
The VLDB Journal (2004) / Digital Object Identifier (DOI) 10.1007/s00778-004-0139-z

Indexing mobile objects using dual transformations

George Kollios1,�, Dimitris Papadopoulos2, Dimitrios Gunopulos2,��, Vassilis J. Tsotras2,���

1 Department of Computer Science, Boston University, Boston, MA 02215, USA
(e-mail: gkollios@cs.bu.edu)

2 Department of Computer Science & Engineering, University of California Riverside, Riverside, CA 92521, USA
(e-mail: {dimitris,dg,tsotras}@cs.ucr.edu)

Edited by J. Veijalainen. Received: April 27, 2003 / Accepted: May 11, 2004
Published online: September 14, 2004 – c© Springer-Verlag 2004

Abstract. With the recent advances in wireless networks, em-
bedded systems, and GPS technology, databases that manage
the location of moving objects have received increased inter-
est. In this paper, we present indexing techniques for moving
object databases. In particular, we propose methods to index
moving objects in order to efficiently answer range queries
about their current and future positions. This problem appears
in real-life applications such as predicting future congestion
areas in a highway system or allocating more bandwidth for
areas where a high concentration of mobile phones is immi-
nent. We address the problem in external memory and present
dynamic solutions, both for the one-dimensional and the two-
dimensional cases. Our approach transforms the problem into
a dual space that is easier to index. Important in this dynamic
environment is not only query performance but also the up-
date processing, given the large number of moving objects that
issue updates. We compare the dual-transformation approach
with theTPR-tree, an efficient method for indexing moving ob-
jects that is based on time-parameterized index nodes. An ex-
perimental evaluation shows that the dual-transformation ap-
proach provides comparable query performance but has much
faster update processing. Moreover, the dual method does not
require establishing a predefined query horizon.

Keywords: Spatiotemporal databases – Access methods –
Mobile objects

1 Introduction

A spatiotemporal database system manages data whose ge-
ometry changes over time. There are many applications that
create such data including global change (as in climate or land
cover changes), transportation (traffic surveillance data, intel-
ligent transportation systems), social (demographic, health,

� Supported by NSF CAREER Award 0133825.
�� Supported by NSF ITR 0220148, NSF CAREER Award

9984729, NSF IIS-9907477, and NRDRP.
��� Supported by NSF IIS-9907477, NSF EIA-9983445 and the
DoD.

etc.), and multimedia (animated movies) applications. In gen-
eral, one could consider two spatial attributes of spatiotem-
poral objects that are time dependent, namely, position (i.e.,
the object’s location inside some reference space) and extent
(i.e., the area or volume the object occupies in the reference
space) [20]. Depending on the application, one or both spatial
attributes may change over time. Examples include an airplane
flying around the globe, a car traveling on a highway, the land
covered by a forest as it grows/shrinks over time, or an object
that concurrently moves and changes its size in an animated
movie. For the purposes of this paper we concentrate on appli-
cations with objects that change position over time but whose
extent remains unchanged. Hence for our purposes we repre-
sent such objects as points moving in some reference space
(“mobile points”).

The usual assumption in traditional database management
systems is that data stored in the database remain constant
until explicitly changed by an update. For example, if a price
field is 5, it remains 5 until explicitly updated. This model
is appropriate when data change in discrete steps, but it is
inefficient for applications with continuously changing data
[44]. Consider, for example, a database keeping the position
of mobile objects (like automobiles). The primary goal of this
database is to correctly represent reality as objects move. On
the one hand, updating the database about each object’s posi-
tion at each unit of time is clearly an inefficient and infeasible
solution due to the prohibitively large update overhead. On the
other hand, updating the database only at few, representative
time instants limits query accuracy.

A better approach is to abstract each object’s location as a
function of time f(t) and update the database only when the
parameters of f change (for example when the speed or the
direction of a car changes). Using f(t) the “motion” database
can compute the location of the mobile object at any time in the
future. While this approach minimizes the update overhead, it
introduces a variety of novel problems (such as the need for ap-
propriate data models, query languages, and query-processing
and optimization techniques) since the database is storing not
data values but rather functions to compute these values. Mo-
tion database problems have recently attracted the interest of
the research community. Sistla et al. [44] and Wolfson et al.
[53,54] present the Moving Objects Spatio-Temporal (MOST)

G. Kollios et al.: Indexing mobile objects using dual transformations

model and a language (FTL) for querying the current and fu-
ture locations of mobile objects; Güting et al. [20] propose
a model that tracks and queries the history (past routes) of
mobile objects based on new spatiotemporal data types. An-
other spatiotemporal model appears in [11]. Spatiotemporal
queries about mobile objects have important applications in
traffic monitoring, intelligent navigation, and mobile commu-
nication domains. For example, if we use a database to track
cars in a highway system, it would be useful to be able to detect
future congestion areas efficiently. In mobile communication
systems, we could allocate more bandwidth in areas where a
high concentration of mobile phones is approaching.

In this paper we focus on the problem of indexing mobile
objects. In particular, we examine how to efficiently address
range queries over the object locations into the future. An
example of such a spatiotemporal query is: “Report all the
objects that will be inside a query region P 10 minutes from
now.” Note that the answer to these queries is tentative in the
sense that it is computed based on the current knowledge stored
in the database about the mobile objects’ location functions.
In the near future this knowledge may change, which implies
that the same query could have a different answer.

As the number of mobile objects in the applications we
consider (traffic monitoring, mobile communications, etc.)
can be rather large, we are interested in external memory so-
lutions. Furthermore, since we deal with highly dynamic data,
we pay special attention to the updatability of our methods.
Note that, although using functions of time to represent the
location of moving objects will decrease the update overhead,
still many objects may change their functions at each time in-
stant. In many applications the number of updates is expected
to be orders of magnitude larger than the number of queries.
Therefore, we consider the update overhead to be an impor-
tant measure of the quality and applicability of the proposed
methods. Another important issue in spatiotemporal databases
is related to the protection of the privacy of mobile users. Re-
cent directives and regulations, such as the European directive
58/2002/EC [15], specify that the location information of mo-
bile users constitutes sensitive private information and must be
protected against unauthorized use. Note that, in our setting,
we assume that after an object updates its motion information,
the past locations are deleted from the database. Therefore, the
database keeps a given location of an object or subject for only
a limited time. However, since range queries provide the lo-
cation and object IDs of moving objects, the privacy of these
object can be compromised if we allow someone to ask many
queries for different time instants. In this paper we do not con-
sider the above privacy issues since our methods are aimed at
applications where object identification does not raise privacy
concerns (e.g., military ones, where objects may be related to
actual soldiers or vehicles in the field). If privacy is important
for a specific application, additional steps are required to guar-
antee privacy protection of the mobile users (e.g., anonymity).
Another approach is to allow only aggregate queries (for ex-
ample COUNT, SUM, and AVG queries) that do not reveal
object IDs [22,23,32,47,51].

We present methods for indexing moving objects that have
good worst-case performance.Also, we present more practical
methods that are evaluated with an extensive experimental
study. Our methods are based on the dual transformation [27,
54], where the initial location of the moving objects along with

t2q

y1q

y2q

t1q
Time

Y

p
1

p
2

Fig. 1. Trajectories and query in (t, y) plane

their trajectories are mapped to points in a multidimensional
space. By mapping the moving objects into a dual space, we
are able to design more efficient algorithms that achieve a good
tradeoff between query and update overhead.

The rest of the paper is organized as follows. Section 2
provides a formal problem description and describes the dual
transformation, which is the core of our approach. Section 3
presents related work, while the one-dimensional case is ad-
dressed in Sect. 4. The technique for indexing objects that
move freely in two dimensions is described in Sect. 5. Ex-
perimental results, along with discussion pointing out the ad-
vantages and drawbacks of the methods that employ indexing
techniques in the primal space and the dual space, follows in
Sect. 6. Finally, Sect. 7 concludes the paper.

2 Preliminaries

In this section we formally define the problem of indexing two-
dimensional moving objects. Then, we present a geometric
duality transform that is used as the basis of our solutions.

2.1 Problem definition

We consider a database that records the position of mobile
objects in one and two dimensions. Following [54,40,27], we
assume that an object’s movement can be represented (or ap-
proximated) with a linear function of time. For each object we
store an initial location, a starting time instant, and a velocity
vector (speed and direction). Therefore, we can calculate the
future position of the object, provided that the characteristics
of its motion remain the same. Objects update their motion in-
formation when their speed or direction changes. We assume
that the objects can move inside a finite domain (a line seg-
ment in one dimension or a rectangle in two). Furthermore, the
system is dynamic, i.e., objects may be deleted or new objects
may be inserted.

Let P (t0) = [x0, y0] be the initial position of an object at
time t0. Then, the object starts moving and at time t > t0 its
position will be P (t) = [x(t), y(t)] = [x0 + vx(t − t0), y0 +

G. Kollios et al.: Indexing mobile objects using dual transformations

v

a

l*

p*lp

t

Y

DualPrimal

Fig. 2. Hough-X dual transformation: primal plane (left), dual plane
(right)

vy(t − t0)], where V = [vx, vy] is its velocity vector. An
example for the one-dimensional case is shown in Fig. 1.

We would like to answer queries of the form: “Report the
objects located inside the rectangle [x1q, x2q]×[y1q, y2q] at the
time instants between t1q and t2q (where tnow ≤ t1q ≤ t2q),
given the current motion information of all objects” (i.e., the
two-dimensional moving objects range (MOR) query [27]).

We use the standard external memory model of computa-
tion [4] to study the theoretical aspects of the problem. In this
model each disk access (an I/O) transmits in a single operation
B units of data, i.e., B is the page capacity. We measure the ef-
ficiency of an algorithm in terms of the number of I/Os needed
to perform an operation. If N is the number of mobile objects
and K is the number of objects reported by the MOR query,
then the number of pages required to store the database is at
least n = �N

B � and the number of I/Os to report the answer is
at least k = �K

B �. We say that an algorithm uses linear space
if it uses O(n) disk pages and that it uses logarithmic time
to answer a query if it needs to perform O(logB n + k) I/Os.
Note that logB n is for the external memory model different
than log2 n since B is not a problem constant but a problem
parameter.

2.2 The dual space-time representation

In this section we present the dual transformation that we use
later to index moving objects.

In general, the dual transformation is a method that maps
a hyperplane h from Rd to a point in Rd and vice versa. In this
section we briefly describe how we can address the problem
at hand in a more intuitive way by using the dual transform
for the one-dimensional case.

Specifically, a line from the primal plane (t, y) is mapped
to a point in the dual plane. A class of transforms with similar
properties may be used for the mapping. The problem setting
parameters determine which one is more useful.

One dual transform for mapping the line with equation
y(t) = vt + a to a point in R2 is to consider the dual plane
where one axis represents the slope of an object’s trajectory
(i.e., velocity) and the other axis its intercept (Fig. 2). Thus
we get the dual point (v, a) (this is called Hough-X transform
in [24]). Similarly, a point p = (t, y) in the primal space is
mapped to line a(v) = −tv+y in the dual space.An important
property of the duality transform is that it preserves the above–
below relationship. As is shown in Fig. 2, the dual line of point
p is above the dual point l∗ of line l.

v

a

y1q

y2q

Fig. 3. Query on the Hough-X dual plane

Based on the above property, it is easy to show that the one-
dimensional query [(y1q, y2q), (t1q, t2q)] becomes a polygon
in the dual space. Consider a point moving with positive ve-
locity. Then the trajectory of this point intersects the query
if and only if it intersects the segment defined by the points
p1 = (t1q, y2q) and p2 = (t2q, y1q) (Fig. 1). Thus, the dual
point of the trajectory must be above the dual line p∗

2 and
below p∗

1. The same idea is used for the negative velocities.
Therefore, using a linear constraint query [18], the query Q in
the dual Hough-X plane (Fig. 3) is expressed in the following
way:

• If v > 0 , then Q = C1 ∧C2, where: C1 = a+ t2qv ≥ y1q

and C2 = a + t1qv ≤ y2q.
• If v < 0, then Q = D1∧D2, where: D1 = a+t1qv ≥ y1q

and D2 = a + t2qv ≤ y2q.

By rewriting the equation y = vt + a as t = 1
v y − a

v ,
we can arrive at a different dual representation. Now the point
in the dual plane has coordinates (b, n), where b = −a

v and
n = 1

v (Hough-Y in [24]). Coordinate b is the point where
the line intersects line y = 0 in the primal space. By using
this transform, horizontal lines cannot be represented. Simi-
larly, the Hough-X transform cannot represent vertical lines.
Therefore, for static objects, we can use only the Hough-X
transform.

3 Related work

The straightforward approach of representing an object mov-
ing on a one-dimensional line is by plotting the trajectories
as lines in the time-location (t, y) plane [same for the (t, x)
plane]. The equation describing each line is y(t) = vt + a,
where v is the slope (velocity in this case) and a is the inter-
cept, which is computed using the motion information (Fig. 1).
In this setting, the query is expressed as the two-dimensional
interval [(y1q, y2q), (t1q, t2q)], and it reports the objects that
correspond to the lines intersecting the query rectangle.

G. Kollios et al.: Indexing mobile objects using dual transformations

The space-time approach provides an intuitive representa-
tion. Nevertheless, it is problematic, since the trajectories cor-
respond to long lines. Using traditional indexing techniques
in this setting tends to show many drawbacks. Consider, for
example, using a spatial access method, such an R-tree [21]
or an R*-tree [8]. In this setting each line is approximated by
a minimum bounding rectangle (MBR). Obviously, the MBR
approximation has a much larger area than the line itself. Fur-
thermore, since the trajectory of an object is valid until an
update is issued, it has a starting point but no end. Thus all
trajectories expand to “infinity”, i.e., they share an endpoint
on the time dimension.

Another approach is to partition the space into dis-
joint cells and store in each cell those lines that intersect
it [52,12]. This could be accomplished by using an index such
as an R+-tree [43], a cell tree [19], or a PMR-quadtree [42].
The shortcoming of these methods is that they introduce repli-
cation since each line is copied into the cells that intersect it.
Given that lines are typically long, the situation becomes even
worse. Moreover, using space partitioning would also result in
high update overhead, since when an object changes its mo-
tion information, it has to be removed from all cells that store
its trajectory.

Agarwal et al. [1] proposed the use of multilevel partition
trees 1 to index moving objects using the duality transform in
order to answer range queries at a specific time instant (i.e.,
snapshot queries, where t1q = t2q). They decompose the mo-
tion of the objects on the plane by taking the projections on
the (t, x) and (t, y) planes. They construct a primary partition
tree T x to keep the dual points corresponding to the motion
projected on the (t, x) plane. Then at every node v of T x they
attach a secondary partition T y

v for the points Sy
v with respect

to the (t, y) projection, where Sv is the set of points stored in
the primary subtree rooted at v. The total space used by the
index is O(n logB n), where N is the number of objects, B is
the page capacity, and n = N/B. The query is answered by
decomposing it into two subqueries, one on each of the two
projections, and taking their dual, σx and σy , respectively.
The search begins by searching the primary partition T x for
the dual points, with respect to the (t, x) projection, that sat-
isfy the query σx. If it finds a triangle associated with a node
v of the partition tree T x that lies completely inside σx, then
it continues searching in the secondary tree T y

v and reports all
dual points, with respect to (t, y) projection, that satisfy query
σy. The query is satisfied if and only if the query in both pro-
jections is satisfied. This is true for snapshot range queries.
In [1] it is shown that the query takes O(n

1
2+ε + K/B) I/Os

(here K is the size of the query result) and that the size of the
index can be reduced to O(n) without affecting the asymptotic
query time. Furthermore, by using multiple multilevel parti-
tion trees, it is also shown that the same bounds hold for the
window range query.

Elbassioni et al. [16] proposed a technique (MB index)
that partitions the objects along each dimension in the dual
space and uses B-trees to index each partition. Assuming a set
of N objects moving in d-dimensional space, with uniformly
distributed and independent velocities and initial positions,

1 Partition trees group a set of points into disjoint subsets denoted
by triangles. A point may lie on many triangles, but it belongs to only
one subset.

they proposed a scheme for selecting the boundaries of the
partitions and answering the query that yields O(n1−1/3d ∗
(σ logB n)1/3d + k) average query time, using O(n) space
(n = N/B, k = K/B). The total number of B-trees
used is σ3ds2d−1, where σ =

∏d
i=1 ln(vi,max/vi,min) and

s = (n
logB n)

1
d , where vi,max and vi,min are, respectively, the

maximum and minimum velocities in dimension i.
Saltenis et al. [40] presented another technique to index

moving objects. They proposed the time-parameterized R-tree
(TPR-tree), which extends the R*-tree. The coordinates of the
bounding rectangles in the TPR-tree are functions of time and,
intuitively, are capable of following the objects as they move.
The position of a moving object is represented by its location
at a particular time instant (reference position) and its velocity
vector. The bounding intervals employed by the TPR-tree are
not always minimum since the storage cost would be exces-
sive. Even though it would be the ideal case (if the bounding
intervals were kept always minimum), doing so could deteri-
orate to enumerating all the enclosed moving points or rect-
angles. Instead, the TPR-tree uses “conservative” bounding
rectangles, which are minimum at some time point but not
at later times. The bounding rectangles may be calculated at
load time (i.e., when the objects are first inserted into the in-
dex) or when an update is issued. As indicated in [39], the
TPR-tree with load-time bounding rectangles is equivalent to
the dual space-time representation. It performs best only when
update-time bounding rectangles are used.

The TPR-tree assumes a predefined time horizon H from
which all the time instances specified in the queries are
drawn. This implies that the user has good knowledge of
(or can efficiently estimate) H . The horizon is defined as
H = UI + W, where UI is the average time interval between
two updates and W is the querying window. The insertion al-
gorithm of the R*-tree, which the TPR-tree extends to moving
points, aims at minimizing objective functions such as the ar-
eas of the bounding rectangles, their margins (perimeters), and
the overlap among the bounding rectangles. In the case of the
TPR-tree, these functions are time dependent, and their evolu-
tion in [tl, tl + H] is considered, where tl is the time instance
when the index is created. Thus, given an objective function
A(t), instead of minimizing the objective function, the integral∫ tl+H

tl
A(t)dt is minimized.

An improved version of the TPR-tree, called TPR*-tree,
was proposed by Tao et al. [50]. The authors provide a proba-
bilistic model to estimate the number of disk accesses for an-
swering predictive window range queries on moving objects
and using this model they provide a hypothetical “optimal”
structure for answering these queries. Then they show that
the TPR-tree insertion algorithm leads to structures that are
much worse than the optimal one. Based on that, they pro-
pose a new insertion algorithm, which, unlike the TPR-tree,
considers multiple paths and levels of the index in order to
insert a new object. Thus, the TPR*-tree is closer to the op-
timal structure than the TPR-tree. The authors suggest that,
although the proposed insertion algorithm is more complex
than the TPR-treeinsertion algorithm, it creates better trees
(MBRs with tighter parameterized extends), which leads to
better update performance. In addition, the TPR*-tree employs
improved deletion and node-splitting algorithms that further
improve the performance of the TPR-tree.

G. Kollios et al.: Indexing mobile objects using dual transformations

The STAR-tree, introduced by Procopiuc et al. [38], is also
a time-parameterized structure. It is based upon R-trees, but
it does not use the notion of the horizon. Instead it employs
kinetic events to update the index when the bounding boxes
start overlapping a lot. If the bounding boxes of the children of
a node v overlap considerably, it reorganizes the grandchildren
of v among the children of v. Using geometric approximation
techniques developed in [3], it maintains a time-parameterized
rectangle Av(t), which is a close approximation of Rv(t), the
actual minimum bounding rectangle of node v at any time
instant t into the future. It provides a tradeoff between the
quality of Av(t) and the complexity of the shape of Av(t).
For linear motion, the trajectories of the vertices of Av(t)
can be represented as polygonal chains. In order to guarantee
that Av(t) is an ε-approximation of Rv(t), trajectories of the
corners of Av(t) need O(1/

√
ε) vertices. An ε-approximation

means that the projection of the Av(t) on the (x, t) or (y, t)
plane contains the corresponding projections of Rv(t), but it
is not larger than 1 + ε than the extend on the Rv(t) at any
time instant.

The REXP -tree, which extends the TPR-tree, was pro-
posed for indexing moving objects with an expiration time
in [41]. The operations are similar to those of the TPR-tree.
Special care is taken when an objective function has to be
minimized in the insertion algorithms since now the expira-
tion time of the entries have to be taken into account. Also,
an algorithm for maintaining the horizon dynamically is pro-
vided. Furthermore, regarding the removal of expired entries,
a lazy strategy is employed. Only live entries are considered
during search, insertion, and deletion operations, but expired
entries are physically removed from a node only when the
contents of the node are modified and the node is written to
disk. In addition, when an expired entry in an internal node
is discarded, either when writing the node to the disk or deal-
locating it, the whole subtree rooted at this entry has to be
deallocated.

Very recently, the dual transformation proposed in this
paper was adapted in [34], where the advantages over the
TPR-tree methods have also been observed. Using the idea
in [27], trajectories of d-dimensional moving objects are
mapped into points in the dual two-dimensional space and
a PR-quadtree is built to store the two-dimensional points.
Similarly with [27] a different index is used for each of two
reference times that change at periodic time intervals. At the
end of each period, the old index is removed and a new index
with a new reference point is built.

Algorithms to process nearest-neighbor queries using the
dual transformation are presented in [26]. Such queries (as
well as range) are also examined in [36], where techniques
using indexing in the primal space are presented. Song
et al. [45] propose a sampling technique for moving-point
nearest-neighbor queries. They incrementally compute the re-
sults at predefined positions, using previous results to avoid
recomputation. This approach has limitations since it deals
with static objects. In addition, it inherits the usual limitations
of sampling, i.e., if the sampling rate is low, the results will be
incorrect; otherwise there is a significant computational over-
head. Furthermore, there is no accuracy guarantee since even
a high sampling rate may miss some results.

Tao et al. [48] address the problem of time-parameterized
queries in a moving objects environment. Time-parameterized

queries retrieve the actual result at the time the query is issued,
the validity period of the result given the current motion of the
query and the database objects, and the change that causes
the expiration of the result. In that context, they propose tech-
niques to answer window queries, k-nearest-neighbor queries,
and spatial joins. Their techniques employ branch-and-bound
algorithms on TPR-trees. Improved algorithms for nearest-
neighbor time-parameterized queries are presented in [49].
Also related is work on dynamic queries over mobile objects
[28]. Here queries are assigned to mobile observers and the
result changes as the observer moves; query-processing tech-
niques that reuse previously stored results are presented. Re-
cently, continuous range queries in the spatiotemporal envi-
ronment have been addressed in [25].

Prabhakar et al. [37] proposed two techniques for answer-
ing continuous queries on moving objects, namely, query in-
dexing and velocity constrained indexing (VCI). Query in-
dexing relies on reversing the role of queries and data, that
is, instead of indexing the objects, an index on the queries is
built, while the data reside in flat files. It also involves incre-
mental evaluation of queries and exploits the relative locations
of objects and queries. On the other hand, VCI takes into con-
sideration the maximum possible speed of objects in order to
delay the expensive operation of updating an index to reflect
the movement of objects. Prabhakar et al. [37] proposed a
scheme that combines the two techniques in order to facilitate
processing of ongoing queries and fast updates.

Pfoser et al. [35] propose two R-tree-based schemes for in-
dexing the past trajectories of moving objects and asking his-
torical queries, assuming that their motion is piecewise linear.
For each object oi, let Γi denote the set of line segments of its
trajectory and let Γ =

⋃
Γi. The first index, called STR-tree,

considers each segment of Γ independently and builds an R-
tree on them. They introduce new heuristics to split a node,
which take the trajectories of the objects into account while
inserting a new segment into the tree. Since the segments of
a trajectory are stored at different parts of the tree, updating a
trajectory is expensive. In the second index, called the TB-tree,
they alleviate this drawback by storing all line segments of the
same trajectory at the same leaf of the index. Zhu at al. [55]
present an approach to index trajectories that divides the tra-
jectory predicates into topological and nontopological parts.
Moreover, minimum bounding octagons are introduced as a
better approximation to traditional MBRs.

Work regarding the selectivity estimation of queries on
moving objects appear in [10] and [51]. In the first work, Choi
et al. [10] address the problem in the context of dynamic point
data and static queries (i.e., the query region remains fixed),
and they begin from the one-dimensional case. Assuming that
the locations, as well as the velocity, of the objects that move
on a line segment follow a uniform distribution, they derive
the probability that a point qualifies the query, hence the se-
lectivity of the query. The multidimensional case is reduced
to the one-dimensional case by projecting objects and queries
onto individual dimensions. Having computed the selectivity
for each one of the one-dimensional cases, the general proba-
bility that a point qualifies a query is given as the product of the
individual one-dimensional selectivities (i.e., the probability
that the projection pi of point p on the ith dimension intersects
the projection qi of the query during the query time interval
qt). This approach in general may not be accurate since a data

G. Kollios et al.: Indexing mobile objects using dual transformations

point may still violate a query q, even if its projection inter-
sects that of q on every dimension. It is not sufficient that only
the spatial conditions should hold; the intersection time inter-
vals on all dimensions must also overlap, i.e., the temporal
condition should also hold.

Tao et al. [51] propose cost models for selectivity esti-
mation of spatiotemporal window queries. They address the
problem dealing both with points and rectangles, and they al-
low both the objects and the query to be dynamic with respect
to time.Apart from assuming uniformity, they also extend their
results to nonuniform datasets by employing spatiotemporal
histograms, which in addition to the locations of the objects
also consider the velocity distributions during partitioning.

In [7] a main-memory framework (kinetic data structure)
was proposed that addresses the issue of mobility and mainte-
nance of configuration functions among continuously moving
objects. The main idea of this work is that even though the
objects move continuously, the relevant combinatorial struc-
ture changes only at certain discrete times, for instance when
points pass each other. Using this observation, future events
are scheduled that update a data structure at these times so that
necessary invariants of the structure hold. Application of this
framework to external range trees [5] appears in [1], where a
structure is presented that can answer snapshot range queries in
O(logB n+K/B) I/Os using slightly more than a linear num-
ber of disk blocks. This result holds only when queries arrive in
chronological order; once a kinetic event has changed the data
structure, no queries can refer to time points before the event.
Nonchronological queries are addressed using partial persis-
tence techniques. Furthermore, in that work it is shown how
to combine kinetic range trees with partition trees to achieve
a tradeoff between the number of kinetic events and query
performance.

Finally, frameworks for moving object databases, such as
the Moving Objects Spatio-Temporal (MOST) model and a
language (FTL) for querying the current and future locations
of moving objects, are presented in [44,53,54]. In another re-
cent work, Güting et al. [20] propose a DBMS data model
and query language capable of handling time-dependent ge-
ometries that describe moving objects. They formally define
the types and operations necessary for implementing a spa-
tiotemporal DBMS extension. A query language for moving
object environments, based on generalized distances, is pre-
sented in [30]. Plane-sweeping methods for evaluating queries
in this language are also suggested.

4 Indexing in one dimension

In this section we illustrate techniques for the one-dimensional
case, i.e., for objects moving on a line segment. There are var-
ious reasons for examining the one-dimensional case. First,
the problem is simpler and can give good intuition about the
various solutions. It is also easier to prove lower bounds and
approach optimal solutions for this case. Moreover, it can have
practical uses as well. A large highway system can be approx-
imated as a collection of smaller line segments (this is the
1.5-dimensional problem discussed in [27]), on each of which
we can apply the one-dimensional methods.

4.1 A lower bound

By using the dual space-time representation, the problem of
indexing moving objects on a line is transformed into the prob-
lem of simplex range searching in two dimensions. In simplex
range searching we are given a set S of points in two di-
mensions, and we want to answer efficiently queries of the
following form: “Given a set of linear constraints ax ≤ b, find
all points in S that satisfy all the constraints.” Geometrically,
the constraints form a polygon on the plane, and we want to
find the points in the interior of the polygon.

The only known lower bound for simplex range searching,
if we want to report all the points that fall in the query region
rather than their number, is due to Chazelle and Rosenberg [9].
They show that simplex reporting in d dimensions with a query
time of O(N δ + K), where N is the number of points, K is
the number of reported points, and 0 < δ ≤ 1, requires space
Ω(Nd(1−δ)−ε) for any fixed ε. This result is shown for the
pointer machine model of computation. The bound holds for
the static case, even if the query region is the intersection of
just two hyperplanes. Since ε can be arbitrarily small, any algo-
rithm that uses linear space for d-dimensional range searching
has a worst-case query time of O(N (d−1)/d + K).

Here we show that a similar bound holds for the I/O com-
plexity of simplex searching. Following the approach in [46]
we use the external memory pointer machine as our model
of computation. This is a generalization of the pointer ma-
chine suitable for analyzing external memory algorithms. In
this model, a data structure is modeled as a directed graph
G = (V, E) with a source w. Each node of the graph repre-
sents a disk block and is therefore allowed to have B data and
pointer fields. The points are stored in the nodes of G. Given
a query, the algorithm traverses G starting from w, examining
the points at the nodes it visits. The algorithm can only visit
nodes that are neighbors of already visited nodes (with the
exception of the root) and, when it terminates the answer to
the query, must be contained in the set of visited nodes. The
running time of the algorithm is the number of nodes it visits.

Theorem 1 Simplex reporting in d dimensions with a query
time of O(nδ +k) I/Os requires Ω(nd(1−δ)−ε) disk blocks for
any fixed ε; here N is the number of points, n = N/B, K is
the number of reported points, k = K/B, and 0 < δ ≤ 1.

Proof. To prove the lower bound we need to show that, given
δ, there exists a set of N points and a set of Ω(nd(1−δ)−δ−ε)
queries such that each query has Θ(Bnδ) points, and the in-
tersection of any pair of query results is small. To answer
a query with Θ(Bnδ) points, the answering algorithm must
visit Ω(nδ) nodes. To answer this query in O(nδ) I/Os, at
least a constant fraction of that many blocks has a constant
fraction of their points in the answer of the query. But if the
set of the queries has a small intersection, it follows that, in
order to answer this set of queries in time O(nδ), at least
Θ(nδ) · Ω(nd(1−δ)−δ−ε) = Ω(nd(1−δ)−ε) nodes have to be
visited. It remains to show that such a set of queries exists.
To do so we simply modify the existing construction in [9] by
replacing each point in the point set by B copies. �	

A corollary of this lower bound is that in the worst
case a data structure that uses linear space to answer the

G. Kollios et al.: Indexing mobile objects using dual transformations

two-dimensional simplex range query and thus the one-
dimensional MOR query requires O(

√
n + k) I/Os. Next

we will present a dynamic, external-memory algorithm that
achieves near optimal query time with linear space. As we
shall see, however, this algorithm is not practical. So we also
consider faster algorithms to approximate the queries. Finally,
we give a worst-case logarithmic query time algorithm for a
restricted but practical version of the problem.

4.2 A (near) optimal solution

Matousek [29] gave a near optimal algorithm for simplex range
searching, given a static set of points. This main-memory al-
gorithm is based on the idea of simplicial partitions.

We briefly describe this approach. For a set S of N points,
a simplicial partition of S is a set {(S1, ∆1), . . . (Sr, ∆r)},
where {S1, . . . , Sr} is a partitioning of S and ∆i is a triangle
that contains all the points in Si. If maxi |Si| < 2 mini |Si|,
where |Si| is the cardinality of the set Si, we say that the
partition is balanced. Matousek [29] shows that, given a set
S of N points and a parameter s (where 0 < s < N/2), we
can construct, in linear time, a balanced simplicial partition
for S of size O(s) such that any line crosses at most O(

√
s)

triangles in the partition.
This construction can be used recursively to construct a

partition tree for S. The root of the tree contains the whole set
S and a triangle that contains all the points. We find a balanced
simplicial partition of S of size

√|S|. Each of the children
of the root are associated with a set Si from the simplicial
partition and the triangle ∆i that contains the points in Si. For
each of the Si’s we find simplicial partitions of size

√|Si| and
continue until each leaf contains a constant number of points.
The construction time is O(N log2 N).

To answer a simplex range query, we start at the root. We
take each of the triangles in the simplicial partition at the root
and check if (i) it is inside the query region, (ii) it is outside the
query region, or (iii) it intersects one of the lines that define
the query. In the first case all points inside the triangle are
reported, in the second case the triangle is discarded, while in
the third case we continue the recursion on this triangle. The
number of triangles that the query can cross is bounded since
each line crosses at most O(|S| 1

4) triangles at the root. The
query time is O(N

1
2+ε), with the constant factor depending

on the choice of ε.
Agarwal et al. [2] give an external-memory version of static

partition trees that answers queries in O(n
1
2+ε + k) I/Os. To

adapt this structure to our environment, we have to make it
dynamic. Using a standard technique by Overmars [31] for
decomposable problems we are able to show that we can in-
sert or delete points in a partition tree in O(log2

2 N) I/Os and
answer simplex queries in O(n

1
2+ε + k) I/Os. A method that

achieves O(log2
B(N

B)) amortized update overhead is presented
in [1].

4.3 Achieving logarithmic query time

For many applications, the relative positions of moving objects
do not change often. Consider, for example, the case where

objects are moving very slowly, or with approximately the
same velocity. In this case the lines in the time-space plane
do not cross until well forward in the future. If we restrict our
queries to occur before the first time that a point overtakes
(passes) another, the original problem is equivalent to one-
dimensional range searching.

This is one of our motivations for considering a restricted
version of the original problem, namely, to index mobile ob-
jects in a bounded time interval T in the future. As we have
seen, there exist lower bounds for the original problem that
show that we cannot achieve a query time better than Ω(

√
n)

given linear space. However, using the above restriction, we
achieve a logarithmic query time, with space that can be
quadratic in the worst case but is expected to be linear in
practice.

Formally, the problem we are considering in this section is
the following: given a set of objects that are moving on a line,
and a time limit T , find all the objects that lie in the segment
[yl, yr] at time tq (where t0 ≤ tq ≤ t0 +T). Equivalently, this
is a standard one-dimensional MOR query where t1q = t2q.
We will call it a one-dimensional MOR1 query.

Our method is to find all the times when an object overtakes
another. These events correspond to line segment crossings
in the time-space plane. Note that between two consecutive
crossing events the relative ordering of the objects on the plane
remains the same.

First we show the following lemma:

Lemma 1 If we have the relative ordering of all N objects
at time tq, the position of the objects at time Tc that corre-
sponds to the closest crossing event before tq, and the speed
of the objects, we can find the objects that are in R = [yl, yr]
in O(log2 N + K) time, where K is the number of objects
inside R.

Proof. Assume that the objects are {p1, p2, . . . , pN}, where
pi has a position yi at time Tc and a velocity vi. Without loss
of generality, assume that, at time tq, the relative order of the
objects from left to right is p1, p2, . . . , pN .

Consider a binary tree storing the objects sorted by their
original positions at time Tc. The object at the root of the tree,
say, pi, is going to be at position yi + vi · tq at time tq. Since
the objects in the binary tree are stored by order at time tq, if
yi + vi · tq < yl, then this is also true for all the objects of
the left child of the root, in which case we eliminate the left
child and recurse in the right child. Otherwise, we recurse in
the left child of the tree. Thus in O(log2 N) time we can find
the positions of yl and yr relative to the objects at time tq, and
we report the objects that lie between. �	

The following lemma finds all object crossings efficiently.

Lemma 2 We can find all object crossings in time
O(N log2 N + M log2 M), where M is the number of cross-
ings in the time period [0, T].

Proof. Let {p1, . . . , pN} be the ordering of N objects at time
0, sorted by position. Assume we maintain this ordering in a
linked list L0. At time T , the position of object i is yi + vi ·T .
Assume we order the object positions as of time T and keep
them in another linked list LT ; let {pt(1), . . . , pt(N)} be this
ordering. Clearly, objects i and j (i < j) cross if and only if
t(j) < t(i).

G. Kollios et al.: Indexing mobile objects using dual transformations

t=0 t=T

Time

Y

p6

p5

p4

p3

p2

p1

p5

p2

p3

p1

p4

p6

Fig. 4. Object trajectory crossings

The algorithm to find all M crossings follows. The first
object p1 is read from L0 and removed from this list. List
LT is scanned until the position of object p1 is found; all
the crossings from this object are then reported. Object p1
is removed from LT and the process is repeated for the
next item in L0. This procedure reports all M crossings in
O(N + M) time [13]. After all crossings are reported, they
are sorted by the time when each crossing occurred. �	

An example is shown in Fig. 4; here N = 6 and M = 3.
From the order of the object positions at time T we can easily
find that object p1 crossed objects p2 and p3 while p5 crossed
object p6.

In the next lemma we show how we can efficiently store
and search these lists in external memory.

Lemma 3 We can store the O(M) ordered lists of N ob-
jects in O(n + m) blocks and perform a search on any list
in O(logB(n + m)) I/Os, where n = N

B and m = M
B .

Proof. Let L(t) be the list of objects at time t. Consider
CS = t1, . . . , tM the ordered sequence of the time instants
where crossings occur during the interval (0, T). The problem
of storing the M ordered lists L(t1) through L(tM) can be
“visualized” as storing the history of a list L(t) that evolves
over time, i.e., a partial persistence problem [14]. That is, list
L(t) starts from an initial state L(0) and then evolves through
consecutive states L(t1), L(t2), . . . , L(tM), where L(ti+1) is
produced from L(ti) by applying the crossing that occurred
at ti+1 (i = 0, . . . , M − 1, and t0 = 0).

A common characteristic in the list evolution is that each
L(t) has exactly N positions, namely, positions 1 through N ,
where position j stores the jth element of L(t). To perform a
binary search on a given L(t), we could implement it using a
binary tree with N nodes, where each node is numbered by
a position (the root node corresponds to the middle position
in the list and so on) and holds the element of L(t) at that
position. One obvious solution to the problem would be to
store the binary tree of the original list L(0) and the binary
tree of each L(ti) for all ti in CS. Then, a query about list
L(t) is addressed by using the binary tree of L(ti), where ti is
the largest instant in CS that is less than or equal to t. While

this achieves O(log2(N + M)) query time, it uses O(MN)
space.

To reduce the space to O(N+M), we must take advantage
of the fact that subsequent lists do not differ much. A main-
memory solution to this problem appears in [13]. Here we
present an efficient external-memory solution. In particular,
we first embed the binary tree structure inside a B-tree. This is
easily done since the structure of the list (and its corresponding
binary tree) does not change over time. Consider, for example,
B(0), which corresponds to the initial listL(0).TreeB(0)uses
O(n) nodes where each node can hold B entries. An entry is
now a record (position, occupant, pointer, t), where position
corresponds to a position in the list, occupant contains the
element at that position, pointer points to a child node, and t
corresponds to the time this element was at that position, in
this case t = 0.

Conceptually, each B-tree node is permanently assigned B
positions and is responsible for storing the occupants of these
positions. Consider the evolution of such a node s through
trees B(0), B(t1), . . . , B(tM). An obvious way to store this
evolution is to store a copy of s(0) and a “log” of changes that
happen on the occupants of nodes s at later times. A change is
simply another record that stores the position where a change
occurred, the new occupant, and the time of change. To achieve
fast access to s(t), we do not allow the log to get too large.
Every O(B) changes (in practice when the log fills one or two
pages, we store a new, current copy of s). If we consider the
history of node s independently, we can have an auxiliary array
with records (time, pointer) that point to the various copies of
node s. Locating the appropriate node s(t) takes O(logB m)
time [first we find the record in the auxiliary array with the
largest timestamp that is less than or equal to t and then we
access the appropriate copy of s and probably a (constant)
number of log pages]. The space remains O(n + m) since
every new node copy is amortized over the O(B) changes in
the log.

While this solution works nicely for the history of a given
B-tree node, it would lead to O(logB n · logB m) search I/O
cost (since finding the appropriate version of a child node,
when searching the B-tree, requires O(logB m) search in the
child node’s history). Instead of using the auxiliary array to
index the copies of node s, we post such entries as changes in
the history of the parent node p. Assume that node s is pointed
by the record on position l in node p. When a new copy of
node s is created, a new record is added on the log of p that
has the same position l but a pointer to the new copy of s
and the current time. Since new node copies are added after
O(B) changes, the overall space remains O(n+m). The query
time is reduced to O(logB(n+m)) since performing a binary
search on list L(t) is equivalent to searching a path of B(t);
locating the root of B(t) takes O(logB m) time (searching the
history of the B-tree root node), while all other nodes of B(t)
are found in time O(logB n) using the appropriate parent to
child pointers. �	

The following theorem follows from the previous lemmas:

Theorem 2 Given N objects and a time limit T , a
one-dimensional MOR1 query can be answered in time
O(logB(n + m)) using space O(n + m), where m = M

B
and M is the number of crossings of objects in the time limit
T .

G. Kollios et al.: Indexing mobile objects using dual transformations

To solve the problem of answering queries within a time
interval T into the future, we stagger the construction of our
data structure. Thus, at time t0 we construct a data structure
that will answer queries in the time interval [t0, t0 + 2T], and
at time t0 + iT we construct a data structure that will answer
queries in the time interval [t0 + (i + 1)T, t0 + (i + 2)T].

Our approach works for any value of T . If the time limit
is set too large, however, all pairs of objects may cross, in
which case the size of the data structure will be quadratic. It
is therefore important to set the time limit appropriately so
that only approximately a linear number of crossings occurs.
However, in many practical applications many objects move
with approximately equal speeds (one example is cars on a
freeway) and therefore do not cross very often.

4.4 Using point access methods

Partition trees are not very useful in practice because the query
time is O(n

1
2+ε + k) and the hidden constant factor becomes

large if we choose a small ε. In this section we present two
different approaches that are designed to improve the average
query time.

There is a large number of access methods that have been
proposed for indexing point data [17].All these structures were
designed to address orthogonal queries, i.e., queries expressed
as a multidimensional hyperrectangle. However, most of them
can be easily modified to address nonorthogonal queries like
simplex queries.

Goldstein et al. [18] presented an algorithm to answer sim-
plex range queries using R-trees. The idea is to change the
search procedure of the tree. In particular, they gave efficient
methods to test whether a linear constraint query region and
a hyperrectangle overlap. As mentioned in [18], this method
is applicable not only to the R-tree family but to other ac-
cess methods as well. We can use this approach to answer the
one-dimensional MOR query in the dual Hough-X space.

We can improve on this approach by using a characteristic
of the Hough-Y dual transformation. In this case, we assume
that objects have a minimum and maximum speed, vmin and
vmax, respectively. The vmax constraint is natural in moving
object databases that track physical objects. On the other hand,
the vmin constraint comes from the fact that the Hough-Y
transformation cannot represent static objects. For these ob-
jects, we use the Hough-X transformation, as explained above.
In general, the b coordinate can be computed at different hor-
izontal (y = yr) lines. The query region is described by the
intersection of two half-plane queries (Fig. 5). The first line in-
tersects the line n = 1

vmax
at the point (t1q− y2q−yr

vmax
, 1

vmax
) and

the line n = 1
vmin

at the point (t1q − y2q−yr

vmin
, 1

vmin
). Similarly

the other line that defines the query intersects the horizontal
lines at (t2q − y1q−yr

vmax
, 1

vmax
) and (t2q − y1q−yr

vmin
, 1

vmin
).

Since access methods are more efficient for rectangle
queries, suppose that we approximate the simplex query with
a rectangular one. In Fig. 5 the query approximation rectan-
gle will be [(t1q − y2q−yr

vmin
, t2q − y1q−yr

vmax
), (1

vmax
, 1

vmin
)]. Note

that the query area is enlarged by the area E = EHoughY =
EHoughY

1 + EHoughY
2 , which is computed as:

1

HoughY
E

HoughY
E 2

t1q t2q

n

b

1/v

1/v

min

max

HoughY
Q

Fig. 5. Query on the dual Hough-Y plane

t

y

maxy

b

b

b

0

1

2

y

y0

1

2y

o

Fig. 6. Coordinate b as seen from different “observation” points

EHoughY =
1
2

(
vmax − vmin

vmin · vmax

)2

(| y2q − yr | + | y1q − yr |). (1)

The objective is to minimize E since it represents a measure of
the extra I/Os that an access method will have to perform for
solving a one-dimensional MOR query. E is based on both
yr (i.e., where the b coordinate is computed) and the query
interval (y1q, y2q), which is unknown. Hence, we propose to
keep c indices (where c is a small constant) at equidistant
yr’s. All c indices contain the same information about the
objects but use different yr’s. The ith index stores the b coor-
dinates of the data points using yi = ymax

c · i, i = 0, . . . , c− 1
(Fig. 6). Conceptually, yi serves as an observation element,
and its corresponding index stores the data as observed from
position yi. We call the area between subsequent observation
elements a subterrain. A given one-dimensional MOR query
will be forwarded to, and answered exactly by, the index that
minimizes E.

To process a general query interval [y1q, y2q], we consider
two cases depending on whether the query interval covers a
subterrain:

G. Kollios et al.: Indexing mobile objects using dual transformations

(i) y2q − y1q ≤ ymax
c : then it can be easily shown that area

E is bounded by

E ≤ 1
2

(
vmax − vmin

vmin · vmax

)2

(
ymax

c
). (2)

The query is processed at the index that minimizes |y2q −
yr| + |y1q − yr|.

(ii) y2q − y1q > ymax
c : the query interval contains one or

more subterrains, which implies that if a query is executed at
a single observation index, area E becomes large. To bound
E we index each subterrain, too. Each of the c subterrain in-
dices records the time interval when a moving object was in
the subterrain. Then the query is decomposed into a collec-
tion of smaller subqueries: one subquery per subterrain fully
contained by the original query interval and one subquery for
each of the original query’s endpoints. The subqueries at the
endpoints fall to case (i) above; thus they can be answered
with bounded E using an appropriate observation index. To
index the intervals in each subterrain, we could use an exter-
nal memory interval tree [6], which would answer a subterrain
query optimally (i.e., E = 0). As a result, the original query
can be answered with bounded E. However, interval trees will
increase the space consumption of the indexing method.

The same approach can be used for the Hough-X transfor-
mation, where instead of different observation points we have
different observation times. That is, we can compute the inter-
cept a using different vertical lines t = ti, i = 0, . . . , c − 1.
For each different intercept we create a different index. Then,
given a query, we have to choose one of the indices to an-
swer the query (the one that is constructed for the observa-
tion time closest to the query time.) Note, however that, if
the query time is far from the observation time of an index,
then the index will not be very efficient, since the query in the
Hough-X will not be aligned with the rectangles representing
the index and data pages of this index. So one problem with
this approach stems from the fact that the time in general and
the query time in particular are always increasing. Therefore,
an index that is efficient now will become inefficient later.
One simple solution to this problem is to create a new index
with a newer observation time every T time instants and at
the same time remove the index with the oldest observation
time [27,34]. Note that this problem does not exist in the
Hough-Y case since the terrain and the query domain do not
change with time (or they change very slowly).

5 Indexing in two dimensions

For the two-dimensional problem, trajectories of the moving
objects are lines in a three-dimensional space (Fig. 7). lines in
the plane. The reason is that a line in the space has 4 degrees
of freedom. Therefore, if we apply the dual transformations
directly, we get a 4- dimensional dual point. We address the 2-
dimensional problem by decomposing the motion of the object
into two independent motions, one in the (t, x) plane and one
in the (t, y) plane. Each motion is indexed separately. Next,
we present the procedure used in order to build the index and
then the algorithm for answering the two-dimensional query.

5.1 Building the index

We begin by decomposing the motion in (x, y, t) space into
two motions on the (t, x) and (t, y) plane. Furthermore, on
each projection we partition the objects according to their ve-
locity. Objects with small velocity magnitude are stored using
the Hough-X dual transform, while the rest of them are stored
using the Hough-Y transform, i.e., into distinct index struc-
tures.

Fig. 7. Trajectories and query in (x, y, t) space

The reason for using different transforms is that motions
with small velocities in the Hough-Y approach are mapped
into dual points (b, n) having large n coordinates (n = 1

v).
Thus, since few objects have small velocities, by storing the
Hough-Y dual points in an index structure such as an R*-
tree, MBRs with large extents are introduced, and the index
performance is severely affected. On the other hand, by using a
Hough-X index for the small velocities’partition, we eliminate
this effect, since the Hough-X dual transform maps an object’s
motion to the (v, a) dual point. To partition the objects into
slow and fast, we use a threshold V T .

When a dual point is stored in the index responsible for the
object’s motion in one of the planes, i.e., (t, x) or (t, y), infor-
mation about the motion in the other plane is also included.
Thus, the leaves in both indices for the Hough-Y partition store
the record (nx, bx, ny, by). Similarly, for the Hough-X parti-
tion in both projections we keep the record (vx, ax, vy, ay). In
this way, the query can be answered by one of the indices –
either the one responsible for the (t, x) or the (t, y) projection.

On a given projection, the dual points [i.e., (n, b) and
(v, a)] are indexed using R*-trees [8]. The R*-tree has been
modified in order to store points at the leaf level and not de-
generated rectangles. Therefore, we can afford storing extra
information about the other projection. An outline of the pro-
cedure for building the index follows:

1. Decompose the two-dimensional motion into two one-
dimensional motions on the (t, x) and (t, y) planes.

2. For each projection, build the corresponding index struc-
ture.
• Partition the objects according to their velocity:

(a) Objects with |v| < V T are stored using the
Hough-X dual transform, while objects with |v| ≥
V T are stored using the Hough-Y dual transform.

G. Kollios et al.: Indexing mobile objects using dual transformations

(b) Motion information about the other projection is
also included in each point.

In order to choose one of the two projections and answer
the simplex query, the technique described next is used.

5.2 Answering the query

The two-dimensional MOR query is mapped to a simplex
query in the dual space. The simplex query is the intersection
of four three-dimensional hyperplanes, and the projections of
the query on the (t, x) and (t, y) planes are wedges, as in the
one-dimensional case.

The two-dimensional query is decomposed into two one-
dimensional queries, one for each projection, and it is an-
swered exactly. Furthermore, on a given projection, the sim-
plex query is processed in both partitions, i.e., Hough-Y and
Hough-X.

On the Hough-Y plane the query region is given by the
intersection of two half-plane queries, as shown in Fig. 5.
Consider the parallel lines n = 1

vmin
and n = 1

vmax
. Note that

a minimum value for vmin is V T . As illustrated in Sect. 4,
if the simplex query was answered approximately, the query
area would be enlarged by EHoughY = EHoughY

1 + EHoughY
2

(the triangular areas in Fig. 5). Also, let the actual area of the
simplex query be QHoughY. Similarly, on the dual Hough-X
plane (Fig. 3), let QHoughX be the actual area of the query
and EHoughX be the enlargement. The algorithm chooses the
projection that minimizes the following criterion κ:

κ =
EHoughY

QHoughY +
EHoughX

QHoughX . (3)

The intuition for this heuristic [33] is that simplex queries in
the dual space are not aligned with the MBRs of the underly-
ing index (Fig. 8). Therefore, we would like to ask the query in
the projection about where the query is as much aligned with
the MBRs as possible. The empty space, as used in the afore-
mentioned criterion definition, gives an indication of that.

a

v

Vmin Vmax

Fig. 8. Simplex query in dual space, not aligned with MBRs of un-
derlying index

Since the whole motion information is kept in the in-
dices, it can be used to filter out objects that do not satisfy
the query. An outline of the algorithm for answering the exact
two-dimensional query is presented next.

1. Decompose the query into two one-dimensional queries,
for the (t, x) and (t, y) projection.

2. Get the dual query for each projection (i.e., the simplex
query).

3. Calculate the criterion κ for each projection and choose
the one (say, p) that minimizes it.

4. Answer the query by searching the Hough-X and Hough-Y
partition, using projection p.

5. Put an object in the result set only if it satisfies the query.
Use the whole motion information to do the filtering “on
the fly”.

6 Performance evaluation

In this section we present experimental results for objects
moving in one- and two-dimensional spaces. We use the sim-
pler, one-dimensional experiments to reveal the behavior of
the Hough-X and Hough-Y approaches (Sect. 4) since they
are components of the proposed two-dimensional solution
(Sect. 5). For the two-dimensional space we compare our ap-
proach with the TPR-tree [40,41]. We chose the TPR-tree as
a very efficient representative of the nondual transformation
methods (Sect. 3).

6.1 One-dimensional case

Experimental setting. We present results for the one-
dimensional MOR query, comparing the Hough-Y approach
(multiple indices), the Hough-X method, and a traditional R-
tree-based approach that stores trajectories as line segments.

First we describe the way experimental data are gener-
ated. At time t = 0 we generate the initial locations of N
mobile objects uniformly distributed on the (line segment)
terrain [0, 1000]. We vary N from 100K to 500K. The speeds
are generated uniformly from vmin = 0.16 to vmax = 1.66
and the direction is randomly positive or negative. (Note that
0.16 miles/min is equal to 10 miles/h and 1.66 miles/min is
equal to 100 miles/h.) Then the objects start moving. When
an object reaches a border, it simply changes its direction.
We generate 10 different time instants that represent the times
when queries are executed. At each time instant we execute
200 random queries, where the length of the y-range is chosen
uniformly between 0 and YQMAX and the length of the time
ranges between 0 and WT. We actually generate two sets of
query workloads: one with fixedYQMAX = 10 and WT varying
from 10 up to 100 and one with fixed WT=10 and YQMAX
varying again from 10 up to 100. In both sets, the query work-
load has average selectivity that spans from 0.5% up to 3.5%.
We run this scenario using a particular access method for 2000
time instants.

We implement the traditional R-tree approach using an R*-
tree [8] with page size 4K. To represent a line segment, we use
four 4-byte numbers (the two endpoints) and one more num-
ber as a pointer to the real object, resulting in a page capacity

G. Kollios et al.: Indexing mobile objects using dual transformations

of B = 204 records. For the Hough-Y and Hough-X meth-
ods, we use two-dimensional R*-trees to index the dual points.
These R*-trees are appropriately modified to index points in-
stead of rectangles. We use R-trees over the B+-trees proposed
in [27] since we got much better query performance. Thus we
show only the results for the R-trees. The page capacity was
B = 341 records since we need two 4-byte numbers to repre-
sent the points plus one more number as a pointer. We do not
implement the interval trees since the cost of creating, storing,
and updating these structures is high and they are needed only
for very large queries, which are not typical.

We consider a simple buffering scheme for the results we
present here. For each tree we buffer the path from the root
to a leaf node; thus the buffer size is only three or four pages.
For the queries we always clear the buffer pool before we run
a query. An update is performed when the motion information
of an object changes.

Performance results. Figure 9 presents the results for the
average number of I/Os per query for queries with varying WT,
while Fig. 10 depicts results for queries with varyingYQMAX.
These experiments were run for 100K objects. Figure 11 shows
how the query performance scales up as the number of moving
objects increases. For this set of experiments we set WT = 80
and Y QMAX = 10, yielding an average selectivity close to

Fig. 9. One-dimensional case: query performance for varying WT

Fig. 10. One-dimensional case: query performance for varying YQ-
max

Fig. 11. One-dimensional case: query performance for varying num-
ber of objects

2%. In all these figures the results for the traditional R-tree
storing line segments are not depicted since, as anticipated,
this method exhibits excessively high overhead (over 400 page
accesses). For the Hough-Y method we use c = 1, c = 2, and
c = 4, and we observe that it outperforms the Hough-X query
performance even with c = 1.

Figures 12 and 13 plot the space consumption and the av-
erage number of I/Os per update, respectively, as a function
of the number of moving objects. The space of all methods
is linear to the number of objects. The space consumption
of the Hough-X and Hough-Y (c = 1) are almost identical,
which is expected since in both methods objects are stored
only once. The method that stores line segments (shown as
“Trajectories” in the legend) uses somewhat more space than
Hough-X and Hough-Y (c = 1), even though it also stores ob-
jects only once. However, the clustering of long segments is
not ideal, forcing the R-tree to use more space. The Hough-Y
methods with c = 2 and c = 4 use more space due the use of
c observation indices. Regarding update processing, the line
segment method exhibits the worst update performance that
increases drastically as the number of objects increases. Most
of this update cost comes from deletions where many tree paths
are typically visited. The update performance of the Hough-

Fig. 12. One-dimensional case: space consumption for varying num-
ber of objects

G. Kollios et al.: Indexing mobile objects using dual transformations

Fig. 13. One-dimensional case: update performance for varying num-
ber of objects

X and the Hough-Y approaches remain virtually constant
while varying the number of mobile objects. Again, Hough-X
and Hough-Y (c = 1) have almost identical update process-
ing. In actual values, the update of Hough-X and Hough-Y
(c = 1) increases slightly from 5.2 I/Os (100K objects) to
around 6.1 I/Os (500K objects), but this is not seen in the fig-
ure due to the large update I/O of the line segment method.
Figures 9–13 show the clear tradeoff between c and
query/update performance for the Hough-Y method.

6.2 Two-dimensional case

Experimental setting. For the two-dimensional MOR query
we generated a variety of datasets using the TPR-tree’s gen-
erator [40] as well as our own generator.

The datasets created with the TPR generator use para-
meters suggested in [40], that is, we assume objects moving
on a finite terrain having size 1000 × 1000km. The terrain
contains a fully connected graph whose edges are the routes
objects can move along. Each dataset is distinguished by the
number of vertices, or destinations ND (ND was set to 40 or
160). The objects are initially positioned on the routes in a
random fashion. They are assigned with equal probability to
one of three possible groups having a maximum velocity of
0.75 (slow), 1.5 (medium), and 3 km/min (fast). Within each
group, objects are assigned uniform velocities between 0 and
the group’s maximum velocity. Objects achieve this velocity
by initially accelerating (during the first one sixth of the route),
then they maintain this speed (for the next two thirds of the
route), and finally they decelerate to 0 km/min (during the last
one sixth of the route). We also generated a dataset in which
objects can move randomly on the terrain without destinations
(this is termed UNI in [40]).

Each simulation scenario runs for 600 time instants, where
each instant corresponds to 1 min [40] (i.e., the simulation
corresponds to 10 h). Unless otherwise indicated, each dataset
involves 100K objects. An update in this environment corre-
sponds to a deletion followed by an insertion. Updates are
generated so that the average time interval between two up-
dates is fixed to a parameter UI. Queries consist of time-slice
and window queries and are issued within a time window W

from the current time. For these workloads we used UI = 60
and W = 40. These parameters are used by the TPR-tree to
compute its fixed horizon H (H = UI + W). Four queries
are issued every time instant, intermixed with around one mil-
lion updates in total. Note that the total number of insertions
is slightly higher than the number of deletions since we first
need to insert the 100K objects into the index. For example,
the ND60 dataset had 1.07 million insertions and 0.97 million
deletions. The other datasets had similar insertion/deletion ra-
tios.

Queries are randomly selected with the spatial predicate
covering on average 0.25% of the spatial universe, while the
temporal predicate has an average length of ten instants.

The datasets generated using our own generator assume
a network of routes that intersect in “cities” (similar to the
destinations of the TPR generator) and form a fully con-
nected graph (a network of “freeways”). The terrain is again
1000 × 1000km. Objects are randomly positioned on the
routes. One difference with the TPR generator is that veloc-
ity magnitudes follow either uniform or Gaussian distribution.
In the uniform case, velocities are chosen from [0.16, 1.83],
while in the Gaussian the mean is 1.16 and the standard de-
viation is 0.5. The simulation scenario runs also for 600 time
instants and involves 100K objects. At each time instant 1%
of the objects update their motion information instantly (i.e.,
there is no acceleration or deceleration). The simulation cre-
ates an average update interval UI = 100, while the query
window W was 130 (therefore H = 230). These parameters
were then input to the TPR-tree. Four queries are issued ev-
ery time instant as well. In these datasets the spatial predicate
is on average 1% of the spatial universe, while the temporal
predicate is 30 instants long.

The performance of the TPR-tree is best for queries within
the prespecified horizon. Thus we first generate workloads
with queries posted within H. In some applications, however,
the user may not be able to accurately predict the horizon
beforehand. To examine how the behavior of the TPR-tree
deteriorates for queries outside the predefined horizon, we
also generate workloads where the query temporal attributes
(t1q and t2q) are gradually shifted in increments of 1H up to
5H.

There is one more reason for experimenting with “out-
of-horizon” queries. This behavior is similar to the TPR-tree
query performance for time periods between distant updates.
The TPR-tree partially reorganizes its structure during each
update (this is the “update-time” setting in [40]). Performance
is optimized for queries issued within H from the last update.
Recall that the computation of H uses the average update in-
terval UI. Hence, there may be cases where the next update is
much further than UI and queries can exceed the prespecified
horizon. When updates are infrequent, the size of the time-
parameterized MBRs increases over time, which deteriorates
query performance.

We also experimented with a TPR-tree that uses auto-
matic horizon estimation [41]. Here a heuristic for dynami-
cally maintaining the time horizon is introduced and involves
tracking the operations in the index. The parameter UI is ap-
proximated by (∆t/B)l, where l is the current number of leaf
entries, B is the number of entries per leaf page, and ∆t is the
time it takes to receive the last B entries. The parameter W is

G. Kollios et al.: Indexing mobile objects using dual transformations

0

5

10

15

20

25

P
ag

e
I/O

s
(in

 m
ill

io
ns

)

DUAL TPR-
fixed

TPR-
auto

DUAL TPR-
fixed

TPR-
auto

DUAL TPR-
fixed

TPR-
auto

ND40 ND160 UNIFORM

Performance for queries within horizon

DELETION

INSERTION

QUERY

Fig. 14. ND/UNI datasets: queries within the horizon, overall I/O
comparison

approximated as a function of UI: W=α UI, where 0 < α < 1
(typically α = 0.5).

We implemented the DUAL approach as described in
Sect. 5. For the VT threshold we used 0.16. Different val-
ues of VT do not change the performance much, so we kept
V T = 0.16 for all experiments. For all methods the page size
was set to 4K and a buffer pool of 50 pages was used while
the leaf capacity was 204.

Performance results. Our experimental results are shown in
Figs. 14–27; here TPR-fixed denotes the TPR-tree using a
fixed horizon, TPR-auto stands for TPR-tree with automatic
horizon estimation, while DUAL corresponds to the method
described in Sect. 5.

Figure 14 presents the overall page I/O for updates (inser-
tions and deletions) and queries (within the horizon) for three
datasets, namely, ND40 (i.e., ND = 40), ND160, and UNI,
with 100K objects. The purpose of this figure is to depict the
importance of updates in this dynamic environment. Note that
each object issued an average of ten updates during the sim-
ulation [40]; when projected to a practical scenario, this is a
rather low update rate. The number of queries is about 2.4K,
which corresponds to a rate of four queries per minute. Never-
theless, it is apparent that updating consumes the largest pro-
cessing part among all indices. Since the number of insertions
is very close to the number of deletions, it is further observed
that deletions are much more expensive for the TPR-trees than
insertions. This is to be expected since the TPR-tree uses dele-
tions for index reorganizations.

Figure 15 shows the ratios of the query, insertion, and
deletion operations of the TPR-trees relative to the DUAL
method. Clearly, both TPR-trees have a faster query time than
the DUAL method for queries within the horizon (and for
all datasets shown). They use, however, considerably more
update time, especially for deletions (around 2.5 times more).
The TPR-auto uses slightly more query and update processing
than the TPR-fixed given the horizon estimation it performs. In
the figure we also indicate the “total” ratio, which corresponds
to the overall I/O of each TPR-tree divided by the overall I/O of
the DUAL method. For the above experiments, Figs. 16 and 17
depict the average page I/O per query and update, respectively.

Relative performace for queries within horizon

0

0.5

1

1.5

2

2.5

3

3.5

4

TPR-fixed TPR-auto TPR-fixed TPR-auto TPR-fixed TPR-auto

ND40 ND160 UNIFORM

P
er

fo
rm

ac
e

ra
tio

 r
al

at
iv

e
to

 D
U

A
L

QUERY
INSERTION

DELETION
TOTAL

Fig. 15. ND/UNI datasets, queries within the horizon, ratio of per-
formance relative to DUAL

Queries performace, within horizon

0

20

40

60

80

100

120

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

ND40 ND160 UNIFORM

P
a
g

e
 I
/O

s
 (

a
v
g

 p
e
r

q
u

e
ry

)

Fig. 16. ND/UNI datasets, queries within the horizon, average I/O
per query

0

5

10

15

20

25

P
a

g
e

 I
/O

s
 (

a
v

g
.

p
e

r
o

p
e

ra
ti

o
n

)

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

DUAL TPR-

fixed

TPR-

auto

ND40 ND160 UNIFORM

Update performace, within horizon

AVG. DEL

AVG. INS

Fig. 17. ND/UNI datasets, queries within the horizon, average I/O
per update

Figure 18 shows how the methods scale up as the average
number of moving objects increases from 100K to 500K. The
ND160 dataset was used for these experiments, and queries
inside the horizon are depicted. All methods seem to scale
up graciously (the relative ratios remain similar). Again, the

G. Kollios et al.: Indexing mobile objects using dual transformations

Relative performace for scale-up experiment (ND160 datasets)

0

1

2

3

4

5

6

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

100K 200K 300K 400K 500K

P
er

fo
rm

ac
e

ra
tio

 r
al

at
iv

e
to

 D
U

A
L

QUERY

INSERTION

DELETION

Fig. 18. Varying the number of moving objects

Query performance, varying query's spatial part (ND160)

0

20

40

60

80

100

120

140

160

DUAL TPR DUAL TPR DUAL TPR DUAL TPR

0.25 0.5 1 1.5

Query's Spatial Part (% of universe)

P
a
g

e
 I
/O

s
 (

a
v
g

.
p

e
r

q
u

e
ry

)

Fig. 19. Varying the size of the spatial predicate

TPR-tree query time is around 75% the query time of the
DUAL method, but its update time is much worse (above 2.5
times for deletions).

To test how the methods are affected by the query size,
we run experiments using the ND160 dataset and varying the
query spatial predicate from 0.25 to 1.5% of the spatial uni-
verse. Queries were again posted within the predefined hori-
zon and the temporal predicate was maintained at ten instants.
Figure 19 depicts the results for the DUAL and TPR-fixed
methods. In both methods the query time increases gradually
(which is to be expected as the answer size increases since
more objects will satisfy the query).

Next, Fig. 20 shows the performance (again as ratios rel-
ative to DUAL) for queries outside the horizon on the ND160
dataset (we got similar results for ND40 and UNI datasets).
The queries were placed from 1H to 5H outside the horizon
H . The update times are not shown as they are similar to those
of Fig. 15. As expected, queries in the TPR-trees outside the
horizon deteriorate as the query moves further from the hori-
zon. Even for queries within 1H outside the horizon, the TPR
tree uses about twice the query time of the DUAL method.
The query time of the TPR-auto deteriorates faster than the
TPR-fixed since the estimation quality decreases the further
away it moves from the fixed horizon.

Figure 21 shows the space consumption for the ND and
UNI datasets. Clearly the DUAL method uses double the space

Relative performace queries outside horizon, ND160 dataset

0

1

2

3

4

5

6

7

8

9

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

1H 2H 3H 4H 5H

P
er

fo
rm

ac
e

ra
tio

 r
al

at
iv

e
to

 D
U

A
L

QUERY

Fig. 20. ND160 dataset, queries outside the horizon, ratio of perfor-
mance relative to DUAL

Fig. 21. Space consumption for ND/UNI

Fig. 22. Scale-up experiment: space consumption

of the TPR-trees since each point is stored in two indices – one
for each dimension. Figure 22 depicts how the space consump-
tion scales up as the number of objects increases for the ND160
dataset.As expected, the space consumption of all methods in-
creases linearly with the number of moving objects.

The next figures present the results for the “freeway”
datasets created with our own generator. In general, we get
results very similar to those obtained with the TPR-generator
datasets. Figure 23 depicts the performance of the TPR-trees as

G. Kollios et al.: Indexing mobile objects using dual transformations

Relative performace for freeway network, Uniform velocities

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

25CITIES 50CITIES 75CITIES 100CITIES 160CITIES

P
er

fo
rm

ac
e

ra
tio

 r
al

at
iv

e
to

 D
U

A
L

QUERY

INSERTION

DELETION

Fig. 23. Freeway network, uniform velocities, queries within the hori-
zon, ratio of performance relative to DUAL

Relative performace for freeway network, Gaussian velocities

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

25CITIES 50CITIES 75CITIES 100CITIES 160CITIES

P
er

fo
rm

ac
e

ra
tio

 r
al

at
iv

e
to

 D
U

A
L

QUERY

INSERTION

DELETION

Fig. 24. Freeway network, Gaussian velocities, queries within the
horizon, ratio of performance relative to DUAL

a ratio relative to DUAL for uniformly chosen velocities, with
a varying number of cities (destinations) and queries within the
horizon. The TPR-tree again has better query performance, but
it is closer to DUAL than before. Interestingly, TPR-auto has
slightly worse query time than DUAL. The DUAL method has
again much faster update processing times. The corresponding
results for Gaussian velocity distributions appear in Figs. 24
and 25.

Finally, we perform an experiment where the scenario runs
for 4800 time instants. We measure the performance of the in-
dex every 20 time instants and compute the average query
and update performance until the current time. In Fig. 26 we
plot the query performance, for ND40 and queries inside the
horizon. The query performance of the DUAL approach de-
teriorates with time since most of the objects are moving. On
the other hand, the TPR-trees deteriorate fast at the beginning
of the simulation, but at some point they stabilize, around an
average of 80 I/Os per query. Note that this is the average un-
til the current time. Therefore, the query performance is much
worse than the performance at the initial time instants, but it
stabilizes after some time instant. This figure suggests that the
DUAL index must be rebuilt at periodic time intervals in order
to keep the query performance low. Figure 27 depicts the up-

Relative performace for freeway network (queries outside horizon), Gaussian velocities

0

0.5

1

1.5

2

2.5

3

3.5

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

TPR-
fixed

TPR-
auto

25CITIES 50CITIES 75CITIES 100CITIES 160CITIES

P
er

fo
rm

ac
e

ra
tio

 r
al

at
iv

e
to

 D
U

A
L

QUERY

Fig. 25. Freeway network, Gaussian velocities, queries outside the
horizon by 1H, ratio of performance relative to DUAL

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

A
vg

 I/
O

’s
 p

er
 q

ue
ry

Queries answered so far

Simulation running for 4800 time instants

DUAL
TPR-fixed
TPR-auto

Fig. 26. Query performance for increasing current time

6

8

10

12

14

16

18

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

A
vg

. I
/O

’s
 p

er
 u

pd
at

e

Time

Simulation running for 4800 time instants

DUAL
TPR-fixed
TPR-auto

Fig. 27. Update performance for increasing current time

date performance per update for the same experiment. In that
case, all indices stabilize after some initial time period. The
update performance of DUAL is about 1.6 times better than
the TPR-fixed tree and 1.85 times better than the TPR-auto
tree.

G. Kollios et al.: Indexing mobile objects using dual transformations

Discussion. The two-dimensional experiments reveal that for
queries posted within the predefined horizon, the TPR-fixed
tree performs better than the DUAL method (on average
by 20% for datasets generated using the TPR generator and
around 15% for the “freeway” datasets). On the other hand,
when the queries are posted outside the horizon, the TPR-tree
performance is affected dramatically. Even for queries that
are within 1H outside the predefined horizon, the TPR-fixed
tree performs on average 2.5 times worse for the TPR datasets
and 1.75 times worse for the “freeway” datasets. That is, the
performance of the TPR-tree is very closely coupled to the
predefined horizon. While for some applications such a pre-
defined horizon definition is possible, for others it may not be.
In contrast, the DUAL method does not depend upon know-
ing the characteristics of the anticipated workload (i.e., the
parameter UI), neither does it assume any query window W.
Actually, the DUAL method improves as queries move further
into the future because the query selectivity drops. Moreover,
the TPR-auto tree, where the horizon is automatically selected
based on the previous history of updates, did not seem to per-
form as well as the TPR-fixed tree; in the “freeway” datasets it
had worse query performance than the DUAL, even for within
the horizon queries.

We feel that an even more important comparison criterion
for a moving objects environment is the update performance.
Given the large number of objects, updates occur at a much
higher rate than queries. Thus it is crucial for the index method
to have fast update processing in order to maintain a realistic
view of the observed environment. The dual transformation
approach always exhibits significantly faster update perfor-
mance. While the I/O cost for insertion operations is typically
equivalent for both methods (with the TPR-fixed tree having
insertion costs varying from 3% better up to 35% worse than
our method), the I/O cost for deletion operations is always
much higher for the TPR-tree (between 2.5 and 3 times larger
for the TPR datasets and between 1.5 and 2 times larger for the
“freeway” datasets). This is because the TPR-tree recalculates
and reorganizes the time-parameterized MBRs in a bottom-up
fashion whenever an update is issued. These reorganizations
(i.e., making the time-parameterized MBRs tighter) are cru-
cial for the TPR-tree to maintain its good query performance
within the horizon. For periods with larger than average update
intervals, the TPR-tree query behavior deteriorates (as when
queries are outside the predefined horizon).

On the other hand, the DUAL method requires larger
space, about twice what the TPR-tree uses. However, given
the decreasing costs of disk space, it seems that trading space
for update performance is rather useful.

7 Conclusions

We presented external memory techniques for indexing mov-
ing objects in order to efficiently answer range queries about
their location in the future. By employing dual transforma-
tions we illustrated efficient indexing schemes for the one-
dimensional (moving on a line) as well as the two-dimensional
case. We further performed an extensive comparison of our ap-
proach with the TPR-tree, an efficient index that does not use
duality transformation but instead time-parameterized nodes
and a predefined query horizon. While our approach uses com-

parable query time processing (more for queries within the
horizon but less for queries outside the horizon), it has much
less update cost. Updating is an important consideration given
the highly dynamic environment of moving objects. More-
over, the duality approach does not require the specification
of a predefined horizon.

An interesting direction of future research is joins among
relations of mobile objects. Furthermore, it would be worth
considering the problem in the context of uncertainty in the
position and velocity of the mobile objects. The relationship of
indexing techniques and protection of privacy of mobile users
is also a very interesting problem that we plan to consider.
Finally, techniques for answering aggregate complex queries,
such as predicting and reporting areas with high density of
mobile objects, are also of high practical interest.

Acknowledgements. We would like to thank Simonas Šaltenis for
providing the source code for the TPR-tree and many helpful dis-
cussions. We also want to thank the anonymous reviewers for their
valuable comments and suggestions that helped to improve the paper.

References

1. Agarwal PK, Arge L, Erickson J (2000) Indexing moving points.
In: Proceedings of the 19th ACM symposium on principles of
database systems, pp 175–186

2. Agarwal PK, Arge L, Erickson J, Franciosa PG, Vitter JS (1998)
Efficient searching with linear constraints. In: Proceedings of
the 17th ACM symposium on principles of database systems,
pp 169–178

3. Agarwal PK, Har-Peled S (2001) Maintaining approximate exten
measures of moving points. In: Proceedings of the 12th ACM-
SIAM symposium on discrete algorithms, pp 148–157

4. Aggarwal A, Vitter JS (1988) The input/output complexity of
sorting and related problems. Commun ACM 31(9):1116–1127

5. Arge L, Samoladas V, Vitter JS (1999) On two-dimensional
indexability and optimal range search indexing. In: Proceedings
of the 18th ACM PODS, pp 346–357

6. Arge L, Vitter JS (1996) Optimal dynamic interval management
in external memory. In: Proceedings of the 37th annual sympo-
sium on foundations of computer science, pp 560–569

7. Basch J, Guibas L, Hershberger J (1997) Data structures for
mobile data. In: Proceedings of the 8th ACM-SIAM symposium
on discrete algorithms, pp 747–756

8. Beckmann N, Kriegel H, Schneider R, Seeger B (1998) The
R*-tree: an efficient and robust access method for points and
rectangles. In: Proceedings of ACM SIGMOD, Atlantic City,
NJ, pp 322–331

9. Chazelle B, Rosenberg B (1992) Lower bounds on the com-
plexity of simplex range reporting on a pointer machine. In:
Proceedings of the 19th international colloquium on automata,
languages and programming. Lecture notes in computer science,
vol 623. Springer, Berlin Heidelberg New York, pp 439–449

10. Choi Y-J, Chung C-W (2002) Selectivity estimation for spatio-
temporal queries to moving objects. In: Proceedings of ACM
SIGMOD, Madison, WI, pp 440–451

11. Chomicki J, Revesz P (1999) A geometric framework for speci-
fying spatiotemporal objects. In: Proceedings of the 6th interna-
tional workshop on time representation and reasoning, pp 41–46

12. Chon HD, Agrawal D, El Abbadi A (2002) Query processing for
moving objects with space-time grid storage model. In: Proceed-
ings of the 3rd international conference on mobile data manage-
ment, pp 121–126

G. Kollios et al.: Indexing mobile objects using dual transformations

13. Cole R (1986) Searching and storing similar lists. J Algorithms
7(2):202–220

14. Driscoll J, Sarnak N, Sleator D, Tarjan RE (1989) Making data
structures persistent. J Comput Sys Sci 38(1):86–124

15. http://europa.eu.int/eur-lex/pri/en/oj/dat/
2002/l 201/l 20120020731en00370047.pdf (2002)

16. Elbassioni KM, ElmasryA, Kamel I (2003) An efficient indexing
scheme for multi-dimensional moving objects. In: Proceedings
of the 9th international conference on database theory (ICDT),
pp 425–439

17. Gaede V, Günther O (1998) Multidimensional access methods.
ACM Comput Surv 30(2):170–231

18. Goldstein J, Ramakrishnan R, Shaft U,Yu JB (1997) Processing
queries by linear constraints. In: Proceedings of the 16th ACM
PODS symposium on principles of database systems, Tucson,
AZ, pp 257–267

19. Günther O (1989) The design of the cell tree: an object-oriented
index structure for geometric databases. In: Proceedings of the
5th IEEE international conference on data engineering, Los An-
geles, pp 598–605

20. Güting RH, Böhlen MH, Erwing M, Jensen CS, Lorentzos NA,
Schneider M, Vazirgiannis M (2000) A foundation for repre-
senting and querying moving objects. ACM Trans Database Sys
26(1):1–42

21. Guttman A (1984) R-trees: a dynamic index structure for spatial
searching. In: Proceedings ofACM SIGMOD, Boston, pp 47–57

22. Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras V (2003)
On-line discovery of dense areas in spatio-temporal databases.
In: Proceedings of the 8th SSTD, pp 306–324

23. Hadjieleftheriou M, Kollios G, Tsotras V (2003) Performance
evaluation of spatio-temporal selectivity estimation techniques.
In: Proceedings of the 15th international conference on scientific
and statistical database management, pp 202–211

24. Jagadish HV(1990) On indexing line segments. In: Proceedings
of the 16th international conference on very large data bases,
Brisbane, Queensland, Australia, pp 614–625

25. Kalashnikov DV, Prabhakar S, Hambrusch SE, Aref WG (2002)
Efficient evaluation of continuous range queries on moving
objects. In: Proceedings of the 13th international conference
DEXA, pp 731–740

26. Kollios G, Gunopulos D, Tsotras V (1999) Nearest neighbor
queries in a mobile environment. In: Proceedings of the 1st
workshop on spatio-temporal database management, Edinburgh,
UK, pp 119–134

27. Kollios G, Gunopulos D, Tsotras V (1999) On indexing mo-
bile objects. In: Proceedings of the 18th ACM symposium on
principles of database systems, pp 261–272

28. Lazaridis I, Porkaew K, Mehrotra S (2002) Dynamic queries
over mobile objects. In: Proceedings of the 8th international
conference on extending database technology, pp 269–286

29. Matousek J (1992) Efficient partition trees. Discrete Comput
Geom 8:432–448

30. Mokhtar H, Su J, Ibarra OH (2002) On moving object queries.
In: Proceedings of the 21st ACM PODS, pp 188–198

31. Overmars MH (1983) The design of dynamic data structures.
Lecture notes in computer science, vol 156. Springer, Berlin
Heidelberg New York

32. Papadias D, Tao Y, Kalnis P, Zhang J (2002) Indexing spatio-
temporal data warehouses. In: Proceedings of the 18th interna-
tional conference on data engineering, pp 166–175

33. Papadopoulos D, Kollios G, Gunopulos D, Tsotras VJ (2002)
Indexing mobile objects on the plane. In: Proceedings of the 5th
international workshop on mobility in databases and distributed
systems (DEXA), Aix-en-Provence, France, pp 693–697

34. Patel J, Chen Y, Chakka VP (2004) STRIPES: an efficient index
for predicted trajectories. In: Proceedings of ACM SIGMOD

35. Pfoser D, Jensen C, Theodoridis Y (2000) Novel approaches in
query proceedings for moving objects. In: Proceedings of the
26th international conference on very large data bases, pp 395–
406

36. Porkaew K, Lazaridis I, Mehrotra S (2001) Querying mobile
objects in spatio-temporal databases. In: Proceedings of the 7th
SSTD, pp 59–78

37. Prabhakar S, Xia Y, Kalashnikov DV, Aref W, Hambrusch S
(2002) Query indexing and velocity constrained indexing: scal-
able techniques for continuous queries on moving objects. In:
IEEE Trans Comput 51(10):1124–1140

38. Procopiuc CM, Agarwal PK, Har-Peled S (2002) Star-tree: an
efficient self-adjusting index for moving objects. In: Proceedings
of the 4th workshop on algorithm engineering and experiments,
pp 178–193

39. Saltenis S, Jensen C, Leutenegger S, Lopez MA (1999) Indexing
the positions of continuously moving objects. Time-CenterTech-
nical Report TR-44. http://www.cs.auc.dk/research/DP/tdb/
TimeCenter/TimeCenterPublications/TR-44.pdf

40. Saltenis S, Jensen C, Leutenegger S, Lopez MA (2000) Indexing
the positions of continuously moving objects. In: Proceedings
of ACM SIGMOD, pp 331–342

41. Saltenis S, Jensen CS (2002) Indexing of moving objects for
location-based services. In: Proceedings of the 18th international
conference on data engineering, San Jose, CA, pp 463–472

42. Samet H (1990) The design and analysis of spatial data struc-
tures. Addison-Wesley, Reading, MA

43. Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-tree: a
dynamic index for multi-dimensional objects. In: Proceedings
of the 13th international conference on very large data bases,
Brighton, UK, pp 507–518

44. Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Model-
ing and querying moving objects. In: Proceedings of the 13th
international conference on data engineering, pp 422–432

45. Song Z, Roussopoulos N (2001) K-nearest neighbor search for
moving query points. In: Proceedings of the 7th SSTD, Redondo
Beach, CA, pp 79–96

46. Subramanian S, Ramaswamy S (1995) The P-range tree: a new
data structure for range searching in secondary memory. In:
Proceedings of the 6th annual symposium on discrete algorithms,
New York, pp 378–387

47. Tao Y, Kollios G, Considine J, Li F, Papadias D (2004) Spatio-
temporal aggregation using sketches. In: Proceedings of the 20th
international conference on data engineering, pp 214–226

48. TaoY, Papadias D (2002) Time-parameterized queries in spatio-
temporal databases. In: Proceedings of ACM SIGMOD, Madi-
son, WI, pp 334–345

49. Tao Y, Papadias D, Qiongmao S (2002) Continuous nearest
neighbor search. In: Proceedings of the 28th international con-
ference on very large data bases, pp 287–298

50. Tao Y, Papadias D, Sun J (2003) The TPR*-tree: an optimized
spatio-temporal access method for predictive queries. In: Pro-
ceedings of the 29th international conference on very large data
bases, pp 790–801

51. Tao Y, Sun J, Papadias D (2003) Selectivity estimation for pre-
dictive spatio-temporal queries. In: Proceedings of the 19th in-
ternational conference on data engineering, Bangalore, India,
pp 417–428

52. Tayeb J, Olusoy O, Wolfson O (1998) A quadtree-based dynamic
attribute indexing method. Comput J 41(3):185–200

53. Wolfson O, Chamberlain S, Dao S, Jiang L, Mendez G (1998)
Cost and imprecision in modeling the position of moving ob-

G. Kollios et al.: Indexing mobile objects using dual transformations

jects. In: Proceedings of the 14th international conference on
data engineering, Orlando, FL, pp 588–596

54. Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving objects
databases: issues and solutions. In: Proceedings of the 11th in-
ternational conference on scientific and statistical database man-
agement, Capri, Italy, pp 111–122

55. Zhu H, Su J, Ibarra OH (2002) Trajectory queries and octagons
in moving object databases. In: Proceedings of the 11th ACM
international conference on information and knowledge man-
agement, pp 413–421

