile devices.

In this paper we study several popular apps and find

that many exhibit undesirable behavior under concurrent use

due to inadequate treatment of data consistency. Motivated

by the shortcomings, we propose a novel data abstraction,

called a sTable, that unifies a tabular and object data model,

and allows apps to choose from a set of distributed consis-

tency schemes; mobile apps written to this abstraction can

effortlessly sync data with the cloud and other mobile de-

vices while benefiting from end-to-end data consistency. We

build Simba, a data-sync service, to demonstrate the utility

and practicality of our proposed abstraction, and evaluate it

both by writing new apps and porting existing inconsistent

apps to make them consistent. Experimental results show

that Simba performs well with respect to sync latency, band-

width consumption, server throughput, and scales for both

the number of users and the amount of data.

1. Introduction

Applications for mobile devices, or apps, often use cloud-

based services to enable sharing of data among users and to

offer a seamless experience across devices; ensuring consis-

tency across users and devices is thus a primary requirement

for mobile apps. However, in spite of significant advances

on distributed consistency [29, 30, 32, 55] in recent times,

application developers continue to struggle with writing ap-

plications that are correct and consistent [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741974

The root cause for the undesirable status quo is that every

developer re-solves the same set of underlying challenges for

data consistency. Instead, in this paper, we advocate the need

for a high-level programming abstraction that provides end-

to-end data consistency and, in particular, is well-suited for

the needs of mobile apps. Three key properties distinguish

the associated challenges from prior work.

First, unlike recent efforts that have examined when it is

reasonable to trade-off consistency in order to minimize la-

tencies in the setting of geo-distributed services [29, 30, 32,

55], whether to sacrifice strong consistency is not a choice

for mobile apps; the limited and intermittent connectivity on

mobile devices makes it a must for mobile apps to deal with

weaker forms of consistency in order to facilitate app usage

in disconnected mode. Often, mobile apps maintain a local

copy of application state and user data (e.g., photos, notes,

and documents) and orchestrate the synchronization of these

across devices in a reliable, consistent, and efficient manner.

Second, unlike prior work on managing data consistency

across weakly-connected clients [26, 35, 56], for efficiency

purposes, mobile apps do not always need the strongest

form of consistency that is feasible even when connected.

Due to carrier bandwidth caps and users’ expectations of an

interactive app experience, mobile app developers have to

often explicitly design their apps to make do with weaker

consistency. Moreover, an app typically operates on different

kinds of data, which require or benefit from different forms

of consistency (e.g., app-crash log vs. user’s shopping cart).

Third, as shown by recent studies [10, 51], the majority

of mobile apps employ data models spanning databases, file

sytems, and key-value stores, and it is crucial to manage data

at application-relevant granularity. Cloud-connected mobile

apps need to manage this inter-dependent data not only lo-

cally, but also on cloud storage and across devices.

To understand how developers manage these challenges

associated with ensuring data consistency across devices, we

studied a number of popular mobile apps. We make four pri-

mary observations from our study. First, we find that differ-

ent mobile apps — even different components of the same

app — operate with different consistency semantics; thus,

there is no one-size-fits-all solution for cloud-based data

sync. Second, while many apps chose weaker consistency

semantics for the sake of availability and efficiency, their

data synchronization is designed poorly, leading to incon-

sistencies and loss of user data. Third, though several apps

use existing commercial sync services (e.g., Dropbox), even

such apps exhibit undesirable behavior under concurrent

use. The dominant reason being that apps choose the sync

service oblivious to the ramifications of their last-writer-

wins semantics on the data model. Fourth, while most apps

store inter-dependent unstructured (e.g., photos and videos)

and structured data (e.g., album info and metadata), existing

sync services offer either file-only [3, 5, 25, 53] or table-

only [15, 23, 42] abstractions. As a result, atomicity of gran-

ular data is not preserved under sync even for a popular app

such as Evernote which claims so [16].

Mobile apps are ultimately responsible for the user ex-

perience and need to guarantee data consistency in an end-

to-end manner [48]. Motivated by the observations from our

study, we propose a novel data synchronization abstraction

that offers powerful semantics for mobile apps. Our pro-

posed abstraction, which we call sTable, offers tunable con-

sistency and atomicity over coarse-grained inter-dependent

data, while gracefully accommodating disconnected oper-

ations. sTables span both structured and unstructured data

(i.e., database tables and objects), providing a data model

that unifies the two. Thus, sTables enable apps to store all

of their data in a single synchronized store. To our knowl-

edge, our sTable abstraction is the first to provide atomicity

guarantees across unified tabular and object rows. Further-

more, to support varying consistency requirements across

apps and across an app’s components, every sTable can be

associated with one of three consistency semantics, resem-

bling strong, causal, and eventual consistency. The sTable

abstraction subsumes all network I/O necessary for its con-

sistent sync. sTables are thus especially suited to developing

cloud-connected mobile apps.

To demonstrate the simplicity and power of sTables, we

have built Simba, a data-sync service that meets the diverse

data management needs of mobile apps. By providing a

high-level data abstraction with tunable consistency seman-

tics, and an implementation faithful to it, Simba alleviates

the deficiencies in existing data-sync services. The key chal-

lenges that Simba addresses are end-to-end atomic updates,

locally and remotely, to unified app data, and an efficient

sync protocol for such data over low-bandwidth networks.

We have evaluated Simba by developing a number of mo-

bile apps with different consistency requirements. Our ex-

perimental results show that 1) apps that use Simba perform

well with respect to sync latency, bandwidth consumption,

and server throughput, and 2) our prototype scales with the

number of users and the amount of data stored, as measured

using the PRObE Kodiak and Susitna testbeds [19]. We have

also taken an existing open-source app exhibiting inconsis-

tent behavior and ported it to Simba; the port was done with

relative ease and resulted in a consistent app.

2. Study of Mobile App Consistency

We studied several popular mobile apps to understand how

they manage data along two dimensions: consistency and

granularity. Data granularity is the aggregation of data on

which operations need to apply together, e.g., tabular, object,

or both; in the case of cloud-connected apps, granularity im-

plies the unit of data on which local and sync operations are

applied together. We adopted this terminology from Gray et

al. [21], who present an excellent discussion on the relation-

ship between consistency and granularity.

We chose a variety of apps for our study, including: 1)

apps such as Pinterest, Instagram, and Facebook that roll

their own data store, 2) apps such as Fetchnotes (Kinvey),

Township (Parse), and Syncboxapp (Dropbox) that use an

existing data platform (in parenthesis), and 3) apps such as

Dropbox, Evernote, and Google Drive that can also act as a

sync service with APIs for third-party use. The apps in our

study also have diverse functionality ranging from games,

photo sharing, and social networking, to document editing,

password management, and commerce.

2.1 Methodology

We setup each app on two mobile devices, a Samsung

Galaxy Nexus phone and an Asus Nexus tablet, both run-

ning Android 4.0+, with the same user account; the devices

connected to the Internet via WiFi (802.11n) and 4G (T-

Mobile). We manually performed a series of operations on

each app and made a qualitative assessment.

For consistency, our intent was to observe as a user of

the system which, in the case of mobile apps, broadened the

scope from server only to server and client. Since most of

the apps in the study are proprietary, we did not have access

to the service internals; instead, we relied on user-initiated

actions and user-visible observations on mobile devices.

For granularity, we inspected the app’s local schema for

dependencies between tabular and object data. Apps typi-

cally used either a flat file or a SQLite database to store

pointers to objects stored elsewhere on the file system. To

confirm our hypothesis, we traced the local I/O activity to

correlate accesses to SQLite and the file system.

First, for each app, we performed a number of user oper-

ations, on one or both devices, while being online; this in-

cluded generic operations, like updating the user profile, and

app-specific operations, like “starring/unstarring” a coupon.

Second, for the apps supporting offline usage, we performed

operations while one or both devices were offline. We then

reconnected the devices and observed how offline operations

propagated. Finally, we made updates to shared data items,

for both offline and online usage, and observed the app’s be-

havior for conflict detection and resolution. These tests re-

flect typical usage scenarios for mobile apps.

2.2 Classification

Our assessments are experimental and not meant as a proof;

since automatic verification of consistency can be undecid-

able for an arbitrary program [44], our findings are evidence

of (in)consistent behavior. We chose to classify the apps into

three bins based on the test observations: strong, causal,

App, Function & Platform DM Tests User-visible Outcome Reasoning CS
U

se
E

x
is

ti
n
g

P
la

tf
o
rm

s
Fetchnotes, shared notes

Kinvey

T Ct. Del/Upd on two de-

vices

Data loss, no notification; hangs

indefinitely on offline start

LWW→ clobber E

Hipmunk, travel

Parse

T Ct. Upd of “fare alert”

settings

Offline disallowed; sync on user

refresh

LWW → correct be-

havior

E

Hiyu, grocery list

Kinvey

T Ct. Del/Upd w/ both of-

fline; w/ one user online

Data loss and corruption on

shared grocery list → double,

missed, or wrong purchases

LWW→ clobber E

Keepass2Android⋆ , pass-

word manager

Dropbox

O Ct. password Upd w/

both online; repeat w/
one online one offline

Password loss or corruption, no

notification

Arbitrary

merge/overwrite

→ inconsistency

C

RetailMeNot, shopping

Parse

T+O Ct. “star” and “unstar”

coupons

Offline actions discarded; sync on

user refresh

LWW → correct be-

havior

E

Syncboxapp⋆ , shared

notes

Dropbox

T+O Ct. Upd w/ both online;

w/ one offline one on-

line; w/ one offline only

Data loss (sometimes) FWW; FWW (offline

discarded); Offline

correctly applied

C

Township, social game

Parse

T Ct. game play w/ back-

ground auto-save

Loss & corruption of game state,

no notification; loss/misuse of in-
app purchase; no offline support

LWW→ clobber C

UPM⋆, password manager

Dropbox

O Ct. password Upd w/

both online; repeat w/

one online one offline

Password loss or corruption, no

notification

Arbitrary

merge/overwrite

→ inconsistency

C

R
o
ll

-t
h
ei

r-
ow

n
p
la

tf
o
rm

Amazon, shopping T+O Ct. shopping cart

changes

Last quantity change saved; Del

overrides quantity change if first

or last action

LWW→ clobber S+E

ClashofClans, social game O Ct. game play w/ back-

ground auto-save

Usage restriction (only one player

allowed)

Limited but correct

behavior

C

Facebook, social network T+O Ct. profile Upd; repeat
offline; “post” offline

Latest changes saved; offline dis-
allowed; saved for retry

LWW for profile edits
when online

C

Instagram, social network T+O Ct. profile Upd online;

repeat offline; add/Del

comments to “posts”

Latest profile saved; offline

ops fail; comments re-ordered

through server timestamps

LWW → correct be-

havior

C

Pandora, music streaming T+O Ct. Upd of radio station

online; repeat offline; Ct.

Del/Upd of radio station

Last update saved; offline ops fail;

Upd fails but radio plays w/o no-

tification of Del

Partial sync w/o, full

sync w/ refresh. Con-

fusing user semantics

S+E

Pinterest, social network T+O Ct. “pinboard” creation
and rename

Offline disallowed; sync on user
refresh

LWW → correct be-
havior

E

TomDroid⋆, shared notes T Ct. Upd; Ct. Del/Upd Requires user refresh before Upd,

assumes single writer on latest

state; data loss

Incorrect assumption;

LWW→ clobber

E

Tumblr, blogging T+O Ct. Upd of posts both

online; repeat offline;

Ct.Del/Upd

Later note posted; saved for retry

upon online; app crash and/or

forced user logout

LWW → clobber;

further bad seman-

tics

E

Twitter, social network T+O Ct. profile Upd; online

tweet; offline tweet

Stale profile on user refresh, re-

sync to last save only on app

restart; tweet is appended; offline

tweets fail, saved as draft

LWW → correct be-

havior. Limited offline

& edit functionality

needed

C

YouTube, video streaming T+O Ct. edit of video title on-

line; repeat offline

Last change saved, title refresh on

play; offline disallowed. Sync on

user refresh

LWW → correct be-

havior

E

A
ls

o
ac

t
as

S
y
n
c

S
er

v
ic

es

Box, cloud storage T+O Ct. Upd; Ct. Del/Upd;

repeat offline

Last update saved; on Del, per-

mission denied error for Upd; of-

fline read-only

LWW→ clobber C

Dropbox, cloud storage T+O Ct. Upd; Ct. Del/Upd

(rename)

Conflict detected, saved as sepa-

rate file; first op succeeds, second

fails and forces refresh

Changes allowed only

on latest version;

FWW

C

Evernote, shared notes T+O Ct. note Upd; Ct.

Del/Upd; repeat offline;

“rich” note sync failure

Conflict detected, separate note

saved; offline handled correctly;

partial/inconsistent note visible

Correct multi-writer

behavior; atomicity

violation under sync

C

Google Drive, cloud stor-

age

T+O Ct. Upd (rename); Ct.

Del/Upd

Last rename applies; file deleted

first and edit discarded, or delete
applied last and edit lost

LWW→ clobber C

Google Docs, cloud stor-

age

T+O Ct. edit online; repeat of-

fline

Real-time sync of edits; offline

edits disallowed, limited read-

only

Track & exchange cur-

sor position frequently

S

Table 1: Study of mobile app consistency. Conducted for apps that use sync platforms, roll their own platform, and are platforms themselves. For

brevity, only an interesting subset of tests are described per app. DM:data model, T:tables, O:objects, Ct.:concurrent, Del:delete, Upd:update; FWW/LWW:

first/last-writer wins. CS:consistency scheme, S:strong, C:causal, E:eventual. ⋆:open-source. Inconsistent behavior is in bold. “;” delimited reasoning

corresponds to separate tests.

and eventual. We place apps which violate both strong and

causal consistency into the eventual bin, those which violate

only strong consistency into the causal bin, and those which

do not violate strong consistency into the strong bin. From

among the many possible consistency semantics, we chose

these three broad bins to keep the tests relatively simple.

2.3 Findings

Table 1 lists the apps and our findings; we make the follow-

ing observations.

• Diverse consistency needs. In some cases, the same app

used a different level of consistency for different types of

data. For example, while Evernote provides causal consis-

tency for syncing notes, in-app purchases of additional stor-

age use strong consistency. Eventual and causal consistency

were more popular while strong consistency was limited to

a few apps (e.g., Google Docs, Amazon). Many apps (e.g.,

Hipmunk, Hiyu, Fetchnotes) exhibited eventual consistency

whereas ones that anticipated collaborative work (e.g., Ev-

ernote, Dropbox, Box) used causal.

• Sync semantics oblivious to consistency. Many apps

used sync platforms which provide last-writer-wins seman-

tics; while perfectly reasonable for append-only and single-

user apps, in the absence of a programmatic merge [6], it led

to data clobbering, corruption, and resurrection of deleted

data in apps that allow for concurrent updates (e.g., Keep-

ass2Android, Hiyu, Township).

• Limited offline support. Offline support was not seam-

less on some apps (e.g., Fetchnotes hangs indefinitely at

launch), while other apps disabled offline operations alto-

gether (e.g., Township).

• Inadequate error propagation. When faced with a po-

tential inconsistency, instead of notifying the user and wait-

ing for corrective action, apps exhibit a variety of ad-hoc

behavior such as forced user-logouts and crashes (e.g.,

Tumblr), loss of in-app purchases (e.g., Township), and

double-or-nothing grocery purchases (e.g., Hiyu).

• Atomicity violation of granular data. Apps need to

store inter-dependent structured and unstructured data but

the existing notion of sync is either table- or file-only (see

Table 2) leading to inconsistencies. We define an atom-

icity violation as the state where only a portion of inter-

dependent data is accessible. For example, Evernote, a pop-

ular note-taking app, allows its users to create rich notes

by embedding a text note with multi-media, and claims

no “half-formed” notes or “dangling” pointers [16]; how-

ever, if the user gets disconnected during note sync, we ob-

serve that indeed half-formed notes, and notes with dan-

gling pointers, are visible on the other client.

To summarize, while valuable user and app data resides in

mobile apps, we found that the treatment of data consistency

and granularity is inconsistent and inadequate.

App/Platform Consistency Table Object Table+Object

Parse E
√ × ×

Kinvey E
√ × ×

Google Docs S
√ √ ×

Evernote S or C
√ √ ×

iCloud E × √ ×
Dropbox S or C

√ √ ×
Simba S or C or E

√ √ √

Table 2: Comparison of data granularity and consistency.

Shows the consistency and granularity offered by existing systems.

2.4 Case-study: Keepass2Android

Overview: Keepass2Android is a password manager app

which stores account credentials and provides sync with

multiple services; we chose Dropbox. On two devices using

the same Dropbox account, we perform concurrent updates

in two scenarios: 1) both devices are online, and 2) one de-

vice is offline. Device 1 (2) modifies credentials for accounts

A and B (B and C).

Findings: On conflicts, the app prompts the user whether to

resolve the conflict via a merge or an overwrite.

• Scenario 1: Changes are synced immediately and conflicts

are resolved using a last-writer-wins strategy.

• Scenario 2: Device 2 makes offline changes. Upon sync-

ing and choosing merge, its changes to account C are com-

mitted, but account B retains the change from Device 1. As

a result, Device 2’s changes to account B are silently lost.

Also, the chosen conflict resolution strategy is applied for

all offline changes, without further inspection by the user.

This can result in inadvertent overwrites.

Thus, under concurrent updates, the conflict resolution strat-

egy employed by this app results in an arbitrary merge or

overwrite which leads to inconsistency. We describe how we

fix an app with similar inconsistent behavior in §6.5.

3. Overview of Simba

Based on our study, we find that existing solutions for cloud-

synchronized mobile data fall short on two accounts: inade-

quate data granularity (only tables or objects, but not both)

and lack of end-to-end tunable consistency (an app must

choose the same consistency semantics for all of its data).

Table 2 compares the choice of data granularity and consis-

tency offered by several popular data management systems.

To address these shortcomings, we develop Simba, a

cloud-based data-sync service for mobile apps. Simba of-

fers a novel data sync abstraction, sTable (short for Simba

Table), which lets developers follow a convenient local-

programming model; all app and user data stored in sTa-

bles seamlessly gets synchronized with the cloud and on to

other devices. A sTable provides apps with end-to-end con-

sistency over a data model unifying tables and objects. Each

row of a sTable, called a sRow, can contain inter-dependent

tabular and object data, and the developer can specify the

distributed consistency for the table as a whole from among

a set of options. Simba thus treats a table as the unit of

Snowy

Name

Snoopy

t_snowy.jpgMed snowy.jpg

High snoopy.jpg t_snoopy.jpg

ThumbnailPhotoQuality

Tabular Object

Figure 1: sTable logical abstraction.

StrongS CausalS EventualS

Local writes allowed? No Yes Yes

Local reads allowed? Yes Yes Yes

Conflicts resolution necessary? No Yes No

Table 3: Summary of Simba’s consistency schemes.

consistency specification, and a row as the unit of atomicity

preservation.

3.1 Choice of Data Granularity and Atomicity

Our study highlighted the need for treating inter-dependent

coarse-grained data as the unit of atomicity under sync.

A sTable’s schema allows for columns with primitive data

types (INT, BOOL, VARCHAR, etc) and columns with type

object to be specified at table creation. All operations to tab-

ular and object data stored in a sTable row are guaranteed

to be atomic under local, sync, and cloud-store operations.

Table-only and object-only data models are trivially sup-

ported. To our knowledge, our sTable abstraction is the first

to provide atomicity guarantees across unified tabular and

object rows. Figure 1 depicts the sTable logical layout con-

taining one or more app-specified columns (physical layout

in §4.1). In this example, the sTable is used by a photo-share

app to store its album. Each sTable row stores an image entry

with its “name”, “quality”, “photo” object, and “thumbnail”

object.

3.2 Choice of Consistency

Mobile apps typically organize different classes of data into

individual SQLite tables or files, grouping similar data, with

the expectation that it is handled identically. Therefore, we

choose to permit consistency specification per-table, as op-

posed to per-row or per-request, to be compatible with this

practice. Thus, all tabular and object data in a sTable is sub-

ject to the same consistency. This enables an app to create

different sTables for different kinds of data and indepen-

dently specify their consistency. For example, a notes app

can store user notes in one table and usage/crash data in an-

other; the former may be chosen as causal or strong, while

the latter as eventual.

Although sufficient for many apps, previous work [13]

has shown that eventual consistency is not adequate for

all scenarios. For example, financial transactions (e.g., in-

app purchases, banking) and real-time interaction (e.g., col-

laborative document editing, reservation systems) require

stronger consistency. Based on our study of the require-

ments of mobile apps (§2) and research surveys [31, 47, 54],

sTable initially supports three commonly used consistency

schemes; more can be added in the future. Our consistency

schemes as described in Table 3 are similar to the ones in

Pileus [55], and we borrow from their definitions. In all

three schemes, reads always return locally stored data, and

the primary differences are with respect to writes and con-

flict resolution.

• StrongS: All writes to a sTable row are serializable.

Writes are allowed only when connected, and local repli-

cas are kept synchronously up to date. There are no con-

flicts in this model and reads are always local. When dis-

connected, writes are disabled, but reads, to potentially

stale data, are still allowed. On reconnection, downstream

sync is required before writes can occur. In contrast to

strict consistency, which would not allow local replicas

or offline reads, we provide sequential consistency [27] as

a pragmatic trade-off based on the needs of several apps

which require strong consistency for writes but allow dis-

connected reads, enabling both power and bandwidth sav-

ings. Example: Editing a document in Google Docs.

• CausalS: A write raises a conflict if and only if the

client has not previously read the latest causally pre-

ceding write for that sTable row. Causality is determined

on a per-row basis; a causally-preceding write is defined as

a write to the same row which is synced to the cloud before

the current operation. Writes and reads are always local

first, and changes are synced with the server in the back-

ground. Unlike StrongS, causal consistency does not need

to prevent conflicts under concurrent writers; instead, sTa-

bles provide mechanisms for automated and user-assisted

conflict resolution. When disconnected, both reads and

writes are allowed. Example: Syncing notes in Evernote.

• EventualS: Last writer wins. Reads and writes are al-

lowed in all cases. Causality checking on the server is

disabled for sTables using this scheme, resulting in last-

writer-wins semantics under conflicts; consequently, app

developers need not handle resolution. This model is often

sufficient for many append-only and single writer scenar-

ios, but can cause an inconsistency if used for concurrent

writers. Example: “Starring” coupons on RetailMeNot.

3.3 Simba API

Designing the API that Simba exports to app developers re-

quires us to decide on three issues: how apps set sTable prop-

erties, how apps access their data, and how Simba pushes

new data to any app and enables the app to perform conflict

resolution. Table 4 summarizes the API; any app written to

this API is referred to as a Simba-app.

sTable creation and properties. The API allows for apps

to set various properties on sTables. An app can set per-

sTable properties either on table creation via properties in

createTable, or through the various sync operations (reg-

isterReadSync, registerWriteSync, etc.) via syncprefs. For

example, consistency is set on table creation, while sync-

periodicity can be set, and reset, any time later.

CRUD (on tables and objects)

createTable(table, schema, properties)

updateTable(table, properties)

dropTable(table)

outputStream[]← writeData(table, tblData, objColNames)

outputStream[]← updateData(table, tblData, objNames, selection)

inputStream[]← rowCursor← readData(table, projection, selection)

deleteData(table, selection)

Table and Object Synchronization

registerWriteSync(table, period, delayTolerance, syncprefs)

unregisterWriteSync(table)

writeSyncNow(table)

registerReadSync(table, period, delayTolerance, syncprefs)

unregisterReadSync(table)

readSyncNow(table)

Upcalls

newDataAvailable(table, numRows)

dataConflict(table, numConflictRows)

Conflict Resolution

beginCR(table)

getConflictedRows(table)

resolveConflict(table, row, choice)

endCR(table)

Table 4: Simba API for data management by mobile apps.

Accessing tables and objects. sTables can be read and up-

dated with SQL-like queries that can have a selection and

projection clause, which enables bulk, multi-row local op-

erations. In addition to the baseline CRUD operations, the

API supports streaming read/write access to objects in or-

der to preserve familiar file I/O semantics; objects are not

directly addressable, instead streams to objects are returned

through write (writeData, updateData) and read (readData)

operations, respectively, on the enclosing row. Unlike re-

lational databases, this makes it possible to support much

larger objects as compared to SQL BLOBs (binary large ob-

jects) [36, 43], because the entire object need not be in mem-

ory during access.

Upcalls and conflict resolution. Every Simba-app regis-

ters two handlers: one for receiving an upcall on arrival

of new data (newDataAvailable), and another for conflicted

data (dataConflict). The latter upcall enables Simba to pro-

grammatically expose conflicts to apps (and onto users).

Once notified of conflicted data, an app can call beginCR

to explicitly enter the conflict resolution (CR) phase; therein,

the app can obtain the list of conflicted rows in a sTable using

getConflictedRows and resolve the conflicts using resolve-

Conflict. For each row, the app can select either the client’s

version, the server’s version, or specify altogether new data.

When the app decides to exit the CR phase, after iterating

over some or all of the conflicted rows, it calls endCR. Ad-

ditional updates are disallowed during the CR phase. How-

ever, multiple updates on mobile clients can proceed nor-

mally during sync operations; if there is a conflict, Simba

detects and presents it to the app. The conflict resolution

mechanisms in Simba leave the decision of when to resolve

conflicts up to individual apps, and enables them to continue

making changes while conflicts are still pending.

Figure 2: Simba architecture. Shows a sClient (runs as a back-

ground app on mobile devices) and the sCloud, a scalable cloud data-

management system. Apps are written to the Simba API.

4. Simba Architecture and Design

We describe Simba’s architecture and key design decisions

that enable it to preserve atomicity and offer efficient sync.

4.1 Architecture

Simba consists of a client, sClient, and a server, sCloud,

which communicate via a custom-built sync protocol. Fig-

ure 2 presents a high-level view of Simba’s architecture.

Server. sCloud manages data across multiple sClients,

sTables, and Simba-apps, and provides storage and sync of

sTables with a choice of three different consistency schemes.

sCloud primarily consists of a data store, Simba Cloud

Store (for short, Store), and client-facing Gateways. sClients

authenticate via the authenticator and are assigned a Gate-

way by the load balancer. All subsequent communication be-

tween that sClient and the sCloud happens through the des-

ignated gateway. Store is responsible for storage and sync

of client data, for both objects and tables; sTables are par-

titioned across Store nodes. The Gateway manages client

connectivity and table subscriptions, sends notifications to

clients, and routes sync data between sClients and Store.

A gateway registers with all Store nodes for which it has

client table subscriptions; it gets notified by the Store node

on changes to a subscribed sTable. In the case of StrongS

consistency, update notifications are sent immediately to the

client. For CausalS and EventualS, notifications are sent pe-

riodically based on client-subscription periods.

_rowID

f12e09bc

f12e09fg false

false

_deleted

781

[ab1fd, 1fc2e]

[x561a, 3f02a]

Thumbnail

780

Snowy

Name

Snowy

Snoopy

_rowVersion

[42e11]

Photo

[42e13]

Name

Snoopy

ab1fd 42e1342e11

1fc2e 3f02ax561a

Table Store Object Store

Med

High

Quality

Figure 3: sTable physical layout. Logical schema in Fig 1, light-shaded object columns contain chunk IDs, dark-shaded ones store Simba metadata.

sCloud needs to scale both with the number of clients and

the amount of data (i.e., sTables). To do so, we decouple

the requirements by having independently scalable client

management and data storage. sCloud is thus organized into

separate distributed hash tables (DHTs) for Gateways and

Store nodes. The former distributes clients across multiple

gateways, whereas the latter distributes sTables across Store

nodes such that each sTable is managed by at-most one

Store node, for both its tabular and object data; this allows

Store to serialize the sync operations on the same table

at the server, offer atomicity over the unified view, and is

sufficient for supporting all three types of consistency to the

clients. Store keeps persistent sTable tabular and object data

in two separate, scalable stores with the requirement that

they support read-my-writes consistency [56].

Figure 3 shows the physical layout of a sTable for the

photo-sharing app example in Figure 1. All tabular columns

are mapped to equivalent columns in the table store; an ob-

ject column (e.g., Photo) is mapped to a column containing

the list of its chunk IDs. The chunks are stored separately

in the object store. A row in a table subscribed by multiple

clients cannot be physically deleted until any conflicts get

resolved; the “deleted” column stores this state.

Client. sClient is the client-side component of Simba

which supports the CRUD-like Simba API. sClient provides

reliable local-storage of data on the client, and data sync

with sCloud, on behalf of all Simba-apps running on a de-

vice; the apps link with sClient through a lightweight library

(Simba SDK). A detailed description of the client’s fault-

tolerant data store and network management is discussed

elsewhere [20]. The paper describing the client focuses on

client-side matters of failure handling and crash consistency;

it shares the Simba API with this paper which in contrast

delves into the Simba data-sync service and sCloud, focus-

ing on end-to-end tunable distributed consistency.

Sync protocol. sCloud is designed to interact with clients

for data sync and storage in contrast to traditional cloud-

storage systems like Amazon S3 which are designed for stor-

age alone; it thus communicates with sClient in terms of

change-sets instead of gets and puts. Table 5 lists the mes-

sages that constitute Simba’s sync protocol.1 Rather than de-

scribe each sync message, for brevity, we present here the

1 Limited public information is available on Dropbox’s sync protocol.

Drago et al. [17] deconstruct its data transfer using a network proxy; Drop-

box uses 4MB chunks with delta encoding. We expect the high-level sync

protocol of Dropbox to be similar to ours but do not know for certain.

Client ⇀↽ Gateway

General

← operationResponse(status, msg)

Device Management

→ registerDevice(deviceID, userID, credentials)

← registerDeviceResponse(token)

Table and Object Management

→ createTable(app, tbl, schema, consistency)

→ dropTable(app, tbl)

Subscription Management

→ subscribeTable(app, tbl, period, delayTolerance, version)

← subscribeResponse(schema, version)

→ unsubscribeTable(app, tbl)

Table and Object Synchronization

← notify(bitmap)

↔ objectFragment(transID, oid, offset, data, EOF)

→ pullRequest(app, tbl, currentVersion)

← pullResponse(app, tbl, dirtyRows, delRows, transID)

→ syncRequest(app, tbl, dirtyRows, delRows, transID)

← syncResponse(app, tbl, result, syncedRows, conflictRows, transID)

→ tornRowRequest(app, tbl, rowIDs)

← tornRowResponse(app, tbl, dirtyRows, delRows, transID)

Gateway ⇀↽ Store

Subscription Management

← restoreClientSubscriptions(clientID, subs)

→ saveClientSubscription(clientID, sub)

Table Management

→ subscribeTable(app, tbl)

← tableVersionUpdateNotification(app, tbl, version)

Table 5: Simba Sync Protocol. RPCs available between sClient and

sCloud. Between sClient and sCloud, → / ← signifies upstream / down-

stream. Between Gateway and Store,→ /← signifies to / from Store.

underlying high-level design rationale. For all three consis-

tency models, any interested client needs to register a sync

intent with the server in the form of a write and/or read sub-

scription, separately for each table of interest.

sCloud is expected to provide multi-version concurrency

control to gracefully support multiple independent writers;

the sync protocol is thus designed in terms of versions.

Simba’s StrongS and CausalS consistency models require the

ability to respectively avoid, and detect and resolve, con-

flicts; to do so efficiently in a weakly-connected environ-

ment, we develop a versioning scheme which uses compact

version numbers instead of full version vectors [41]. Since

all sClients sync to a centralized sCloud, Simba maintains a

version number per row along with a unique row identifier.

Row versions are incremented at the server with each update

of the row; the largest row version in a table is maintained as

the table version, allowing Simba to quickly identify which

rows need to be synchronized. A similar scheme is used in

gossip protocols [59]. The three consistency models also rely

on the versioning scheme to determine the list of sRows that

have changed, or the change-set.

Internal to Simba, objects are stored and synced as a

collection of fixed-size chunks for efficient network transfer

(explained in §4.3). Chunking is transparent to the client

API; apps continue to locally read/write objects as streams.

Simba’s sync protocol can also be extended in the future to

support streaming access to large objects (e.g., videos).

Downstream Sync (server to clients). Irrespective of the

consistency model, first, the server notifies the client of new

data; a notify message is a boolean bitmap of the client’s

subscribed tables with only the modified sTables set. Second,

the client sends a message (pullRequest) to the server with

the latest local table version of the sTables. Third, the server

then constructs a change-set with data from the client’s ta-

ble version to the server’s current table version. Finally, the

server sends the change-set to the client (pullResponse)

with each new/updated chunk in an objectFragment mes-

sage. The client applies the per-row changes to its local store

and identifies conflicts. For StrongS, the sync is immedi-

ate, whereas for CausalS and EventualS, the read subscrip-

tion needs to specify a time period as the frequency with

which the server notifies the client of changes.

Upstream Sync (clients to server). First, the client sends a

syncRequest message with the change-set to the server, fol-

lowed by an objectFragment message for every new/updated

chunk. Second, the server absorbs the changes and sends

a syncResponse message with a set of per-row successes

or conflicts. For StrongS, each client-local write results in

a blocking upstream sync; for CausalS and EventualS, the

client tracks dirty rows to be synced in the future. The sync

change-set contains a list of sRows and their versions.

4.2 Ensuring Atomicity

End-to-end atomicity of unified rows is a key challenge in

Simba. Updates across tabular and object data must preserve

atomicity on the client, server, and under network sync;

dangling pointers (i.e., table cells that refer to old or non-

existent versions of object data) should never exist. Our

design of Simba addresses this need for atomicity by using

a specialized sync protocol and via a judicious co-design of

the client and server.

Server. The Store is responsible for atomically persisting

unified rows. Under normal operation (no failures), it is still

important for Store to not persist half-formed rows, since

doing so will violate consistency. For StrongS, concurrent

changes to the same sRow are serialized at the server. Only

one client at a time is allowed to perform the upstream sync;

the operation fails for all other clients, and the conflict must

be resolved in sClient before retrying. StrongS also requires

at-most a single row to be part of the change-set at a time.

For CausalS and EventualS, upon receipt by the server, the

change-set is processed row-by-row. Preserving atomicity is

harder under failures as discussed next.

Store crash: Since Store nodes can crash anytime, Store

needs to clean up orphaned chunks. Store maintains a sta-

tus log to assess whether rows were updated in their entirety

or not; each log entry consists of the row ID, version, tabu-

lar data, chunk IDs, and status (i.e., old or new). Store first

writes new chunks out-of-place to the object store when an

object is created or updated. The sync protocol is designed

to provide transaction markers for the server and client to

determine when a row is ready for local persistence. Once

all the data belonging to a unified row arrives at the Store, it

atomically updates the row in the tabular store with the new

chunk IDs. Subsequently, Store deletes the old chunks and

marks the entry new. In the case of a crash that occurs after a

row update begins but before it is completely applied, Store

is responsible for reverting to a consistent state. An incom-

plete operation is rolled forward (i.e., delete old chunks), if

the tabular-store version matches the status-log version, or

backwards (i.e., delete new chunks), on a version mismatch.

The status log enables garbage collection of orphaned ob-

jects without requiring the chunk data itself to be logged.

sClient crash: In the event of a client crash or discon-

nection midway through an upstream sync, sCloud needs to

revert to a known consistent state. If a sync is disrupted, a

gateway initiates an abort of the transaction on all destina-

tion Store nodes by sending a message; upon receipt of this

message, each Store node performs crash recovery as ex-

plained above. To make forward progress, the client is de-

signed to retry the sync transaction once it recovers (from

either a crash or network disruption).

Gateway crash: Gateways can also crash; since they are

responsible for all client-facing communication, their re-

siliency and fast recovery is crucial. To achieve this objec-

tive, Gateway is designed to only maintain soft state about

clients which can be recovered through either the Store or the

client itself; Gateways store in-memory state for all ongoing

sync transactions. A failed gateway can be easily replaced

with another gateway in its entirety, or its key space can

be quickly shared with the entire gateway ring. As a result,

gateway failures are quick to recover from, appearing as a

short-lived network latency to clients. Gateway client-state is

re-constructed as part of the client’s subsequent connection

handshake. Gateway subscriptions on Store nodes are main-

tained only in-memory and hence no recovery is needed;

when a gateway loses connectivity to a Store node due to

a network partition or a Store node crash, it re-subscribes

the relevant tables on connection re-establishment.

Client. sClient plays a vital role in providing atomicity

and supporting the different consistency levels. For StrongS,

sClient needs to confirm writes with the server before updat-

ing the local replica, whereas CausalS and EventualS consis-

tency result in the local replica being updated first, followed

by background sync. Also, sClient needs to pull data from

the server to ensure the local replica is kept up-to-date; for

StrongS, updates are fetched immediately as notifications are

received, whereas CausalS and EventualS may delay up to a

configurable amount of time (delay tolerance).

Since the device can suffer network disruptions, and

Simba-apps, the device, and sClient itself can crash, it needs

to ensure atomicity of row operations under all device-local

failures. Similar to sCloud, sClient performs all-or-nothing

updates to rows (including any object columns) using a jour-

nal. Newly retrieved changes from the server are initially

stored in a shadow table and then processed row-by-row;

at this time, non-conflicting data is updated in the main ta-

ble and conflicts are stored in a separate conflict table until

explicitly resolved by the user. A detailed description of

sClient fault-tolerance and conflict resolution is presented

elsewhere [20]. Simba currently handles atomic transactions

on individual rows; we leave atomic multi-row transactions

for future work.

4.3 Efficient Sync

Simba needs to be frugal in consuming power and bandwidth

for mobile clients and efficiently perform repeated sync op-

erations on the server.

Versioning. The granularity of our versioning scheme is

an important design consideration since it provides a trade-

off between the size of data transferred over the network and

the metadata overhead. At one extreme, coarse-grained ver-

sioning on an entire table is undesirable since it amplifies the

granularity of data transfer. At the other extreme, a version

for every table cell, or every chunk in the case of objects,

allows fine-grained data transfer but results in high metadata

overhead; such a scheme can be desirable for apps with real-

time collaboration (e.g., Google Docs) but is unsuitable for

the majority. We chose a per-row version as it provides a

practical middle ground for the common case.

Object chunking. Objects stored by apps can be arbitrar-

ily large in practice. Since many mobile apps typically only

make small modifications, to potentially medium or large-

sized objects (e.g., documents, video or photo editing, crash-

log appends), re-sending entire objects over the network

wastes bandwidth and power. Chunking is a common tech-

nique to reduce the amount of data exchanged over the net-

work [34] and one we also use in Simba. In the case of a

sRow with one or more objects, the sync change-set con-

tains the modified-only chunks as identified through addi-

tional metadata; the chunks themselves are not versioned.

Change-set construction. Decoupling of data storage and

client management makes the sCloud design scalable, but

concurrent users of any one sTable are still constrained by

update serialization on Store. Since data sync across multiple

clients requires repeatedly ingesting changes and construct-

ing change-sets, it needs to be done efficiently. The change-

set construction requires the Store to issue queries on both

row ID and version. Since the row ID is the default key for

querying the tabular store, Store maintains an index on the

version; this still does not address the problem that the ver-

sion can help identify an entire row that has changed but not

the objects’ chunks within.

For upstream sync, sClient keeps track of dirty chunks;

for downstream, we address the problem on the server

through an in-memory change cache to keep track of per-

chunk changes. As chunk changes are applied in the Store

row-by-row, their key is inserted into the change cache.

5. Implementation

Client. sClient prototype is implemented on Android;

however, the design is amenable to an iOS implementation

as well. sClient is implemented as a background app which

is accessed by Simba-apps via local RPC (AIDL [1] on An-

droid); this design provides data services to multiple apps,

allowing sClient to reduce network usage via data coalesc-

ing and compression. It maintains a single persistent TCP

connection with the sCloud for both data and push notifica-

tions to prevent sub-optimal connection establishment and

teardown [33] on behalf of the apps. sClient has a data store

analogous to sCloud’s Store; it uses LevelDB for objects and

SQLite for table data.

Server. We implemented Store by using Cassandra [14] to

store tabular data and Swift [39] for object data. To ensure

high-availability, we configure Cassandra and Swift to use

three-way replication; to support strong consistency, we ap-

propriately specify the parameters (WriteConsistency=ALL,

ReadConsistency=ONE). Since updates to existing objects

in Swift only support eventual consistency, on an update,

Store instead first creates a new object and later deletes the

old one after the updated sRow is committed. Store assigns

a read/write lock to each sTable ensuring exclusive write ac-

cess for updates while preserving concurrent access to mul-

tiple threads for reading.

The change cache is implemented as a two-level map

which allows lookups by both ID and version. This enables

efficient lookups both during upstream sync, wherein a row

needs to be looked up by its ID to determine if it exists on the

server, and during downstream sync, to look up versions to

determine change-sets. When constructing a change-set, the

cache returns only the newest version of any chunk which

has been changed. If a required version is not cached, the

Store needs to query Cassandra. Since the Store cannot de-

termine the subset of chunks that have changed, the en-

tire row, including the objects, needs to be included in the

change-set. Change-cache misses are thus quite expensive.

Sync protocol. It is built on the Netty [37] framework and

uses zip data compression. Data is transmitted as Google

Protobuf [7] messages over a TLS secure channel.

6. Evaluation

We seek to answer the following questions:

• How lightweight is the Simba Sync Protocol?

• How does sCloud perform on CRUD operations?

• How does sCloud scale with clients and tables?

Component Total LOC

Gateway 2,145

Store 4,050

Shared libraries 3,243

Linux client 2,354

Table 6: Lines of code for sCloud. Counted using CLOC.

of Object Payload Message Size Network Transfer
Rows Size Size (% Overhead) Size (% Overhead)

1
None 1 B 101 B (99%) 133 B (99.2%)

1 B 2 B 178 B (98.9%) 236 B (99.2%)
64 KiB 64 KiB 64.17 KiB (0.3%) 64.34 KiB (0.5%)

100
None 100 B 2.41 KiB (96%) 694 B (85.6%)

1 B 200 B 9.93 KiB (98%) 9.77 KiB (98%)
64 KiB 6.25 MiB 6.26 MiB (0.2%) 6.27 MiB (0.3%)

Table 7: Sync protocol overhead. Cumulative sync protocol over-

head for 1-row and 100-row syncRequests with varied payload sizes. Net-

work overhead includes savings due to compression.

• How does consistency trade-off latency?

• How easy is it to write consistent apps with Simba?

sCloud is designed to service thousands of mobile clients,

and thus, in order to evaluate the performance and scalabil-

ity in §6.2 and §6.3, we create a Linux client. The client

can spawn a configurable number of threads with either read

or write subscriptions to a sTable, and issue I/O requests

with configurable object and tabular data sizes. Each client

thread can operate on unique or shared sets of rows. The

chunk size for objects, the number of columns (and bytes

per column) for rows, and consistency scheme are also con-

figurable. The client also supports rate-limiting to mimic

clients over 3G/4G/WiFi networks. This client makes it fea-

sible to evaluate sCloud at scale without the need for a large-

scale mobile device testbed. We run the client on server-class

machines within the same rack as our sCloud deployment;

these low-latency, powerful clients impose a more stringent

workload than feasible with resource-constrained mobile de-

vices, and thus, represent a worst-case usage scenario for

sCloud. For evaluating latency trade-offs made by consis-

tency choices in §6.4 and running our ported apps in §6.5,

we interchangeably use Samsung Galaxy Nexus phones and

an Asus Nexus 7 tablet, all running Android 4.2 and our

sClient. In §6.5, we discuss how we use Simba to enable

multi-consistency and to fix inconsistency in apps. We do not

verify correctness under failures, as this is handled in [20].

sCloud consists of around 12K lines of Java code counted

using CLOC [4] as shown in Table 6.

6.1 Sync Protocol Overhead

The primary objective of Simba is to provide a high-level ab-

straction for efficient sync of mobile application data. In do-

ing so, we want to ensure that Simba does not add significant

overhead to the sync process. Thus, we first demonstrate that

Simba’s sync protocol is lightweight. To do so, we measure

sync overhead of rows with 1 byte of tabular data and (1)

no, (2) a 1 byte, or (3) a 64 KiB object. We generate random

bytes for the payload in an effort to reduce compressibility.

Operation Processing time (ms)

Upstream sync Cassandra Swift Total

No object 7.3 - 26.0
64 KiB object, uncached 7.8 46.5 86.5
64 KiB object, cached 7.3 27.0 57.1

Downstream sync Cassandra Swift Total

No object 5.8 - 16.7
64 KiB object, uncached 10.1 25.2 65.0
64 KiB object, cached 6.6 0.08 32.0

Table 8: Server processing latency. Median processing time in

milliseconds; minimal load.

Table 7 quantifies the sync protocol overhead for a sin-

gle message containing 1 row (i.e., worst-case scenario), and

a batch of 100 rows. For each scenario, we show the to-

tal size of the payload, message, and network transfer. We

find that the baseline (no object data) message overhead for

a single row with 1 byte of tabular data is 100 bytes. How-

ever, when batching 100 rows into a single sync message, the

per-row baseline message overhead decreases by 76% to 24

bytes. Furthermore, as the payload (tabular or object) size in-

creases, the message overhead quickly becomes negligible.

Network overhead can be slightly higher in the single row

cases due to encryption overhead; however, since the sync

protocol is designed to benefit from coalescing and compres-

sion of data across multiple Simba-apps, the network over-

head is reduced with batched rows. Overall, our results show

that Simba Sync Protocol is indeed lightweight.

6.2 Performance of sCloud

In this section, we evaluate the upstream and downstream

sync performance through a series of microbenchmarks. The

intent of these benchmarks is simply to measure raw perfor-

mance of the system under a variety of settings. We provi-

sion 48 machines from PRObE’s Kodiak testbed [19]. Each

node is equipped with dual AMD Opteron 2.6GHz CPUs,

8GB DRAM, two 7200RPM 1TB disks, and Gigabit Eth-

ernet. The data plane switches are interconnected with 10

Gigabit Ethernet. We deploy an sCloud configuration with a

single Store node and a single gateway. We configure Cas-

sandra and Swift on disjoint 16-node clusters for backend

storage; the remaining 16-nodes are used as client hosts. We

use our Linux client to perform simple read or write oper-

ations on unique rows within a single sTable; CausalS con-

sistency is used in all cases. Wherever applicable, we set the

compressibility of object data to be 50% [24].

6.2.1 Downstream Sync

Our first microbenchmark measures the performance of

downstream sync operations as experienced by clients, help-

ing to understand the baseline performance while also high-

lighting the benefits of our change cache (described in §5).

We run Store in three configurations: (1) No caching, (2)

Change cache with row keys only, and (3) Change cache

with row keys and chunk data. The chunk size is set to 64

KiB. For reference, the server-side sync processing time is

in Table 8. In order to populate the Store with data, a writer

 1

 10

 100

 1000

 10000

 100000

1 4 16 64 256 1024

La
te

nc
y

(m
s)

Clients

No cache
Key cache
Key+Data cache

(a) Per-operation latency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 16 64 256 1024

T
hr

ou
gh

pu
t (

M
iB

/s
)

Clients

No cache
Key cache
Key+Data cache

(b) Aggregate node throughput.

 1

 10

 100

D
at

a
T

ra
ns

fe
rr

ed
 (

M
iB

)

No cache
Key cache

Key+Data cache

(c) Aggregate data transferred.

Figure 4: Downstream sync performance for one Gateway and Store. Note logscale on y-axis in (a) and (c).

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
P

S

Clients

(a) Gateway only.

 0

 1000

 2000

 3000

 4000

 5000

1 4 16 64 256 1024 4096

IO
P

S

Clients

(b) Store with table-only.

 0

 10

 20

 30

 40

 50

 60

1 4 16 64 256 1024

IO
P

S

Clients

(c) Store with table+object.

Figure 5: Upstream sync performance for one Gateway and Store.

client inserts rows with 10 tabular columns totaling 1 KiB of

tabular data, and 1 object column having 1 MiB objects; it

then updates exactly 1 chunk per object. We then instantiate

one or more reader clients, partitioned evenly over up to 16

nodes, to sync only the most recent change for each row.

Figure 4(a) shows the client-perceived latency as we vary

the number of clients on the x-axis. As expected with no

caching, clients experience the worst latency. When the

change-cache stores keys only, the latency for 1024 clients

reduces by a factor of 14.8; when caching both keys and

data, latency reduces further by a factor of 1.53, for a cumu-

lative factor of 22.8.

Figure 4(b) plots throughput on the y-axis in MiB/s.
Firstly, with increasing number of clients, the aggregate

throughput continues to increase up to 35 MiB/s for 256

clients. At this point, we reach the 64 KiB random read

bandwidth of the disks. The throughput begins to decline

for 1024 clients showing the scalability limits of a single

Store node in this setting. Somewhat counter-intuitively, the

throughput with the key cache appears to be less than with

no cache at all; however, this is due to the very design of

the Store. In the absence of a key cache, Store has to return

the entire 1 MiB object, since it has no information of what

chunks have changed, rather than only the single 64 KiB

chunk which was updated. The throughput is higher simply

because the Store sends entire objects; for the overall sys-

tem, the important metrics are also client-latency, and the

amount of data transferred over the network.

Figure 4(c) measures the data transferred over the net-

work for a single client reading 100 rows. The graph shows

that a no-cache system sends orders of magnitude more data

compared to one which knows what chunks have changed.

The amount of data transferred over the network is the same

for the two caching strategies; the data cache only helps in

reducing chunk data that needs to be fetched from Swift.

Since Simba compresses data, the total data transferred over

the network is less than the cumulative size.

6.2.2 Upstream Sync

Next, we evaluate the performance of upstream sync. We

run multiple writer clients partitioned evenly over up to 16

nodes. Each client performs 100 write operations, with a de-

lay of 20 ms between each write, to simulate wireless WAN

latency. We measure the total operations/second serviced for

a varying number of clients. Note that due to the sync proto-

col, a single operation may require more than one message.

Figure 5 presents the client-perceived upstream perfor-

mance. The first test stresses the Gateway alone by sending

small control messages which the Gateway directly replies

so that Store is not the bottleneck (Figure 5(a)). The fig-

ure shows that Gateway scales well up to 4096 clients. In

the second test, we wrote rows with 1 KiB tabular data and

no objects. This exercises Store with Cassandra but without

Swift. As shown in Figure 5(b), Store performance peaks

at 1024 clients, after which Cassandra latency starts becom-

ing the bottleneck. For the third test, we wrote rows with 1

KiB of tabular data and one 64 KiB object. This exercises

Store with both Cassandra and Swift. In Figure 5(c), we ob-

serve that the rate of operations is much lower as compared

to table-only. This is due to two reasons: the amount of data

being written is two orders of magnitude higher, and Swift

exhibits high latency for concurrent 64 KiB object writes. In

this case, 4096 clients caused contention to prevent reaching

steady-state performance.

6.3 Scalability of sCloud

We now demonstrate the ability of sCloud to be performant

at scale when servicing a large number of clients and ta-

bles. We provision 32 nodes from the PRObE Susitna clus-

ter [19]. Each node is equipped with four 16-core AMD

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloud
WsCloud

RTable
WTable

(a) Table only.

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloud
WsCloud

RTable
WTable

RObject
WObject

(b) Table+object, chunk cache enabled.

 10

 100

 1000

1 10 100 1000

La
te

nc
y

(m
s)

Tables

RsCloud
WsCloud

RTable
WTable

RObject
WObject

(c) Table+object, chunk cache disabled.

Figure 6: sCloud performance when scaling tables.

Throughput (KiB/s)

Table only Table+Object Table+Object
Tables w/ Cache w/o Cache

up down up down up down

1 48 247 439 3,614 439 3,872

10 81 430 1,694 15,830 1,693 16,622

100 93 514 1,888 18,545 1,921 20,862

1K 255 2,369 2,259 78,412 2,282 77,980

Table 9: sCloud throughput at scale.

Opteron 2.1GHz CPUs, 128GB DRAM, two 3TB 7200RPM

data disks, and an InfiniBand high-speed interface. We de-

ploy an sCloud configuration with 16 Store nodes and 16

gateways. We configure Cassandra and Swift on disjoint 16-

node clusters for backend storage; Cassandra is co-located

with the gateways and Swift with the Store nodes.

We scale the number of tables and clients, and use the

Linux client to instantiate multiple clients partitioned evenly

across up to 16 nodes. Each client has either a read or a write

subscription to a particular table. We set the ratio of read-to-

write subscriptions as 9:1 and partition them evenly across

tables. We vary the rate of requests per client to keep the

aggregate rate of operations at 500/s across all scenarios.

6.3.1 Table Scalability

We examine three Store configurations: “table only”, where

each writer syncs rows with 1 KiB of tabular data, and “ta-

ble+object” with and without the chunk data cache enabled,

where each row also includes one 64 KiB object. We set the

number of clients as 10x the number of tables.

Figure 6 measures latency on the y-axis, while the to-

tal number of tables (and clients) scales along the x-axis.

The height of each bar depicts the median latency; error bars

represent the 5th and 95th percentiles. Each set of bars mea-

sures client-perceived latency to sCloud and Store-perceived

latency of the backend Table and Object stores for reads (R)

and writes (W); this allows comparison of Cassandra’s and

Swift’s contribution to the overall latency.

In the “table only” case (Figure 6(a)), we observe that

client-perceived median latency for reads and writes de-

creases as the number of tables increases due to improved

load distribution across the Store nodes. For the “table+object”

cases, both with (Figure 6(b)) and without (Figure 6(c)) the

chunk cache, we observe a similar decreasing trend in the

Cassandra latency, and to a lesser extent, in the Swift write

latency, as we scale. This is again due to better load distri-

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Clients (in thousands)

RsCloud
WsCloud

RTable
WTable

RObject
WObject

Figure 7: sCloud performance when scaling clients.

bution across the Store nodes. Without caching, Swift read

latency remains stable until the 1000 table case, where load

causes it to spike. We also observe that enabling the chunk

data cache reduces the read latency as all chunks are served

from memory, and slightly increases the write latency due

to an increase in concurrent writes, as expected. In all cases,

Cassandra tail-latency spikes in the 1000 table case, increas-

ing the overall read and write latency. Although the user-

perceived sCloud latency sharply rises for 1000 tables, we

observe correlated latency spikes for Cassandra and Swift,

suggesting the backend storage to be the culprit.

Table 9 shows the aggregate peak throughput of sCloud

for each scenario. Throughput is lowest in the 1 table cases

because performance is limited to that of a single Store node.

For 10 and 100 tables, throughput is similar since the sys-

tem is under-capacity, the number of operations/second is

constant, and load distribution is not equal across all Store

nodes. Throughput increases in the 1000 table case since

more data is being transferred and better load distribution

across Store nodes is achieved, which results in more effi-

cient utilization of the available capacity.

Overall, sCloud scales well. Cassandra performance does

degrade with large number of tables and thus can be substi-

tuted by a different table store in future versions of sCloud.

6.3.2 Client Scalability

In the previous case, we found that scaling the number of ta-

bles in Cassandra leads to significant performance overhead.

Thus, we also investigate sCloud’s ability to scale clients

with fewer tables. Figure 7 shows the per-operation latency

of sCloud on the y-axis while scaling from 10K to 100K
clients along the x-axis, with the number of tables fixed at

128. In all cases, the median latency for all operations is less

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Write Sync Read

T
im

e
(s

ec
on

ds
)

StrongS
CausalS

EventualS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

StrongS CausalS EventualS

D
at

a
T

ra
ns

fe
r

(K
iB

)

Cw
Cr

Figure 8: Consistency comparison. End-to-end latency and data

transfer for each consistency scheme.

than 100 ms. Tail latency increases as we scale which we at-

tribute to increased CPU load. Overall, we find that sCloud

scales efficiently under high client load.

6.4 Trade-off: Consistency vs. Performance

On two Samsung Galaxy S3 phones running Android 4.2,

we install sClient and a custom Simba-app which is able to

read and write rows to a shared sTable. The devices connect

over WPA-secured WiFi or a simulated 3G connection [52]

using dummynet [18] to sCloud.

We perform end-to-end experiments with two different

mobile clients, Cw (writer) and Cr (reader) and measure the

Simba-app perceived latency for reads, writes, and data sync

with the sCloud, under each of our consistency schemes for

both 3G and WiFi simulated networks. The write payload is

a single row with 20 bytes of text and one 100 KiB object.

To differentiate between the consistency schemes, we use

a third client Cc to write a row for the same row-key as

Cw, which always occurs prior to Cw’s write. We use a

subscription period of 1 second for CausalS and EventualS
and ensure all updates occur before this period is over. Only

Cr has a read subscription to the table.

Figure 8 shows the WiFi latency and associated data

transfer (3G results similar; not shown). We show three

latency values: 1) app perceived latency of update at Cw,

shown as “Write”, 2) sync-update latency from Cw to Cr,

shown as “Sync”, and 3) app-perceived latency for reading

updated data at Cr, shown as “Read”. We also plot the total

data transferred by Cw and Cr for each consistency scheme.

StrongS has lowest sync latency as data is synced imme-

diately, however, the client incurs network latency for the

write operation, whereas writes are local in case of CausalS
and EventualS. Immediate syncing in StrongS also causes

higher data transfer because all updates must propagate im-

mediately (e.g., Cr must read both updates), not benefit-

ing from overwrites or the change cache. Sync latency for

CausalS is higher than EventualS because the former requires

more RTTs to resolve conflicts. With CausalS, data trans-

fer is inflated because the initial sync attempt by Cw fails,

so Cw must read Cc’s conflicting data, and retry its update

after performing conflict resolution. EventualS has the low-

est data transfer due to last writer wins semantics and be-

cause Cr reads only the latest version since it syncs only

once the read period expires. Without conflicts, the sync la-

tency and data transfer for CausalS and EventualS are similar

(not shown). Finally, read latency is comparable for all con-

sistency schemes because reads are always local; even with

StrongS, the local replica is kept up-to-date and reads do not

communicate with the server.

6.5 Writing Simba Apps

Writing a multi-consistent app: We used an existing app,

Todo.txt [8], to qualitatively evaluate the effort of writing an

app that benefits from multiple consistency models. Todo.txt

uses Dropbox to maintain and sync two files containing ac-

tive tasks and archived tasks. We modified the app to store its

data in two sTables. Active tasks can be modified frequently,

so they are maintained with StrongS consistency, which en-

sures quick and consistent sync. Archived tasks cannot be

modified, so it is sufficient to use EventualS consistency. Any

change to the archived task list is not immediately reflected

on another device, but this is not critical to the operation of

the app. Modifying Todo.txt to use Simba simplified the sync

logic by eliminating the need for user-triggered sync, and al-

lowed the app to use appropriate consistency models.

Fixing an inconsistent app: An open-source app in our

study, Universal Password Manager (UPM), uses Dropbox

to sync an encrypted database for user accounts. The app

shows inconsistency when account information is changed

concurrently on two devices and the database is synced with

Dropbox; changes performed on one device get silently over-

written. To fix this inconsistency, we ported UPM to use

Simba. We tried two approaches:

• Store the entire account database as an object in a sTable.

This required fewer modifications; we simply used Simba

instead of Dropbox to sync the database. However, con-

flict resolution is complex because conflicts occur at full-

database granularity, so resolution needs to compare indi-

vidual account information.

• Store each account as a separate row in a sTable; UPM no

longer needs to implement its own database which elimi-

nates the necessary logic for serialization and parsing the

database file. Conflict resolution is made relatively simple

because conflicts occur on a per-account granularity and

can be easily handled.

In both approaches, Simba enables automated background

sync based on one-time configuration, so the app’s user

doesn’t need to explicitly trigger data sync with the cloud.

In terms of developer effort, it took one of the co-authors of

this paper a total of a few hours (< 5) to port UPM to Simba

through both the above approaches.

7. Related Work

Geo-replication. Recently, several systems have exam-

ined various points in the trade-off between consistency,

availability, and performance in the context of geo-distributed

services. On the one hand, some systems (e.g., COPS [30]

and Eiger [32]) have focused on providing low-latency

causal consistency at scale, and others (e.g., Walter [50],

Transaction Chains [63], and Red Blue consistency [29])

aim to minimize the latency incurred when offering other

forms of stronger-than-eventual consistency, including se-

rializability under limited conditions. On the other hand,

systems like SPANStore [60] and Pileus [55] offer greater

control for applications to select appropriate consistency

across data centers, to reduce operating cost or to meet

SLAs. While these systems manage data replication across

and within data centers, we demonstrate and tackle the chal-

lenges associated with consistent replication across mobile

devices with limited connectivity and bandwidth limitations.

Weakly-connected clients. Many prior efforts have stud-

ied data management in settings where clients are intermit-

tently connected either to servers or to peers [12, 22, 26,

35, 45, 56]; Terry [54] presents an excellent synthesis on the

topic. Coda [26] was one of the earliest systems to high-

light the challenges in handling disconnected operations.

Bayou [56] provides an API for application-specific conflict

resolution to support optimistic updates in a disconnected

system. Each of these systems chooses to implement the

strongest possible consistency model given the availability

constraints within which it operates; in contrast, motivated

by our app study, Simba provides tunable consistency. More-

over, while previous systems treat either files or tables as the

unit of consistency, Simba extends the granularity to include

both, providing a more generic and useful abstraction.

Several data management systems for weakly connected

clients explicitly focus on efficiency [34, 38, 57, 58]. Em-

bracing the diverse needs of apps, Odyssey [38] provides OS

support for applications to adjust the fidelity of their data

based on network and battery conditions. Similarly, Simba

provides mobile apps with programmatic means to adjust

data fidelity. Cedar [58] provides efficient mobile database

access by detecting commonality between client and server

query results. Unlike Cedar, Simba does not rewrite queries,

but applies them directly on the client replica. LBFS [34],

a network file system designed for low-bandwidth, avoids

redundant transfer of files by chunking files and identifying

inter-file similarities; Simba’s sync protocol applies similar

data reduction techniques to only transmit modified chunks.

Sync services. Mobius [15] is a sync service for tables and

provides fork-sequential consistency [40] which guarantees

that clients see writes in the same order, even though locally

client views can diverge; clients can also occasionally read

uncommitted data. Simba provides a stronger consistency

guarantee; clients see writes in the same order and never see

uncommitted data. Simba also achieves this for both tables

and objects. Like Mobius, Simba is not intended for peer-to-

peer usage and leverages it for an efficient version scheme.

Dropbox does not store tables and files together; instead

it provides a separate API for tables. However, little infor-

mation is publicly available on Dropbox’s client or server

architecture. Drago et al. [17] collect and analyze Dropbox

usage data but do not fully deconstruct its sync protocol.

CouchDB [2] along with its client TouchDB [9], an

eventually-consistent distributed key-value store, provide

“document” sync; this is the equivalent of a database row

and consists of (often verbose) JSON objects. CouchDB’s

API is key–value and does not support large objects.

Sapphire [62] is a recent distributed programming plat-

form for mobile/cloud applications. Sapphire unifies data

and code into a single “virtual” node which benefit from

its transparent handling of distributed systems tasks such as

code-offloading, caching, and fault-tolerance. While useful

for app execution, Sapphire does not fulfill all the needs for

data management. Recent work on Pebbles [51] has shown

that apps in fact heavily rely on structured data to manage

unstructured objects; Simba’s emphasis is on persistence and

data sync over unified tabular and object data. The benefit of

a unified table and object interface has been previously ex-

plored [46, 49] in the context of local systems; sTables ex-

tend it to networked mobile apps.

Cloud types [13] and SwiftCloud [61] are programming

models for shared cloud data. Like Simba, both allow for

local data copies to be stored on clients and later synced

with the cloud. Unlike Simba, they require the programmer

to handle synchronization.

8. Conclusions

Quoting Butler Lampson: “the purpose of abstractions is

to conceal undesirable properties; desirable ones should

not be hidden” [28]; existing abstractions for mobile data

management either conceal too little (leave everything to

the developer) or too much (one-size-fits-all data sync). By

studying several popular mobile apps, we found varied con-

sistency requirements within and across apps, inconsistent

treatment of data consistency leading to loss and corrup-

tion of user data, and the inadequacy of existing data-sync

services for the needs of mobile apps. Motivated by these

observations, we proposed sTable, a novel synchronized-

table abstraction—with tunable consistency, a unified data

model for table and object data, and sync atomicity under

failures—for developing cloud-connected mobile apps. We

have built Simba, a data-sync service that provides app de-

velopers with an easy-to-use yet powerful sTable-based API

for mobile apps; we have written a number of new apps,

and ported a few existing apps, to demonstrate the utility

of its data abstraction. Simba has been released as open-

source under the Apache License 2.0 and is available at

https://github.com/SimbaService/Simba.

9. Acknowledgements

We thank the anonymous reviewers and our shepherd Serdar

Tasiran for their valuable feedback on earlier drafts of this

paper. This material is supported in part by the National

Science Foundation under awards CNS-1042537 and CNS-

1042543 (PRObE). http://www.nmc-probe.org/

References

[1] Android Developers Website. http://developer.

android.com.

[2] Apache CouchDB. http://couchdb.apache.org.

[3] Box Sync App. http://box.com.

[4] CLOC: Count Lines of Code. http://cloc.sourceforge.

net.

[5] Google Drive. https://developers.google.com/

drive/.

[6] On Distributed Consistency - Part 5 - Many Writer Even-

tual Consistency. http://blog.mongodb.org/post/

520888030/on-distributed-consistency-part-5-

many-writer.

[7] Protocol Buffers. http://code.google.com/p/protobuf.

[8] Todo.txt. http://todotxt.com.

[9] TouchDB. http://tinyurl.com/touchdb.

[10] N. Agrawal, A. Aranya, and C. Ungureanu. Mobile data sync

in a blink. In HotStorage, 2013.

[11] P. Alvaro, P. Bailis, N. Conway, and J. M. Hellerstein. Con-

sistency without borders. In SoCC, 2013.

[12] N. M. Belaramani, M. Dahlin, L. Gao, A. Nayate,

A. Venkataramani, P. Yalagandula, and J. Zheng. PRACTI

replication. In NSDI, 2006.

[13] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood.

Cloud types for eventual consistency. In ECOOP, 2012.

[14] Apache Cassandra Database. http://cassandra.apache.

org.

[15] B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Madden, and

R. Ramakrishnan. Mobius: unified messaging and data serv-

ing for mobile apps. In MobiSys, 2012.

[16] D. Engberg. Evernote Techblog: WhySQL? http://blog.

evernote.com/tech/2012/02/23/whysql/, 2012.

[17] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre,

and A. Pras. Inside Dropbox: Understanding Personal Cloud

Storage Services. In IMC, 2012.

[18] Dummynet. http://info.iet.unipi.it/~luigi/

dummynet/.

[19] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE:

A thousand-node experimental cluster for computer systems

research. USENIX ;login, 2013.

[20] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Reliable,

Consistent, and Efficient Data Sync for Mobile Apps. In

FAST, 2015.

[21] J. Gray. Granularity of locks and degrees of consistency in a

shared data base. In IFIP Working Conference on Modelling

of Database management Systems, 1976.

[22] R. G. Guy, J. S. Heidemann, W.-K. Mak, T. W. Page Jr, G. J.

Popek, D. Rothmeier, et al. Implementation of the Ficus

Replicated File System. In USENIX Summer, 1990.

[23] S. Hao, N. Agrawal, A. Aranya, and C. Ungureanu. Building

a Delay-Tolerant Cloud for Mobile Data. In MDM, 2013.

[24] D. Harnik, R. Kat, O. Margalit, D. Sotnikov, and A. Traeger.

To Zip or not to Zip: Effective Resource Usage for Real-Time

Compression. In FAST, 2013.

[25] iCloud for Developers. developer.apple.com/icloud.

[26] J. Kistler and M. Satyanarayanan. Disconnected Operation in

the Coda File System. ACM ToCS, 1992.

[27] L. Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE TC, 1979.

[28] B. W. Lampson. Hints for Computer System Design. In SOSP,

1983.

[29] C. Li, D. Porto, A. Clement, J. Gehrke, N. Pregui, R. Ro-

drigues, A. Wieder, P. Bhatotia, A. Post, R. Rodrigues, et al.

Making Geo-Replicated Systems Fast as Possible, Consistent

when Necessary. In OSDI, 2012.

[30] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.

Don’t settle for eventual: scalable causal consistency for wide-

area storage with COPS. In SOSP, 2011.

[31] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.

A short primer on causal consistency. USENIX ;login, 2013.

[32] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.

Stronger semantics for low-latency geo-replicated storage. In

NSDI, 2013.

[33] J. C. Mogul. The case for persistent-connection HTTP. In

SIGCOMM, 1995.

[34] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-

Bandwidth Network File System. In SOSP, 2001.

[35] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A

read/write peer-to-peer file system. In OSDI, 2002.

[36] MySQL. MySQL BLOB and TEXT types. http:

//dev.mysql.com/doc/refman/5.0/en/string-type-

overview.html.

[37] Netty project. http://netty.io.

[38] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,

J. Flinn, and K. R. Walker. Agile application-aware adaptation

for mobility. In SOSP, 1997.

[39] OpenStack Swift. http://swift.openstack.org.

[40] A. Oprea and M. K. Reiter. On consistency of encrypted files.

In DISC, 2006.

[41] D. S. Parker Jr, G. J. Popek, G. Rudisin, A. Stoughton, B. J.

Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and

C. Kline. Detection of mutual inconsistency in distributed

systems. IEEE ToSE, 1983.

[42] Parse. http://parse.com.

[43] PostgreSQL. The Oversized-Attribute Storage Technique.

http://www.postgresql.org/docs/9.3/static/

storage-toast.html.

[44] S. Qadeer. Verifying sequential consistency on shared-

memory multiprocessors by model checking. IEEE TPDS,

2003.

[45] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,

M. Walraed-Sullivan, T. Wobber, C. C. Marshall, and A. Vah-

dat. Cimbiosys: a platform for content-based partial replica-

tion. In NSDI, 2009.

[46] K. Ren and G. Gibson. TABLEFS: Embedding a NoSQL

database inside the local file system. In APMRC, 2012.

[47] Y. Saito and M. Shapiro. Optimistic replication. ACM CSUR,

2005.

[48] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end argu-

ments in system design. ACM ToCS, 1984.

[49] P. J. Shetty, R. P. Spillane, R. R. Malpani, B. Andrews, ,

J. Seyster, and E. Zadok. Building Workload-Independent

Storage with VT-Trees. In FAST, 2013.

[50] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional

storage for geo-replicated systems. In SOSP, 2011.

[51] R. Spahn, J. Bell, M. Lee, S. Bhamidipati, R. Geambasu, and

G. Kaiser. Pebbles: Fine-grained data management abstrac-

tions for modern operating systems. In OSDI, 2014.

[52] SPDY Performance on Mobile Networks. https:

//developers.google.com/speed/articles/spdy-

for-mobile.

[53] R. Swaby. With Sync Solved, Dropbox Squares Off With

Apples iCloud. http://tinyurl.com/dropbox-cr, 2011.

[54] D. B. Terry. Replicated Data Management for Mobile Com-

puting. Morgan & Claypool Publishers, 2008.

[55] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K.

Aguilera, and H. Abu-Libdeh. Consistency-based service

level agreements for cloud storage. In SOSP, 2013.

[56] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.

Spreitzer, and C. H. Hauser. Managing Update Conflicts in

Bayou, a Weakly Connected Replicated Storage System. In

SOSP, 1995.

[57] N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayanan. In-

tegrating Portable and Distributed Storage. In FAST, 2004.

[58] N. Tolia, M. Satyanarayanan, and A. Wolbach. Improving

mobile database access over wide-area networks without de-

grading consistency. In MobiSys, 2007.

[59] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas.

Efficient Reconciliation and Flow Control for Anti-entropy

Protocols. In LADIS, 2008.

[60] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.

Madhyastha. SPANStore: Cost-Effective Geo-Replicated

Storage Spanning Multiple Cloud Services. In SOSP, 2013.

[61] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,

M. Shapiro, and N. M. Preguia. SwiftCloud: Fault-Tolerant

Geo-Replication Integrated all the Way to the Client Machine.

CoRR, 2013.

[62] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Grib-

ble, A. Krishnamurthy, and H. M. Levy. Customizable and ex-

tensible deployment for mobile/cloud applications. In OSDI,

2014.

[63] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and

J. Li. Transaction chains: achieving serializability with low

latency in geo-distributed storage systems. In SOSP, 2013.

