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Abstract

Sensor networks have recently attracted much attention,
because of their potential applications in a number of
different settings. The sensors can be deployed in large
numbers in wide geographical areas, and can be used to
monitor physical phenomena, or to detect certain events.

An interesting problem which has not been ade-
quately addressed so far is that of distributed online de-
viation detection in streaming data. The identification of
deviating values provides an efficient way to focus on the
interesting events in the sensor network.

In this work, we propose a technique for online devi-
ation detection in streaming data. We discuss how these
techniques can operate efficiently in the distributed en-
vironment of a sensor network, and discuss the tradeoffs
that arise in this setting. Our techniques process as much
of the data as possible in a decentralized fashion, so as
to avoid unnecessary communication and computational
effort.

1 Introduction

Advances in processor technologies and wireless com-
munications have enabled the deployment of small, low
cost and power efficient sensor nodes in both civil
and military settings [WLLP01, SS02, OC02, IGE00,
IEGH02, SAA03, LBA�02]. The sensors can be de-
ployed in large numbers in wide geographical areas and
can be used to monitor, detect and report time-critical
events (like earthquakes, chemical spills, or the position
and trajectory of moving objects) such that the urgency
of the situation is evaluated and distributed efforts are
coordinated in a timely manner.

Consider for example a disaster recovery situation
where there has been a chemical spill in a given region.
Before attempting to control the disaster, we must first
find the extent of the current contamination and figure
out how the concentration is changing over time so as to
estimate the possible reach of the contamination. This
requires that the data is collected online from multiple
sensors and analyzed dynamically in order to evaluate
the accuracy of the threat and respond in real-time.

We propose a technique for distributed deviation, or
outlier, detection in real-time streaming data. That is, we
are interested in finding those values that deviate signif-
icantly from the norm. This problem is especially im-
portant in the sensor network setting because it can be
used to identify faulty sensors, and to filter spurious re-
ports from different sensors. Even if we are certain of
the quality of measurements reported by the sensors, the
identification of outliers is still a valuable process. It pro-
vides an efficient way to focus on the interesting events
in the sensor network.

The context of the sensor networks makes the prob-
lem more challenging. First, sensors have limited re-
source capabilities, including limited battery lifetime,
communication bandwidth, CPU capacity and are sub-
ject to frequent disconnections. Second, data coming
from many different streams have to be examined dy-
namically and combined to detect deviations. In such an
environment, we need to minimize the processing and
communication overhead of the sensors. The goal is to
process as much of the data as possible in a decentral-
ized fashion, so as to avoid unnecessary communication
and computation effort. Identifying deviations is itself a
first step towards reducing the communication cost, and
prolonging the life span of the sensors. This is true, be-
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cause there is no need for the sensors to transmit values
that follow some general trends already known. What we
are really interested in are values that do not follow our
models for the data-generating processes.

In this work, we propose the use of kernel density es-
timators for online deviation detection in streaming data.
We describe how these techniques can operate efficiently
in the distributed environment of a sensor network, and
elaborate on the tradeoffs that arise in this setting. Fi-
nally, we discuss techniques for timeliness guarantees on
the delivery of the streaming data.

The rest of the paper is organized as follows. Sec-
tion 2 describes the overall architecture of the system.
In Section 3 we elaborate on the problem we are trying
to solve. We present the techniques we use for the so-
lution of the problem, and we discuss the properties and
functionality of our approach. Section 4 provides some
background on the related work, and we conclude in Sec-
tion 5.

2 Proposed Architecture

We envision a sensor network consisting of a large num-
ber of cheap, static sensors. These sensors are limited in
terms of their processing and transmission power capa-
bilities, but can be deployed quickly to cover a geograph-
ical area.

While the traditional settings assume that the sensor
data are gathered in a centralized location and analyzed
offline, in our model we assume the existence of addi-
tional more powerful and sophisticated nodes that are de-
ployed in small numbers (typically orders of magnitude
less than the number of low capacity sensors). We as-
sume that these nodes have large communication range
and can communicate with each other using a separate
frequency channel so as not to interfere with the sen-
sor communications. These are used to perform more
powerful computations, such as the detection of outliers.
Figure 1 shows an example of this kind of network. The
white circles in the figure denote the low capacity sen-
sors, and the black circles the high capacity ones.

In addition to the usual connections among the low
capacity sensors, there is another type of connections
involving the high capacity sensors. Taking advantage
of the limited number of the more powerful sensors, we
can assign entire groups of the low capacity sensors to
them. An obvious way of making this assignment would
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Figure 1: Example of a sensor network with two dif-
ferent types of sensors.

be based on spatial proximity. Hence, different parts of
the area covered by the deployed sensors are assigned to
different groups, and consequently, to different high ca-
pacity sensors. Alternatively, the low capacity sensors
may be organized into groups in response to some query,
so as to provide the best possible answers. In either case,
the structure of the groups is not statically assigned, but
is rather dynamic in nature.

Moreover, we may assume that the high capacity sen-
sors are organized in groups as well. These sensors re-
port to operation centers, which can be considered as an
additional level in the communication structure.

3 Defining Abnormal Behaviour

An outlier is “an observation that appears to deviate
markedly from other members of the sample in which it
occurs” [BL94]. This fact may raise suspicions that the
specific observation was generated by a different mech-
anism than the rest of the data. This mechanism may be
an erroneous procedure of data measurement and collec-
tion, or an inherent variability in the domain of the data
under inspection. Nevertheless, in both cases such ob-
servations are interesting, and the analyst would like to
know about them.

In our case, the goal is to be able to report outlying
values coming from unknown generative processes (i.e.,
the data distribution is not known). As the data values
come in, we build a model of these values. In essence,
we try to approximate the distribution of the data. Then,
we term outliers the values that deviate significantly from
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that model.

3.1 Outliers in Sensor Networks

We examine the problem of identifying outliers in a sen-
sor network in two stages. First, we discuss the tech-
nique we use to model the data distribution. Second, we
focus on the problem of managing and combining these
models in the network of sensors.

We subsequently discuss the issue of timeliness guar-
antees on the delivery of the streaming data. Finally,
we identify and analyze some tradeoffs that arise in our
framework.

3.1.1 Estimation Model

The model we use to estimate the distribution of the val-
ues generated by the sensors is based on kernel density
estimators1 [Sco92]. For simplicity, we only discuss the
one dimensional case. Yet, this approach is easily ex-
tended to higher dimensionalities. Assume that we have
a static relation, � , that stores the values, �, whose dis-
tribution we want to approximate. The recorded values
must fall in the interval ��� ��. This requirement is not
restrictive, since we can map the operational range of the
sensors to the interval ��� ��. Let� be a random sample of
� , and ���� a function, such that

�
�����

������ � �, for
all tuples in �. We call ���� the kernel function. Then,
we can approximate the underlying distribution ����, ac-
cording to which the values in � were generated, using
the following function

���� �
�

�

�
����

���� ���	

The choice of the kernel function is not significant
for the results of the approximation [Cre93]. Hence, we
choose the Epanechnikov kernel that is easy to integrate:

���� �

�
�
�
�
�

�
�� � �

�
��
�

, � �
�
� 
 �

� , otherwise

where� is the bandwidth of the kernel function. In order
to set �, we use Scott’s rule [Sco92]: � �

�
������ �

� ,
where � is the standard deviation of the values in � .

Given a value �� and the density distribution function
����, we can estimate the number of values that are in

1Other model estimation techniques can be used in our framework
as well.

the neighborhood of ��. This allows us to identify dis-
tance based outliers [KN98]. In particular, we have to
check the number of values, 
���� ��, in � that fall in a
sphere of radius � around �� [KGKB03]. If this number
is less than an application-specific threshold � then �� is
an outlier. The equation for the computation of 
�� �� ��

is as follows


���� �� �

�
sphere of radius � around ��

������	

We should add that the kernel density estimation tech-
nique can also be employed in the presence of multi-
variate distributions, and has been shown to approxi-
mate unknown data distributions efficiently and effec-
tively [GKTD00].

In the sensor network environment we require that
each sensor maintains a model for the distribution of val-
ues it generates. Since we are not interested in the entire
history of the values produced by the sensors, it suffices
to consider the values in a sliding window of size 
 .
Then, � holds only the values in the sliding window, that
is, the 
 most recent values.

Note that in this case we cannot directly apply the
above analysis, since � is continuously changing as a
function of time. Therefore, we adapt our technique as
follows. The set � is once again a random sample of
� , but it is now computed as a sample of a sliding win-
dow. The other quantity we need for the estimation of the
data distribution is the standard deviation � of the values
in the sliding window (used for the computation of the
bandwidth, �). Both the above operations can be effi-
ciently supported in a data streaming environment with
sliding windows [BDM02, BDMO03].

3.1.2 Distributed Deviation Detection

In the previous section we described the model we use
to estimate the data distributions, and explained how we
can use this model to identify outliers among the values
reported by a sensor. We will now discuss the issues that
arise when we consider the setting of a network with a
large number of sensors.

Assume we have a sensor network similar to the one
shown in Figure 1. The presence of low and high capac-
ity sensors offers a multiresolution view to the deviation
detection problem. When we are at the lowest level (i.e.,
low capacity sensors), we identify local outliers. As we
move up (i.e., high capacity sensors), we attain a more
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Figure 2: Example of model composition.

global perspective, and the outliers we report are with
respect to all the sensors of a particular area.

In order for this setting to work, we have in place a
mechanism for model composition. This allows us to
take the data distribution models of two different sensors
in the network and come up with a single model that de-
scribes the behaviour of the data of both sensors. We
then assign this combined model to another sensor, e.g.,
a sensor of high capacity (see Figure 2).

In the case of kernel density estimators, there are two
quantities that we have to take care of. Namely, the sam-
ple set, �, and the bandwidth of the kernel function, �
(refer to Section 3.1.1). We can combine the sample sets
just by taking their union. This is possible because both
samples are uniform. We may then reduce the size of
the resulting set by resampling, if necessary. In order
to combine the bandwidths of two kernel functions, we
only need to combine the two standard deviations upon
which the bandwidths depend. This is accomplished us-
ing the same techniques as the ones for computing the
standard deviation in a sliding window of streaming data.

The above process gives to the high capacity sensors
a coarse view of the sensor network, where the details
specific to different parts of the deployment area have
been masked away. If we wish to recover these details,
we have to query the low capacity sensors directly.

3.1.3 Real-Time Delivery of Sensor Data

One important issue in distributed online deviation de-
tection, is how to deliver the streaming data to remote
sensors in a timely manner. This is important because
if the high capacity sensors fail to collect and analyze
current data generated by the sensors, this may lead to
inconsistencies in identifying an outlier and determining
the criticality of a situation. In such circumstances, we
need distributed real-time scheduling algorithms to pro-
vide timeliness guarantees.

Streaming data may need to be delivered in sequence,
or in parallel, on one or more sensors (e.g., a report de-

livered from one sensor to another until it reaches a high
capacity sensor). These are delivered through the gener-
ation of distributed events. With each distributed event
we associate the following timing parameters:

� Deadline: The relative time after the initiation of
the event, within which the event must be delivered
to the destination.

� Importance: a parameter that represents the relative
priority of the events. A low importance event may
need to be delayed to meet the deadline of a high
importance event.

The degree to which end-to-end timeliness is achieved
in a sensor network is a combination of two factors; the
relative importance of the event (e.g., high urgency or
low urgency) and its deadline. The deadline essentially
represents a measure of priority for the event; the higher
priority goes to the event with the smallest deadline.

3.1.4 Tradeoffs

The framework we describe provides a flexible means for
outlier detection in sensor networks. Yet, it also raises
some questions that need to be explored in more detail.

The kernel density estimation model that we propose
is capable of adjusting itself to the input data distribution,
as this distribution changes over time. Both the sample
and the standard deviation of the data values, needed for
the estimation of the underlying distribution, are being
constantly adjusted, following the way the values in the
sliding window change. However, we also need a self-
correcting mechanism, able of fine-tuning other parame-
ters of the model, e.g., the size of the sample, in case the
distribution of the data changes drastically.

We also need to be able to quantify the accuracy of
the combined models. That is, we need to know how
much information we lose just by combining two differ-
ent models into one. This process will provide quality
guarantees for the generated results.

Finally, once merged, the accuracy of the combined
models will depend greatly on the frequency of updates
of their parameters from the underlying models. This is
a question of how much and how often we should prop-
agate information from the low capacity sensors to the
high capacity ones, in order to keep the models at all
levels synchronized with the changes in the data distri-
butions.
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Figure 3: The tradeoffs space.

The common denominator to all the above issues is
the introduction of the right set of statistics. These statis-
tics can give an indication of the accuracy of the models
we employ for approximating the data distributions, and
subsequently of the way that the parameters of the mod-
els should be altered. They can also help to control the
tradeoff between the desired accuracy of results and the
performance penalty. This tradeoff is expressed in terms
of memory space and number of messages exchanged in
the network, and quality of results. The goal is to satisfy
the application accuracy requirements while maintaining
the resource consumptions to a minimum.

In general, we expect to achieve higher accuracy in
the results when we increase the size of the models and
the frequency with which we update these models. Nev-
ertheless, in several cases, the requirements are dictated
by the applications. Assume, for example, that we are
interested in identifying outliers in a sensor network that
monitors temperature inside a building. Then, small
sized models, updated with modest frequency, are ade-
quate to provide qualitative answers. If we perform the
same task in a desert, where there are big temperature
variations (e.g., day vs. night and shadow vs. sunlight),
we need more sophisticated models to achieve the same
degree of accuracy. Finally, if instead of temperature we
monitor sounds, then we may need to update our models
more frequently, in order to adapt to a fast changing en-
vironment. The above tradeoffs are graphically depicted
in Figure 3.

4 Related Work

There has been much work in the areas of sensor net-
works, outliers, and streaming data, but no work that lies

in the intersection of these areas.

Madden and Franklin [MF02] present a framework
for the efficient execution of queries in a sensor net-
work. The problem of evaluating aggregate operators
in a sensor network is addressed by Madden et al.
[MFH02]. The authors present a taxonomy of vari-
ous aggregate operators, and propose techniques for ef-
ficient, distributed execution of these operators in the
network. A subsequent study [HHMS03] presents ap-
plications of the above framework, namely, topographic
mapping, wavelet-based compression, and vehicle track-
ing. Yao and Gehrke [YG03] investigate the problem
of query processing in sensor networks as well. They
present schemes for in-network aggregation similar to
the previous studies, and crash recovery techniques. Bu-
lut et al. [BSV03] describe a scalable, distributed index-
ing architecture for streaming data.

There is extensive literature in the statistics commu-
nity regarding outlier detection [BL94]. Several algo-
rithms have been proposed for the problem of finding
deviations in large datasets [KN98] [RRS00] [BKNS00]
[AAR96] [SAM98] [PK01]. However, none of the above
approaches is directly applicable to a streaming data en-
vironment.

Several studies have proposed new algorithms for
solving traditional database problems in the data stream-
ing context. A decision tree classification algorithm
for streaming data was presented by Hulten et al.
[HSD01]. Two additional algorithms for streaming data,
one for computing correlated aggregates [GKS01] and
another for answering aggregate queries approximately
[GKMS01], have been described in the literature. Two
recent studies [CDIM02] [DM02] present solutions to
specific problems in data stream management, with ap-
proximation guarantees. The first one finds the num-
ber of distinct items in a single data stream, and the
number of unequal item counts in a combination of two
streams. The second study estimates the rarity of data
items, and the similarity of two data streams. A related
problem, is the one of identifying correlations in stream-
ing data [GGK03]. This work proposes techniques based
on singular value decomposition for capturing correla-
tions between multiple streams. Finally, Palpanas et
al. [PVK�04] describe algorithms for online approxima-
tion of streaming data, using user-defined time-decaying
functions to specify the accuracy of the approximation.
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5 Conclusions

During the recent years, sensor networks have become
increasingly popular. Recent efforts have been devoted
in this area, demonstrating their functionality and wide
applicability.

In this paper, we address the problem of deviation de-
tection in the environment of sensor networks, which has
not been studied in the literature. We describe a tech-
nique for online identification of outliers in a stream of
data, such as the one produced by a sensor. We then dis-
cuss how to extend this technique to an entire network
of sensors, taking into consideration the distributed pro-
cessing of events, as well as the need for response time
guarantees in the delivery of the sensor data.
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