
Subspace Clustering of High Dimensional Data

Carlotta Domeniconi

George Mason University

carlotta@ise.gmu.edu

Dimitris Papadopoulos Dimitrios Gunopulos

University of California Riverside

{dimitris,dg}@cs.ucr.edu

Sheng Ma

IBM T. J. Watson Research Center

shengma@us.ibm.com

Abstract

Clustering suffers from the curse of dimensionality, and sim-
ilarity functions that use all input features with equal rele-
vance may not be effective. We introduce an algorithm that
discovers clusters in subspaces spanned by different combi-
nations of dimensions via local weightings of features. This
approach avoids the risk of loss of information encountered
in global dimensionality reduction techniques, and does not
assume any data distribution model. Our method asso-
ciates to each cluster a weight vector, whose values capture
the relevance of features within the corresponding cluster.
We experimentally demonstrate the gain in perfomance our
method achieves, using both synthetic and real data sets. In
particular, our results show the feasibility of the proposed
technique to perform simultaneous clustering of genes and
conditions in microarray data.

1 Introduction

The clustering problem concerns the discovery of homo-
geneous groups of data according to a certain similarity
measure. Given a set of multi-dimensional data, clus-
tering finds a partition of the points into clusters such
that the points within a cluster are more similar to each
other than to points in different clusters.

Clustering suffers from the curse of dimensionality.
In high dimensional spaces, it is highly likely that, for
any given pair of points within the same cluster, there
exist at least a few dimensions on which the points are
far apart from each other. As a consequence, distance
functions that equally use all input features may not
be effective. Furthermore, several clusters may exist in
different subspaces, comprised of different combinations
of features. In many real world problems, in fact, some
points are correlated with respect to a given set of
dimensions, and others are correlated with respect to
different dimensions. Each dimension could be relevant
to at least one of the clusters.

One solution to high dimensional settings consists
in reducing the dimensionality of the input space. Tra-
ditional feature selection algorithms select certain di-
mensions in advance. Methods such as Principal Com-
ponent Analysis (PCA) [9] transform the original input
space into a lower dimensional space by constructing di-
mensions that are linear combinations of the given fea-
tures, and are ordered by nonincreasing variance. While
PCA may succeed in reducing the dimensionality, it has
major drawbacks. The new dimensions can be difficult
to interpret, making it hard to understand clusters in
relation to the original space. Furthermore, all global
dimensionality reduction techniques (like PCA) are not
effective in identifying clusters that may exist in dif-
ferent subspaces. In this situation, in fact, since data
across clusters manifest different correlations with fea-
tures, it may not always be feasible to prune off too
many dimensions without incurring a loss of crucial in-
formation. This is because each dimension could be
relevant to at least one of the clusters.

These limitations of global dimensionality reduction
techniques suggest that, to capture the local correlations
of data, a proper feature selection procedure should op-
erate locally in the input space. Local feature selection
allows different distance measures to be embedded in
different regions of the input space; such distance met-
rics reflect local correlations of data. In this paper we
propose a soft feature selection procedure that assigns
(local) weights to features according to the local corre-
lations of data along each dimension. Dimensions along
which data are loosely correlated receive a small weight,
that has the effect of elongating distances along that di-
mension. Features that correlate strongly with data re-
ceive a large weight, which has the effect of constricting
distances along that dimension.

2 Related Work

The problem of finding different clusters in different
subspaces of the original input space has been addressed
in [3]. The authors use a density based approach to
identify clusters. The algorithm (CLIQUE) proceeds
from lower to higher dimensionality subspaces and
discovers dense regions in each subspace. While the
work in [3] successfully introduces a methodology for
looking at different subspaces for different clusters, it
does not compute a partitioning of the data into disjoint
groups. In fact, the reported dense regions largely
overlap. On the other hand, for many applications
such as customer segmentation and trend analysis, a
partition of the data is desirable since it provides a clear
interpretability of the results.

Recently [11], another density-based projective
clustering algorithm (DOC/FastDOC) has been pro-
posed. This approach requires the maximum distance
between attribute values (i.e. maximum width of the
bounding hypercubes) as parameter in input, and pur-
sues an optimality criterion defined in terms of density
of each cluster in its corresponding subspace. A Monte
Carlo procedure is then developed to approximate with
high probability an optimal projective cluster. In prac-
tice it may be difficult to set the parameters of DOC, as
each relevant attribute can have a different local vari-
ance.

The problem of finding different clusters in differ-
ent subspaces is also addressed in [1]. The proposed
algorithm (PROjected CLUStering) seeks subsets of di-
mensions such that the points are closely clustered in
the corresponding spanned subspaces. Both the num-
ber of clusters and the average number of dimensions
per cluster are user-defined parameters. In contrast to
the PROCLUS algorithm, our method does not require
to specify the average number of dimensions to be kept
per cluster. For each cluster, in fact, all features are
taken into consideration, but properly weighted. The
PROCLUS algorithm is more prone to loss of informa-
tion if the number of dimensions is not properly cho-
sen. ORCLUS [2] modifies the PROCLUS algorithm by
adding a merging process of clusters, and selecting for
each cluster principal components instead of attributes.

3 Problem Statement

We define what we call weighted cluster. Consider a
set of points in some space of dimensionality N . A
weighted cluster C is a subset of data points, together
with a vector of weights w = (w1, . . . , wN), such that
the points in C are closely clustered according to the L2

norm distance weighted using w. The component wj

measures the degree of correlation of points in C along
feature j. The problem becomes now how to estimate

the weight vector w for each cluster in the data set.
In this setting, the concept of cluster is not based

only on points, but also involves a weighted distance
metric, i.e., clusters are discovered in spaces trans-
formed by w. Each cluster is associated with its own w,
that reflects the correlation of points in the cluster itself.
The effect of w is to transform distances so that the as-
sociated cluster is reshaped into a dense hypersphere of
points separated from other data. In traditional cluster-
ing, the partition of a set of points is induced by a set of
representative vectors, also called centroids. The parti-
tion induced by discovering weighted clusters is formally
defined as follows.
Definition: Given a set S of D points x in the
N -dimensional Euclidean space, a set of k centers
{c1, . . . , ck}, cj ∈ <N , j = 1, . . . , k, coupled with a
set of corresponding weight vectors {w1, . . . ,wk}, wj ∈
<N , j = 1, . . . , k, partition S into k sets {S1, . . . , Sk}:
Sj = {x|(

∑N
i=1

wji(xi − cji)
2)1/2 < (

∑N
i=1

wli(xi −
cli)

2)1/2, ∀l 6= j}, where wji and cji represent the ith
components of vectors wj and cj respectively (ties are
broken randomly).

The set of centers and weights is optimal with re-
spect to the Euclidean norm, if they minimize the error
measure: E1(C, W) =

∑k
j=1

∑N
i=1

wjie
−Xji subject to

the constraints
∑N

i=1
w2

ji = 1 ∀j. C and W are (N × k)
matrices whose column vectors are cj and wj respec-
tively, i.e. C = [c1 . . . ck] and W = [w1 . . .wk]. Xji

represents the average distance from the centroid cj of
points in cluster j along dimension i, and is defined as
Xji = 1

|Sj |

∑
x∈Sj

(cji−xi)
2, where |Sj | is the cardinality

of set Sj . The exponential function E1 has the effect of
making the weights wji more sensitive to changes in Xji,
and therefore to changes in local feature relevance. This
allows larger error improvements as we adapt the values
of weights and centers, and therefore a faster computa-
tion to achieve spherically shaped clusters (separated
from each other) in the space transformed by optimal
weights. In the following we present an algorithm that
finds a solution (set of centers and weights) that is a
local minimum of the error function E1.

4 Locally Adaptive Clustering Algorithm

We start with well-scattered points in S as the k
centroids: we choose the first centroid at random,
and select the others so that they are far from one
another, and from the first chosen center. We initially
set all weights to 1/

√
N . Given the initial centroids

cj , for j = 1, . . . , k, we compute the corresponding
sets Sj as given in the definition above. We then
compute the average distance along each dimension
from the points in Sj to cj . Let Xji denote this
average distance along dimension i. The smaller Xji is,

the larger is the correlation of points along dimension
i. We use the value Xji in an exponential weighting
scheme to credit weights to features (and to clusters):

wji = exp(−h × Xji)/(
∑N

l=1
(exp(−h × 2 × Xjl)))

1/2,
where h is a parameter that can be chosen to maximize
(minimize) the influence of Xji on wji. We empirically
determine the value of h through cross-validation in
our experiments with simulated data. We set the
value of h to 9 in the experiments with real data
(DNA microarray). The exponential weighting is more
sensitive to changes in local feature relevance [5] and
gives rise to better performance improvement. Note
that the technique is centroid-based because weightings
depend on the centroid. The computed weights are
used to update the sets Sj , and therefore the centroids’
coordinates. The procedure is iterated until convergence
is reached, i.e. no change in centers’ coordinates is
observed. The resulting algorithm, that we call LAC
(Locally Adaptive Clustering), is summarized in the
following.
Input: D points x ∈ RN , k, and h.

1. Start with k initial centroids c1, c2, . . . , ck;

2. Set wji = 1/
√

N , for each centroid cj , j = 1, . . . , k and
each feature i = 1, . . . , N ;

3. For each centroid cj , and for each point x:

• Set Sj = {x|j = arg minl Lw(cl,x)}, Lw(cl,x) =

(
∑N

i=1
wli(cli − xi)

2)1/2;

4. Compute new weights. For each centroid cj , and
for each feature i:

• Set Xji =
∑

x∈Sj
(cji − xi)

2/|Sj |;

• Set wji = exp(−h × Xji)/(
∑N

l=1
exp(−h × 2 ×

Xjl))
1/2;

5. For each centroid cj , and for each point x:

• Recompute Sj = {x|j = arg minl Lw(cl,x)};

6. Compute new centroids. Set cj =

∑
x

x1Sj
(x)

∑
x

1Sj
(x)

, for

each j = 1, . . . , k, where 1S(.) is the indicator function
of set S;

7. Iterate 3,4,5,6 until convergence.

We prove the convergence of LAC in [7].

5 Experimental Evaluation

In our experiments we have designed 5 simulated data
sets. Clusters are distributed as multivariate gaussians
with different means and standard deviations. We have
tested problems with two and three clusters up to 50
dimensions. For each problem, we have generated five
or ten training sets, and for each of them an indepen-
dent test set. We report accuracy results obtained via
5(10)-fold cross-validation comparing LAC, PROCLUS,
DOC, and K-means. Among the subspace clustering

techniques available in the literature, we chose PRO-
CLUS [1] and DOC [11] because they compute a parti-
tion of the data. On the contrary, the CLIQUE tech-
nique [3] and the technique in [6] allow overlapping be-
tween clusters, and thus their results are not directly
comparable with ours. Error rates for simulated data
are computed according to the confusion matrices. The
k centroids for the four algorithms are initialized by
choosing well-scattered points among the given data.
To facilitate the interpretation of weight values, we re-
quire that

∑
i wji = 1 ∀j in our experiments, by prop-

erly adjusting the normalization factor of the weighting
scheme.
Simulated Data

Example1: N = 2 and k = 3. All three clus-
ters are distributed according to multivariate gaus-
sians. Mean vector and standard deviations for each
cluster are respectively: (2, 0) and (4, 1); (10, 0) and
(1, 4); (18, 0) and (4, 1). We generated 60000 data
points, and performed 10-fold cross-validation with
30000 training data and 30000 testing data. Ex-

ample2: N = 30 and k = 2. Both clusters
are distributed according to multivariate gaussians.
Mean vector and standard deviations for each cluster
are respectively: (1, . . . , 1) and (10, 5, 10, 5, . . . , 10, 5);
(2, 1, . . . , 1) and (5, 10, 5, 10, . . . , 5, 10). We gener-
ated 10000 data points, and performed 10-fold cross-
validation with 5000 training and 5000 testing data.
Example3: N = 50 and k = 2. Both clus-
ters are distributed according to multivariate gaus-
sians. Mean vector and standard deviations for each
cluster are: (1, . . . , 1) and (20, 10, 20, 10, . . . , 20, 10);
(2, 1, . . . , 1) and (10, 20, 10, 20, . . . , 10, 20). We gener-
ated 10000 data points, and performed 10-fold cross-
validation with 5000 training data and 5000 testing
data. Example 4: This data set consists of off-axis
oriented clusters, with N = 2 and k = 2. We gen-
erated 20000 data points, and performed 5-fold-cross-
validation with 10000 training data and 10000 test-
ing data. Example 5: This data set constists again
of off-axis oriented two dimensional clusters. This
data set contains three clusters. We generated 30000
data points, and performed 5-fold-cross-validation with
15000 training data and 15000 testing data.
Real Data

In our experiments we used seven different real data
sets. The OQ-letter, Wisconsin breast cancer, Pima
Indians Diabete, and Sonar data sets are taken from
the UCI Machine Learning Repository. The Image
data set is obtained from the MIT Media Lab. The
characteristics of these data sets are as follows. OQ:
1536 records, N = 16, and k = 2; Breast: 683 records,
N = 9, and k = 2; Pima: 768 records, N = 8, and

Table 1: Average error rates for simulated data.
LAC PROCLUS K-means DOC

Ex1 11.4±0.3 13.8±0.7 24.2±0.5 35.2± 2.2
Ex2 0.5±0.4 27.9±9.8 48.4±1.1 no clusters

Ex3 0.08±0.1 21.6±5.3 48.1±1.1 no clusters

Ex4 4.8±0.4 7.1±0.7 7.7±0.7 22.7± 5.9
Ex5 7.7±0.3 7.0±2.0 18.7±2.7 16.5± 3.9

k = 2; Image: 640 records, N = 16, k = 15; Sonar:
208 data points, N = 60, and k = 2.

To study whether our projected clustering algo-
rithm is applicable to gene expression profiles, we used
two data sets: the B-cell lymphoma [4] and the DNA mi-
croarray of gene expression profiles in hereditary breast
cancer [10]. The lymphoma data set contains 96 sam-
ples, each with 4026 expression values. We clustered
the samples with the expression values of the genes as
attributes (4026 dimensions). The samples are catego-
rized into 9 classes according to the category of mRNA
sample studied. We used the class labels to compute
error rates. Again, error rates are computed according
to the confusion matrices.

We also experiment our algorithm with a DNA
microarray of gene expression profiles in hereditary
breast cancer [10]. The microarray contains expression
levels of 3226 genes under 22 conditions. The data set is
presented as a matrix: each row corresponds to a gene,
and each column represents a condition under which the
gene is developed. Biologists are interested in finding
set of genes showing strikingly similar up-regulation
and down-regulation under a set of conditions. We
clustered the genes with the expression values of the
samples as attributes (22 dimensions). Since class labels
are not available for this data set, we utilize the mean
squared residue score as defined in [6] to assess the
quality of the clusters detected by LAC and PROCLUS
algorithms. The lowest score value 0 indicates that the
gene expression levels fluctuate in unison. The aim is to
find biclusters with low mean squared residue score.
Results on Simulated Data. The performance
results reported in Table 1 clearly demonstrate the large
gain in performance obtained by the LAC algorithm
with respect to PROCLUS and K-means with high
dimensional data. The good performance of LAC on
Examples 4 and 5 shows that our algorithm is able
to detect clusters folded in subspaces not necessarily
aligned with the input axes.

The large error rates of K-means for the 30 and 50
dimensional data sets (Examples 2 and 3) show how
ineffective a distance function that equally use all input
features can be in high dimensional spaces. PROCLUS

requires the average number of dimensions per cluster as
parameter in input; its value has to be at least two. We
have cross-validated this parameter and report the best
error rates obtained in Table 1. PROCLUS is able to
select highly relevant features for low dimensional data,
but fails to do so in higher dimensions, as the large error
rates for Examples 2 and 3 show. The performance of
PROCLUS is highly sensitive to the value of its input
parameter. If the average number of dimensions is
erroneously estimated, the performance of PROCLUS
significantly worsens. This can be a serious problem
with real data, when the required parameter value is
most likely unknown.

We set the parameters of DOC as suggested in [11].
DOC failed to find any clusters in the high dimensional
examples. In lower dimensions, DOC offered improve-
ments over K-means, but it is considerably worst than
LAC or PROCLUS. It is particularly hard to set the
input parameters of DOC, as local variances of features
are unknown in practice.
Results on Real Data. Table 2 reports the error rates
obtained on the real data sets with class labels. For
LAC we tested the integer values from 1 to 5 for the
parameter h, and report the best error rates achieved.
We ran PROCLUS with input parameter values from 2
to N for each data set, and report the best error rate
obtained in each case. For the lymphoma data set (4026
dimensions) we tested several input parameter values of
PROCLUS, and found the best result at 3500. LAC
gives a better performance in each data set. In three
cases (Breast, Pima, Image) LAC and K-means have
very similar error rates. For these sets, LAC didn’t find
local structures in the data, and credited approximately
equal weights to features. K-means performs poorly on
the OQ and Sonar data. The enhanced performance
given by the subspace clustering techniques in these
two cases suggest that data are likely to be locally
correlated. This seems to be true also for the lymphoma
data. The DOC algorithm performed poorly. We did
extensive testing for different parameter values, and
report the best error rates in Table 2. DOC failed
to find any clusters in the Lymphoma data set (4026
dimensions). These results clearly show the difficulty of
using the DOC algorithm in practice.

We capture robustness of a technique by computing
the ratio bm of its error rate em and the smallest error
rate over all methods being compared in a particular
example: bm = em/ min1≤k≤3 ek. Figure 1 plots the
distribution of bm for each method over the six real data
sets. For each method (LAC, PROCLUS, K-means)
we stack the six bm values. LAC is the most robust
technique among the methods compared.

We run the LAC and PROCLUS algorithms using

Table 2: Average error rates for real data.
LAC PROCLUS K-means DOC

OQ 30.9 31.6 47.1 54.0
Breast 4.5 5.7 4.5 32.9
Pima 29.6 33.1 28.9 42.7
Image 39.1 42.5 38.3 45.8
Sonar 38.5 39.9 46.6 65.0

Lymphoma 32.3 33.3 39.6 –

0 2 4 6 8

LAC

PROCLUS

K-means
OQ

Breast

Pima

Image

Sonar

Lymphoma

Figure 1: Performance distributions over real data sets

the DNA microarray data and small values of k (k = 3
and k = 4). For this data set, DOC was not able to find
any clusters. Table 3 shows sizes, scores, and dimensions
of the biclusters detected by LAC and PROCLUS. For
LAC we have selected the dimensions with the largest
weights (h = 9). For k = 3, within each cluster
four or five conditions received significant larger weight
than the remaining ones. Hence, we selected those
dimensions. By taking into consideration this result, we
run PROCLUS with five as value of its input parameter.
For k = 4, within two clusters five conditions receive
again considerably larger weight than the others. The
remaining two clusters contain fewer genes, and all
conditions receive equal weights. Since no correlation
was found among the conditions in these two cases, we
have “labelled” the corresponding tuples as outliers.

Different combinations of conditions are selected for
different biclusters, as also expected from a biological
perspective. Some conditions are often selected, by
both LAC and PROCLUS (e.g., conditions 7,8, and
9). The mean squared residue scores of the biclusters
produced by LAC are consistently low, as desired. On
the contrary, PROCLUS provides some clusters with
higher scores (C1 in Table 3).

6 Conclusions

We have formalized the problem of finding different
clusters in different subspaces. Our algorithm discovers
clusters in subspaces spanned by different combinations
of dimensions via local weightings of features. In our
future work we will investigate the issue of noise in the

Table 3: Size, score and dimensions of the clusters
detected by LAC and PROCLUS algorithms on the
microarray data (k = 3 and k = 4).

k = 3 LAC PROCLUS

C0 (size, score) 1220×5, 11.98 1635×4, 9.41

dimensions 9,13,14,19,22 7,8,9,13

C1 (size, score) 1052×5, 1.07 1399×6, 48.18

dimensions 7,8,9,13,18 7,8,9,13,19,22

C2 (size, score) 954×4, 5.32 192×5, 2.33

dimensions 12,13,16,18 2,7,10,19,22

k = 4 LAC PROCLUS

C0 (size, score) 1701×5, 4.52 1249×5, 3.90

dimensions 7,8,9,19,22 7,8,9,13,22

C1 (size, score) 1255×5, 3.75 1229×6, 42.74

dimensions 7,8,9,13,22 7,8,9,13,19,22

C2 (size, score) 162 outliers 730×4, 15.94

dimensions - 7,8,9,13

C3 (size, score) 108 outliers 18×5, 3.97

dimensions - 6,11,14,16,21

data, to which the initial choice of centroids is sensitive.
We will also study mechanisms to automatically setting
the parameter h of our exponential weighting scheme.

References

[1] Aggarwal, C., Procopiuc, C., Wolf, J. L., Yu, P. S., and
Park, J. S. Fast Algorithms for Projected Clustering.
SIGMOD, 1999.

[2] Aggarwal, C. C., and Yu, P. S., Finding generalized pro-
jected clusters in high dimensional spaces. SIGMOD,
2000.

[3] Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan,
P. Automatic Subspace Clustering of High Dimensional
Data for Data Mining Applications. SIGMOD, 1998.

[4] Alizadeh, A. A., et al. Distinct types of diffuse large b-
cell lymphoma identified by gene expression profiling.
Nature, 403(6769):503–511, 2000.

[5] Bottou, L., and Vapnik, V. Local learning algorithms.
Neural computation, 4(6):888–900, 1992.

[6] Cheng, Y., and Church, G. M. Biclustering of expres-
sion data. Int’l conference on intelligent systems for

molecular biology, 2000.
[7] Domeniconi, C. Locally Adaptive Techniques for Pat-

tern Classification, PhD dissertation, UC Riverside,
Computer Science Dept., August 2002.

[8] Duda, R. O., and Hart, P. E. Pattern Classification and

Scene Analysis. John Wiley and Sons, 1973.
[9] Fukunaga, K. Introduction to Statistical Pattern

Recognition. Academic Press, 1990.
[10] Hedenfalk, I., et al. Gene expression profiles in heredi-

tary breast cancer, N Engl J Med, 344:539–548, 2001.
[11] Procopiuc, C. M., Jones, M., Agarwal, P. K., and Mu-

rali, T. M. A Monte Carlo algorithm for fast projective
clustering. SIGMOD, 2002.

