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Abstract: One of the main applications of sensor networks is to detect
and monitor transient events of interest, or objects as they move or spread
through an area. To track such objects efficiently, and accurately we need
distributed mechanisms that allow the cooperation of many sensors and
the exchange of real-time data. This cooperation must also be achieved
in the presence of possible failures and within the constraints of the sen-
sor nodes and the established network. In this paper we present a new
distributed mechanism for tracking moving objects that addresses these
desiderata. Our mechanism provides efficient setup and cooperation of the
sensors within the network, while providing fault tolerant characteristics
through replication. We also provide an algorithm for predicting, with
high probability, the future location of an object based on the past obser-
vations of many sensors. We empirically evaluate the performance of our
approach and our simulations demonstrate its efficiency and accuracy.
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1 INTRODUCTION

Advances in wireless communication technologies
and micro-electronic-mechanics have enabled the
deployment of large-scale sensor networks. Sensor
networks are systems of many small and simple
wireless devices (further referred to as sensor nodes)
distributed over a vast field in an attempt to sense
and monitor events of interest or track objects
as they move through the field. These sensor
nodes are equipped with sensing, communicating
and data processing units, which allow them to
collect, exchange and process information about

the monitored events in their environments. These
characteristics of sensor nodes make them attractive
and applicable in various domains such as target
tracking, surveillance, battlefields, environmental
control and security management [33].

The problem of distributed tracking of moving ob-
jects is fundamental for several of these applications.
In such domains, possible scenarios of interesting
events could be the movement of enemy or vehicles
in battlefields or the movement of wildlife in forests.
For example, in habitat monitoring, the requirement
is that sensors are able to monitor the occupancy of
the wildlife and collect data from the physical en-
vironment where the wildlife resides, such as tem-
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perature, light and pressure. To achieve this, dis-
tributed tracking requires collaboration among the
sensor nodes (typically the exchange of a few bits of
data) to gather information from other sensors within
a region of interest. These will be used to estimate
the location of an event, predict its trajectory and
warn appropriate sensors as the event is approach-
ing.

There are a number of fundamental issues that we
need to address in developing such a tracking sys-
tem: (1) sensor nodes must be positioned strategi-
cally to detect the event of interest, (2) having de-
tected the event, its location must be estimated, (3)
a distributed tracking algorithm must be employed to
predict the trajectory of the event accurately based
on multiple sensor measurements detecting the same
event, and (4) information must be generated and
propagated dynamically and in real-time to other
sensor nodes to alert them about the approaching
event.

Solving this problem dynamically and in a com-
pletely distributed fashion creates additional chal-
lenges:

• Energy Savings. Sensors are typically small de-
vices with limited resource capabilities, including
communication bandwidth, CPU capacity and
battery lifetime. A key issue in designing the
tracking system is to reduce energy consumption.
Frequently sending and receiving messages among
many nodes can consume a lot of power and lead
to increased collisions in the network. To save
energy, distributed data aggregation at multiple
locations in the sensor network is essential. This
will reduce transmission, improve resource sav-
ings and distribute the load across multiple nodes.

• Resilience. In a sensor network, nodes can fail
due to energy depletion, they can temporarily
become unreachable or their readings may drift
and lose calibration due to environmental inter-
ference. Therefore, we cannot rely on measure-
ments made by a single node as this may lead
to inconsistencies in determining the location or
movement of an event. This requires us to exploit
some amount of redundancy, so that we improve
reliability and increase the accuracy of the esti-

mates.

• Power conservation and quality of moni-
toring. An area can be monitored perfectly if
it is entirely covered with a set of sensor node.
However the sensors have limited power and thus
the quality of monitoring becomes inversely pro-
portional to the life time of the network. Hence,
the addition of a warning mechanism in the tar-
get tracking becomes important. This implies a
mechanism that can accurately predict the next
monitoring area, so that we can wake up all the
nodes surrounding the target to participate in
tracking the moving object.

• Presence of obstacles. In addition, the pres-
ence of obstacles in the area (such as the loca-
tion of bridges or rivers in tracking a vehicle in
a field) could influence the direction of the mov-
ing event, hinder the communication among the
sensors and affect the behavior of the tracking
algorithm. Thus, the presence of such obstacles
have to be taken into account in the tracking and
warning algorithms.

In this paper we propose a two-level approach to
address the resilient and efficient tracking in sensor
networks. The two-layers consist of:
(a) a local low-level loop executed at individual sen-
sors whose functionality is to detect the presence of a
mobile target (an event) and estimate its trajectory
based on previous history and using local information
only, and
(b) a global high-level loop executed across multiple
sensor nodes to combine individual estimates made
at single sensors and predict with high probability
its trajectory across the system.

The system uses a grid structure divided into cells;
each cell has a sensor, with a special role, called leader
that is responsible to collect tracking data from all
the sensors in its cell and communicate with other
leaders. The global high-level loop of the system is
executed by the leaders. To conserve energy, we let
non-leader nodes to sleep; these will subsequently be
activated by the leaders. By collecting tracking data
from its cell, the leader estimates the trajectory of
the event and decides dynamically which subsequent
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cells have to be activated in order to carry on the
tracking process. Based on this decision, the leaders
of the affected cells are notified to continue the track-
ing. To save energy and accommodate sensor faults,
the leader is not fixed. Instead, different nodes in the
cell take the role of the leader. This is done in order
to balance the consumption of energy, particularly
because the leader, apart from the tracking task, is
also responsible for doing local computations in order
to determine what is the next monitoring area. To
predict locally the location of a target, we implement
a well-known tracking technique (Kalman filters[18])
locally at each sensor node. Kalman filters are ef-
ficient prediction techniques when past observations
are used to estimate the location of the target, even
under conditions of noise. The Kalman filter estima-
tions made by individual sensors are then collected
by the leader of the corresponding cell(s). Note, that,
to capture objects with irregular moving behaviors,
multiple possible trajectories of the object need to be
taken into account. Thus, to accurately predict the
future location of an object, we use the individual
sensor predictions to compute a probability distribu-
tion function for the detected target direction and
location. This is done by using Kernel function esti-
mators, which can efficiently approximate the prob-
ability density distribution using a relatively small
number of samples. In our approach we essentially
use the individual sensor predictions as samples of
the distribution that describes the probability with
which the object will be at a specific location in the
future.

Our general approach has the following several ad-
vantages:

• The technique uses local computation: each sen-
sor computes an estimate of the future location of
an object using its own past readings. As a result,
the communication requirements are minimized.

• Combining the estimates is done efficiently, and
fault-tolerance properties are built into the sys-
tem: when a sensor fails, the remaining sensors
can still provide an accurate estimate.

• The leader does not need to keep any state (other
than knowing the neighboring leaders). That is,

a leader estimates the future location of the ob-
ject using the current sensor estimates only. As
a result, even if a leader fails, tracking can be
resumed immediately after a new leader node is
selected.

• The tracking mechanism is not sensitive to sen-
sor inaccuracy: each sensor employs Kalman fil-
ters to smooth out the tracking of the object, and
the predictions of the tracking sensors are used
to compute a probability density function for the
object location.

• The warning mechanism addresses issues related
to the trade-off between power conservation and
quality of monitoring in target tracking sensor
networks. The density distribution of the next
target’s location is approximated using Kernel
functions. This results in a good approximation
of the monitoring region that the target is going
to traverse and as a consequence the set of the
sensors that have to be put on alarm can be de-
fined.

Furthermore, we give an outline of how to use our
framework in the more general case that obstacles
are present. Obstacles can block the surveillance area
of a sensor, the communication between sensors, and
the movement of an object. To handle these cases,
our framework assumes that if an obstacle appears
inside a cell, then the cell is split in such a way, so
that sensors in each part are able to communicate
directly.

The paper is organized as follows. In Section 2
we discuss the sensor network topology. Section 3
describes the tracking framework. The experimental
evaluation is presented in Section 4, while in Section
5 we describe related work. We conclude the paper
and provide paths for future work in Section 6.

2 SENSOR NETWORK COMMUNICATION

To efficiently handle the communication between
sensors, the sensors network is partitioned into grid
cells. This can be done using existing techniques
(e.g. [29], [31]). We use a grid structure for the fol-
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Figure 1: Defining grid cells in a sensor network

lowing reasons: a) the communication costs required
for tracking can be reduced, while at the same time
the collaboration mechanism between sensors can be
simplified, and b) tracking can be performed in a
more robust way, since data from many nodes (in
the grid cell) can be taken into consideration. To
simplify the presentation, we assume that a sensor
field spans in a two dimensional plane. The partition
is done in such a way, that sensors in each cell are
able to communicate efficiently with each other. If
the transmission range of each sensor is R, then the
side of each cell is a · R, where 0 < a ≤ 1. In each
cell there is a leader node. Such a structure of a
sensor network is presented in Figure 1.

We assume that each sensor knows its location,
and that the leader at least knows the geographic
boundaries of its cell. Also the leader is aware for
the sensors in its cell while it keeps information for
the leaders in its neighboring cells and a map of the
obstacles in its vicinity. Moreover, each leader is re-
sponsible to collect the tracking data from all nodes
in its cell. Then based on the tracking information
the leaders can decide which subsequent cells have to
be activated in order to carry on the tracking.

To select the leader we adopt an energy-efficient
scheme that periodically assigns the leadership to a
different sensor in each cell. This is achieved by ran-
domly selecting nodes as leaders and rotating the
selection, so that the high-energy dissipation expe-
rienced by the leader nodes in communicating with

sensors or leader nodes in lower tiers is spread across
all nodes in the cell. This makes sure that no sin-
gle sensor node uses up its energy because it has to
play the role of the leader for too long. Thus at spe-
cific time periods the leader election algorithm is per-
formed so that a new leader is elected. Note that for
the new leader to be able to continue the work of the
old one (i.e. tracking task and figuring out the next
monitoring area), it suffices to receive the approxi-
mation model used by the old leader.

As far as the leader election procedure is concerned,
several approaches have been proposed [21]. For ex-
ample, Liu et al [19] implement a geographically-
based group management scheme that uses time-
stamped messages to solve the contentions and elect
a single leader in a region. In their scheme, the node
that sends the message with the earliest time stamp is
declared the leader. Another approach is introduced
in [14], which uses randomization to distribute the
energy load evenly among the nodes in the network.
Sensors elect themselves to become a leader(cluster-
head) at a given time with a certain probability (i.e.
based on the suggested percentage of leaders and the
number of times the node has been a leader so far).

However, our approach is orthogonal to the leader
election process and we consider that any of the ap-
proaches could be used. As soon as a leader has been
defined in a cell, it sends a message to the sensors in
its cell to inform them for its location. Also a similar
message is sent to the leaders of its neighboring cells.

To accommodate sensor faults, a backup-leader is
assigned by the leader whose responsibility is to pe-
riodically communicate with the leader to determine
if it is still alive. This can be done through the use
of Hello messages. If the backup-leader detects that
the leader has died, it becomes the main leader and
notifies all the sensors in the cell and the leaders in its
neighboring cells. Then, it randomly chooses another
sensor to become the backup-leader.

2.1 Communication issues

According to the proposed framework, direct com-
munication paths can be defined between any pair of
sensors in a cell or between the leaders of neighbor-
ing cells. Then the communication types in a sensor
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Figure 2: Sensor-to-sensor
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Figure 3: Sensor-to-leader

network can be summarized to the following ones:

• Sensor-to-Sensor. When a sensor detects the pres-
ence of a target, it broadcasts a detected message
to the others in its cell (see Figure 2). The message
contains information for the originating sensor and
its distance estimate from the target.

• Sensor-to-Leader. Since the tracking procedure has
finished at the level of sensors, each sensor that de-
tects the target has an estimation of the target’s
next probable location. Then a data announcement
message is sent from each sensor to the leader of the
cell (see Figure 3). The message provides informa-
tion for the originator (e.g. sensor id), the current
and the predicted location of the target.

• Leader-to-Leader. This type refers to communica-
tion between cells and it takes place at the warning
step. The leader of the current cell, where the target
has been detected based on the observations of the
sensors in its cell, makes a prediction of the next
monitoring region that the target is likely to tra-
verse. Then it sends a wakeup (warning) message
to the leaders of its neighboring cells (see Figure 4)
that intersect the predicted monitoring region. It
also forwards to them the information they need to
continue the tracking. A wakeup message contains
information about the originating leader and the

Target

leader

Figure 4: Wake-up message: Leader-to-Leader

Target

leader

Figure 5: Wake-up message: Leader-to-Sensors

predicted motion direction of the target (i.e. loca-
tion, velocity and slope of its direction).

• Leader-to-Sensor. When the leader of a cell receives
a warning message, it puts on alert all the sensors
in its cell sending a warning message to them (see
Figure 5). Also it forwards a message with the
prediction information to the sensors enabling them
to continue the tracking and prediction procedure.

3 TRACKING FRAMEWORK

In this section we give an overview of the proposed
framework discussing also the main steps of the
tracking and warning procedure. In general terms
the framework involves a two loop algorithm for
tracking and warning in sensor networks which can
be summarized as follows:
1. The low level loop is executed in each sensor.
Its purpose is to improve the prediction accuracy of
the sensor. Each sensor estimates the location of
the target that it detects (Subsection 3.1). Then it
uses Kalman Filters and a linear motion description
as described in Subsection 3.2 to predict the next
location of the target.

2. The high level loop is done at the “cell leader”
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level. The purpose of this loop is to identify the
cells of sensors to be awaken. The leader of a cell
collects the observations of all the sensors, and
computes the probability that a neighboring cell
will be visited by the target. Herein, the Kernel
estimators are used in order to approximate the
underlying probability distribution of the target’s
motion direction. The whole procedure is discussed
in detail in Subsection 3.3.

3.1 Target Detection

When a target enters the detection region of the sen-
sor network, sensors that are awaken and close to the
target can detect it. Each sensor is able to detect the
target that enters its field and estimate its distance
from the target. Also the velocity of the object can be
estimated. As soon as a sensor detects the presence
of a target, it broadcasts a detected message to the
other sensors in its cell (Sensor to Sensor communi-
cation - Figure 2). When a sensor node receives the
message, it stores the coordinates of the originator
and the target’s distance.

3.2 Tracking

Having detected a target, its location has to be esti-
mated. Herein we use the approach proposed in [6]
to estimate the location of a target. This implies that
the measurements of at least three sensors are used
to apply the commonly used triangulation method.
Any sensor node that detects itself the target and
receives a detected message from two different neigh-
bors, can compute a location estimate of the target
via the triangulation method.

At the sensor level also a prediction of the next
probable location of the target is made. The sensors
in the cell, where the target has been detected, main-
tain the prediction model based on which the next
location of the target is estimated. Then each sensor
forwards its prediction for the next location of the
target to the cell leader (Sensor to Leader Commu-
nication - Figure 3).

As we have already noted above the leaders of the
cells are not static but they change periodically, in
order to increase the robustness of the network.

3.2.1 Eliminating tracking by multiple lead-
ers

It is possible that a target may be sensed by sensors
belonging to different neighboring cells. Reporting
their estimates for the target position to their respec-
tive leaders may lead to unsuccessful prediction of the
next monitoring area, since the same object is tracked
by different leaders.

A possible solution to this problem will be the lead-
ers to exchange their predictions. We assume that the
leader that tracks a given object is the leader of the
cell that the object falls in. When a leader tracks an
object, it does not only communicate with the sensors
in its cell, but with the leaders of the neighboring cells
as well. Hence, if sensors in neighboring cells track
an object, they report it to their leader, which aggre-
gates their information and makes an estimation on
where the object is. As we have discussed in Section
2 we assume that each sensor knows its location and
the leaders at least know the geographic boundaries
of their cell and their neighboring leaders. Based on
this information the leaders can estimate if the de-
tected target falls in their cell. Then, once a leader
detects an object o, it checks if its position estimate
for o is within the boundaries of its cell. If o does not
belong to the same cell as the leader that detected it,
the leader sends its track to the neighboring leader
which is responsible to track the object because it
falls in its cell. The responsible leader uses the track
of the neighboring leader as if it came from just an-
other sensor.

For instance, assume that an object o traverses the
area that is close to the boundaries of two neighboring
cells, as Figure 6 shows. Then sensors of both cells
(e.g. s1, s2) will detect o since it traverses an area
that is in their vicinity. According to our approach,
once the sensors s1 and s2 detect the object, they
send a message with its estimation to the leaders of
their cells, i.e. leader 1 and leader 2 respectively (as
Figure 6a shows). However leader 2 detects that o
falls out of its cell and hence based on its knowledge
of its cell’s boundaries and its neighboring leaders
sends a message with its estimation to the responsible
leader for this object tracking, i.e. leader 1 (leader-to
leader communication as Figure 6b depicts). Hence
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Figure 6: Eliminating tracking by multiple leaders

each time an object is detected, only the leader of the
cell that the object actually traverses will track the
object and make a prediction of its trajectory.

3.2.2 Prediction procedure

Considering a linear motion target direction we pre-
dict the expected location of the target. We com-
pare the expected position of the object with the one
measured based on the triangulation approach, also
referred to as actual position of the target, and the
prediction model is updated to take into account the
error. Herein a Kalman filter is added to the track
estimation in order to correct the predicted position
and thus reduce the track divergence. The whole pro-
cess of tracking and prediction is performed by the
sensors that have detected the target.

A brief description of the Kalman filter algorithm
that we adopt in our approach follows. The Kalman
filter is a set of mathematical equations that provides
an efficient computation means to estimate the state
of a process in a way that minimizes the mean of
squared error. The filter estimates the process state
at some time and then feedback in the form of noisy
measurements.

In this work, the equations for the Kalman filter
aim at computing an a posteriori location estimate
x̂k of the target as a linear combination of an a pri-
ori estimate x̂−k (we assume a linear trajectory of the
target) and a weighted difference between an actual
measurement zk of its location and a measurement

prediction Hx̂−k . In general terms, the Kalman equa-
tions fall into two categories [18]:

• Time update equations, which are responsible for
projecting forward the current location and esti-
mating the error covariance to obtain an a priori
estimation of the next time location.

• Measurement update equations, which are responsi-
ble for the feedback. They incorporate a new mea-
surement into the a priori estimate to obtain an
improved a posteriori estimate of the target’s loca-
tion.

3.3 Alerting

After estimating the trajectory of an object, the sen-
sors that lie near the predicted trajectory of the tar-
get are put on alert. When we wake up the sensors,
we also forward the prediction model, so that the new
sensors can use the previous observations and predict
the next location of the target.

3.3.1 Alerting based on different trajectory
predictions

Given that different prediction models can be defined
based on different location estimates from the sensors
which detect an object at a specific time period, we
may have different potential estimated trajectories
for the object under consideration. Then a question
concerning the trajectory that the target is expected
to follow arises.
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Figure 7: Kernel function for the x coordinate
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Figure 8: The predicted locations of the target

At the level of the cell, the leader considers the
direction estimates as they have been defined at the
tracking step and uses kernel functions to compute
a probability density function for the direction and
the location of the target. Alternatively we can use
histograms. The goal is to approximate with high
probability, the future location of an object based on
the past observations and the predictions of many
sensors. The leader of the cell where the target is de-
tected considers the different predictions for the tar-
get’s next location estimates (as defined by the sen-
sors in its cells) and exploiting statistical techniques,
such as kernel estimators, tries to define the range of
the targets motion direction.

For a target o, let T = {tri = (xi, yi)|i = 1, . . . ,m}
be a set of its predicted location as defined in the next
T secs by a set of m sensors, where xi and yi are the
coordinates of the i-th prediction for the target’s lo-
cation. Actually, this is the information that each
sensor sends to the leader of its cell when the track-

ing and prediction procedure have been completed.
Assuming that there exists a function k(xi), the Ker-
nel function, with the property

∫ 1

0
k(xi)dxi = 1, the

approximation of the underlying probability distribu-
tion of the target’s motion direction is

f(x) =
1
n

∑

triεTr

k(x− tri) (1)

It has been shown that the shape of the kernel func-
tion does not affect the approximation substantially.
It is the standard deviation, or bandwidth, of the
function that is important. Therefore, we choose
a kernel function that it is easy to integrate. The
Epanechnikov kernel function has this property [8].
The 1-dimensional Epanechnikov kernel function cen-
tered at 0 is

k(x) = (
3
4
)
1
B

(1− (
x

B
)2 (2)

if | x
B | < 1, and 0 otherwise.
To get an initial estimate for the bandwidth we

use Scott’s rule [23]: B =
√

5 s |S|− 1
5 , where s is the

standard deviation of the sample. This rule is derived
under the assumption that the data distribution is a
normal and so it over-smoothes the function.

In order to address the boundary problem in esti-
mating the kernels, we project the parts of the ker-
nel function that lie outside [0, 1] back into the data
space. Herein we consider that a density estimation
function is defined for each of the variables (i.e. xi

and yi) that define the location of the target o. By
aggregating the integrals of the defined f(x) we have
an approximation of the variables range in the next
T secs, while a proper combination of these ranges
gives an approximation of the area that the target is
expected to traverse the time period of T secs. Then,
the leader defines the bounds of 99% probability, and
uses these to define a set of wedges that specify the
locus of the probable locations of the target. These
wedges specify the next monitoring region that the
target is going to traverse.

The following example describes how this monitor-
ing area can be approximated based on Kernel esti-
mators. Assume that the density distribution of the
target’s location is approximated by kernel functions,
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as shown in Figure 7 for the x-coordinate (similarly
for the y). Then the shading areas (representing
the integrals of the respective functions) in the fig-
ure show the proportion of the kernel function that
contributes to the definition of the next monitoring
region. In other words they represent the estimated
range of each of the target’s direction variables in
the next T secs. An aggregation of these areas gives
the region, R, which the target under consideration
is likely to traverse the next T secs. The grey re-
gion (rectangle) in Figure 8 represents the bound-
aries of this region. Then, we claim that based on
the estimates of the sensors at the current location
of the target, the target is most probable to traverse
R in the next T secs. The next step is to define the
cells that have to be put on alert. The leader finds
the neighboring cells that are intersected by the rect-
angle, which represents the next monitoring region.
Then it sends wakeup messages to the respective lead-
ers of this region.

Such an alerting scenario is presented in Figure 9.
Let the sensors in the cell having as leader sensor
s1 detect a target. Each of them estimates the tar-
get’s location and based on the prediction model un-
der concern they predict the next location of the tar-
get. This information (predicted locations of target)
is then forwarded to the leader, s1 which using Ker-
nel functions estimates the monitoring region that the
target is likely to traverse the next T secs. This region
is mapped to the sensor network plane so that we find
the cells that have to be informed. Assuming that the
dot lines in Figure 9 illustrate the boundaries of this

region, the neighboring cells with leaders s2, s3 and s4

are those that are intersected with the next predicted
monitoring area and hence s1 sends wakeup messages
to each of these sensors. These warning message con-
tains the location of the originator and the prediction
model. Then the leaders are responsible to warn the
sensors in their cells (Leader to Sensor Communica-
tion - Figure 5) and the tracking process is repeated
at this point.

3.3.2 Tracking and Warning Algorithm

Let S = {si} be the initial set of sensors that de-
tect the target o at the time point t1 and let sL be
the leader of the cell where the target is detected for
the first time. Based on the framework discussed in
the previous sections, the main steps of the two-level
tracking and warning algorithm can be summarized
as follows:
I. Low level Steps. The following processes are per-
formed at the node level.

• For each siεS
if si receives a message from at least two of its
closest neighboring sensors 0.

1. si estimates the location of o,

2. si uses Kalman filters and predicts the mo-
tion direction of o in the next T secs,

3. si sends a message containing the predicted
location of o (as defined in step 2) to its
leader sL.

• sL defines the set of predicted motion directions
for o

Tr = {(xi, yi)}

II. High level Steps. In the leader sL the following
processes are performed:

• The Kernel function is applied to Tr and the prob-
ability distribution of target’s direction, P , is es-
timated.

• The next monitoring region, R, that the target is
going to traverse is estimated based on P .
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• The neighboring cells of sL are defined :

NeighsL
= {ni

sL
}

• For ni
sL

εNeighsL

if ni
sL

intersects with R then
sL sends a wakeup message to the leader of ni

sL

3.4 Handling obstacles in sensor net-
works

In real-world applications the presence of obstacles in
sensor networks is one of the most important prob-
lems that we have to tackle. Since the obstacles could
hinder the motion direction of a target, it is impor-
tant to take their presence into account during both
the prediction of a target’s trajectory and the warn-
ing procedure in sensor networks. Also the presence
of an obstacle in a sensor network may affect the
communication range of the sensors in such a way
that sensors that are close to each other are not able
to communicate directly. To handle these cases, the
proposed framework modifies the cells wherever the
initial regular partitioning is intersected by the ob-
stacles. It also considers that the leader of each cell
has a local map of the obstacles in its vicinity. Then
if the leader estimates that, based on the predicted
target’s motion direction, the target is likely to meet
an obstacle, it redefines the neighboring cells to which
is going to send a warning message. Regarding the
motion direction of the target in the presence of an
obstacle, each leader has to take into account the fol-
lowing cases in order to warn the appropriate sensors
(see Figure 10): i) the target can be reflected by an
obstacle, ii) follows an obstacle to go around it, and
iii) change its direction according to the direction of
the obstacle.

To figure out where the object is likely to go we
have to use geometric properties. In the context of
this paper we don’t investigate the issue of estimating
alternative directions of an object given the presence
of obstacles. However, this is an important issue and
we consider it as future work direction.

4 EXPERIMENTAL EVALUATION

In this section we present our empirical results that
show the performance of our technique.

4.1 Experimental Testbed

We have implemented our technique on top of TAG
[20]. TAG provides functionality for a given sensor to
broadcast queries to all other sensors, and function-
ality to aggregate the sensor replies to the broadcast
query. We used TAG’s basic communication modules
to perform the communication between leaders and
sensors in each cell. However we had to implement a
new module of communication that allows neighbor-
ing leaders to communicate with each other.

We assume that each sensor is able to provide a
spatial location for the tracked object (and by com-
bining sequential observations, a current velocity vec-
tor and a predicted future location). We use this
model for the experiments without loss of generality
since, as it has been shown, simpler sensors can also
collaborate in small groups and together provide this
information.

The simulation scenarios model a target moving
on a terrain containing cells. The default size of the
terrain in our experiments was set to 100x100. By
fixing the terrain size and modifying the length of the
side of each cell, we impose different topologies on the
terrain. We vary the length of the cell’s side from 4
up to 25, thus varying the total number of cells 625
to 16, given the fixed 100x100 terrain. Furthermore,
different cell sizes imply different node capacities per
cell. A cell having side of length a, has a maximum
capacity of a2 nodes.

In our experiments we assumed that the object is
moving in a piece-wise linear trajectory. That is, at
any given moment the velocity vector is constant, and
changes with a probability α to a new vector. To
make the movement realistic we do not allow arbi-
trary changes in the speed and the direction (direc-
tion changes are within an angle θ < 30o in our ex-
periments, and the speed can change within a factor
of β = 0.1).
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Figure 10: Different cases of a target’s motion directions given the presence of an obstacle

4.2 Evaluation metrics

We used the following metrics to evaluate the perfor-
mance of the technique:

1. Accuracy: There are two possible errors that
can affect the accuracy of the tracking algorithm:

(a) A leader warns a neighboring leader that
the object will enter its area, but the object
does not.

(b) An object exits the area of coverage. This
may happen either because the coverage is
not dense, or because one or more sensors
fail and thus a target is allowed to pass un-
detected through their area of coverage.

We record the number of errors of each type that
the tracking algorithm makes over a range of pa-
rameter settings.

2. Efficiency: To evaluate the efficiency of the al-
gorithm we count the number of messages (be-
tween sensor to leader, leader to leader and
leader to sensor) that get exchanged during each
tracking run, for different parameter settings.

4.3 Evaluation Parameters

1. Cell size and Sensor Detection Range: We
run a set of experiments to determine if changing
the cell size affects the performance when sensor
detection range is held constant.

2. Sensor Accuracy: To estimate the effect of
individual sensor accuracy to the accuracy of the
whole algorithm we add Gaussian noise to the
readings of each sensor, and vary the standard
deviation of the noise distribution.

3. Sensor Failure Rate: We allow sensors (in-
cluding leaders) to fail with a small probability
in each time step.

4.4 Experimental Results

Evaluating the Efficiency
In the first set of experiments, we evaluated the ef-
ficiency of the technique by counting the number of
messages sent during the entire tracking of an object.
In Figure 11 we plot the total number of messages
sent, while varying the length of the cell’s side and
the sensor detection range. We observe that, fixing
the cell size, the number of messages increases as the
detection range gets larger. This happens because
as the detection range gets larger, more sensors have
to report their tracking data to their leader. On the
other hand, fixing the size of the detection range, the
number of messages decreases as the cells get larger
and the grid imposed by the cells gets less dense. Low
number of cells implies less messages exchanged due
to leader-to-leader communication.

Evaluating the Accuracy
In Figure 12 we plot the number of errors that af-
fect the accuracy, for different lengths of the side of
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each cell. We consider two types of errors: when the
target passes undetected, and when the prediction of
the leader is mistaken, regarding the cell that the tar-
get is about to cross to. We observe that the error
rate decreases as the size of the cell increases. This
happens because the leader in a large cell has more
sensors in its cell, and so it can compute more ac-
curate estimates. Also, when the individual cell size
increases, the number of cells decreases, and so there
are fewer hand-offs from leader to leader.

Accuracy results when sensors are not accu-
rate
In order to evaluate the accuracy of our system, we

added Gaussian noise to the readings of each sensor.
Figure 13 presents how the error is affected when the
standard deviation of the noise distribution is varied.
We note that there is small degradation of the accu-
racy numbers, even for large amounts of noise. This
is due to the smoothing effect that kernels have on
the estimated distribution.

Evaluating the effects of sensor failures
We also ran experiments where we introduced ran-
dom failures into the network. At any time instant
a node may fail, with a fixed probability. Figure
14 presents how the error is affected with respect to
the probability of failure. Again we notice that our
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method for combining the sensor estimates is robust
against sensor failures.

4.5 Discussion

Our experiments show that the error rate and the ef-
ficiency of the sensor network improve when the cell
size increases. However there are many reasons to
keep the cell size small. These include the time and
energy it takes to send messages from a sensor to a
leader and from a leader to a leader. Once the av-
erage distance between leaders and sensors becomes
too large, messages have to go across multiple hops
to reach their destination, making difficult to predict
delays and therefore difficult to combine estimates
from different sensors. Also, the time it takes to send
messages from a sensor to a leader and from a leader
to a leader imposes an upper bound on the speed of
the target that can be tracked.

In addition, leaders of very large cells have heavier
computational requirements because they have to co-
ordinate many sensors. This is especially important
in our scheme where ordinary sensors become leaders
in a round-robin fashion. For these reasons we con-
clude that the optimal cell size is the largest practical.
In the presence of noise in the sensor readings, as well
as when sensor failures are introduced, our method
for combining the sensor estimates is robust. This is
due to the smoothing effect that kernels have on the
estimated distribution, and also to the fault-tolerance
properties that are built into the system.

5 RELATED WORK

Target tracking has applications in various domains,
therefore it attracts the interest of researchers from
different fields such as computer vision, sensor
networks, air traffic control, surveillance, robotics,
security and first response to emergencies. As a
consequence several methods for target tracking have
been proposed. They can be categorized into two
major areas: one containing tracking techniques per
se, and one encompassing methods and/or protocols
related to general communication mechanisms (e.g.
group management, clustering etc) which facilitate

the task of target tracking. Needless to say, there is
great overlap over those two areas.

Starting with the methods that fall in the first
category, in [4] a collaborative signal processing
(CSP) approach for target classification and track-
ing in distributed sensor networks is presented. It
uses location-aware data routing that limits the scope
of CSP to relevant subset of nodes conserving net-
work resources. The location of a target is estimated
based on linear regression and trigonometry methods.
Then, given a local detection information, i.e. a list
of tracks, data association is required to map the de-
tection to a track. As the tracking continues, a new
cell is defined that encloses the region the target is
likely to traverse. In the same work an approach for
target classification is proposed. It is based on the
measurements of the nodes within a cell. Both data
fusion and decision fusion approaches are discussed in
the context of a classification approach, which com-
bines the different measurements regarding the event,
in order to define the category into which it can be
classified. A restriction of this method is that CSP
techniques rely on prior statistical information about
the signals. Also the cells formed during the track-
ing are pre-defined and their definition relies on the
velocity of target.

A binary model for tracking a moving object in
sensor networks is presented by Aslam et al. [1]. Ac-
cording to this model each sensor network node de-
tects one bit of information and broadcasts it to a
base station. The sensor’s bit denotes whether an
object is approaching it or moving away from it. The
authors propose a filtering style algorithm for target
tracking. Even though this approach seems to give
an accurate prediction of the target’s location using
only one bit information, the main drawback is its
centralized computational structure.

In [7] an approach for acoustic target tracking was
presented. The network architecture is cluster based.
The cluster head calculates the target location based
in the signal reading of the nodes in its cluster (slave
nodes).

Hwang et al. [17] propose techniques for simulta-
neously tracking and maintaining identities of mul-
tiple targets. Motivated by an air-traffic control
scenario, the algorithm presented therein considers
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the problem of associating measurements with tar-
gets and tracking them, and it is based on stochastic
approaches. In [24], Shin et al. address the is-
sue of multiple-target identity management. They
introduce the novel identity belief matrix, a dou-
bly stochastic matrix, which forms a description of
the identity information of each target. Also, they
present a distributed algorithm for computing and
updating this matrix.

We now present methods and techniques whose
main characteristic is that they employ some com-
munication framework in order to achieve their goal
of target tracking:

The Dynamic Convoy Tree-based Collabora-
tion(DCTC) framework was proposed in [33] to
facilitate sensor nodes collaborating in detecting
and tracking a mobile target. DCTC relies on a
tree structure called convoy tree, which includes
sensor nodes around the moving target. The tree
dynamically evolves by adding some nodes and
pruning others, as the target moves. The sensing
data are aggregated to a node close to the target,
i.e. to the current root of the convoy tree. A node
in the convoy tree only sends data to its parent. As
the target moves, many nodes in the convoy tree
may end up being far away from the root, and hence
a large amount of energy may be wasted when they
send their sensing data to the root. In this case, a
new root should be elected to replace the old root,
and the tree should be reconfigured accordingly. In
[33] the tree reconfiguration problem is formalized as
finding a min-cost tree sequence.

A cluster based approach for predictive tracking
in sensor networks is proposed in [30]. The main
idea is to predict the target’s future location based
on known previous locations. The cluster head aggre-
gates the information that three of the sensors in its
cluster send to it in order to define the current loca-
tion of the target. Then it predicts the target’s next
location considering that it obeys a two-dimensional
Gaussian distribution. In the same context, in [28]
a prediction-based energy saving scheme is proposed
that aims to reduce the energy consumption for ob-
ject tracking under acceptable conditions. The pro-
posed prediction model is based on the assumption
that the object’s movement usually remains constant

for a certain period of time. Also three heuristics
are discussed for a wake-up mechanism. The first
heuristic considers that only the destination node is
informed. The second one suggests that all the nodes
on the route from the current node to the destina-
tion node are informed, while the third one wakes up
all the nodes along the predicted route, as well as
their neighbors. However, our prediction and warn-
ing approaches are more general, considering that the
sensors collaborate to track and predict the target’s
movement. Both filtering and probabilistic methods
are used in order to efficiently correct the errors in
the estimation of the target’s movement and most ac-
curately define the sensors that have to be notified.

In [15] and [16] a multicast protocol that takes into
account spatio-temporal constraints was presented.
Also a data dissemination approach that takes into
account sink mobility was proposed in [31]. In [2]
and [32] an algorithm and a protocol are proposed,
respectively, for clustering sensors into groups, while
aiming at minimizing the network’s energy consump-
tion.

A group management method for track initiation
and maintenance in target tracking application is dis-
cussed in [19]. It is a leader-based tracking approach.
The leader is selected based on the time stamp of the
detection message that the sensors send to each other
upon detection of the target. Since the selected leader
is responsible to maintain the collaborative group,
the system uses a suppression message to notify all
nodes that detect the target to abandon detection
and join the group of the current leader.

The quality of surveillance issues in target tracking
sensor networks are discussed in [13]. Therein, they
propose a model for quantifying metrics for the qual-
ity of surveillance. A sleeping-awake protocol is de-
veloped, which provides high quality of surveillance.
Also, deployment guidelines for sensor node in tar-
get tracking applications are given. Contrary to our
approach, however, they do not study issues related
to the efficient tracking and prediction of the target’s
movement, so that the next monitoring region is ac-
curately defined.

In [29] Xu et al. introduced the notion of adaptive
fidelity into the realm of ad hoc wireless networks,
by proposing the GAF algorithm. GAF runs inde-
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pendently of the underlying routing protocol, and it
addresses the issue of preserving the nodes’ energy
by identifying which of them are equivalent from a
routing perspective, and by turning off unnecessary
nodes. The GAF algorithm adapts sleep times based
on node density, scaling back node duty cycles (and
so reducing routing fidelity) when many interchange-
able nodes are present. This allows it to substantially
increase the network lifetime [5]. It makes use of
application- and system-information to turn off node
radios for extended periods of time. It also employs
the nodes’ deployment density to adaptively adjust
routing fidelity. Location information (e.g. via GPS)
and active node communication is used to determine
node density and redundancy. Each GAF node uses
this information to associate itself with a virtual grid,
where all nodes in a particular grid square are equiva-
lent with respect to forwarding packets. Nodes in the
same grid then coordinate with each other to deter-
mine who will sleep and how long. This decision is
determined by application and system information.
Nodes periodically wake up and switch roles in or-
der to achieve load balancing. A variety of protocols
that rely on geometric routing and extend or improve
GAF have been proposed in the literature, such as
[25], [26], and [27].

In [22] Fang et al. propose a protocol for dis-
tributed aggregate management (DAM) and algo-
rithms for activity monitoring in sensor-nets (EBAM
and EMLAM). The DAM protocol divides the sensors
into clusters and provides means for leader election.
It provides a framework to cluster the sensors ac-
cording to their sensed signal strength, so that there
is one signal peak per cluster. The energy-based ac-
tivity monitoring algorithm (EBAM) addresses the
under-counting problem, i.e. how to accurately esti-
mate the number of targets within each cluster. The
expectation-maximization like activity monitoring al-
gorithm (EMLAM) focuses on the issue of how to
distinguish between multiple targets which enter the
field from different locations, then gather together,
and finally split apart. The techniques presented
in [22] address issues arising in target enumeration,
rather than target tracking and trajectory predic-
tion.

Several other protocols, algorithms or techniques

have been proposed for general routing related is-
sues in sensor-nets, as well for information aggrega-
tion and in-network storage. For instance, in [9],
Fang et al. introduced techniques for overcoming
the problems that arise when routing holes appear
in a sensor-net. The work in[10] proposes a novel
group communication scheme, named roamingcast.
It enables symmetric multicast routing in a fixed,
densely deployed wireless sensor network. They deal
with cases in which processes migrate from one node
to another following physical events being tracked.
They describe the roaming hub based architecture
(ROAMHBA) that supports such agent processes.
Gao et al. [11] address the problem of distributed
information aggregation and storage in a sensor net-
work. They advocate the idea that a sensor should
know a fraction of the information from distant parts
of the network, in an exponentially decaying fash-
ion by distance. They propose a distributed mech-
anism for storing data in a sensor network that al-
lows range queries injected anywhere in the network
to be served. Biswas et al. [3] have recently pro-
posed a method for probabilistic inference, in the
presence of incomplete and noisy information. In that
work, a Bayesian network models the sensor network,
while Markov Chain Monte Carlo sampling is used
to perform approximate inference. Gao et al. [12]
give a distributed algorithm for constructing a ki-
netic data structure (KDS), motivated by the need
to cluster mobile nodes in an ad-hoc network. This
work presents a thorough study of and a solution to
the problem of maintaining a clustering of a set of N
moving points in the plane.

6 CONCLUSIONS

We presented a new two-level approach to perform
resilient and power efficient tracking in sensor
networks.

The low-level process is executed at individual sen-
sors whose functionality is to detect the presence of
a mobile target (an event) and to estimate its trajec-
tory based on previous observations. One the other
hand, the high-level one is executed across multiple
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sensor nodes, in order to combine individual esti-
mates made at single sensors and predict, with high
probability, the target’s trajectory across the system.
Filtering approaches are used to increase the accu-
racy of the target’s trajectory that each detecting
sensor predicts. Moreover, in order to eliminate the
potential errors in the estimation of target’s location,
its motion direction is predicted taking into account
the readings of all the sensors that detect it. Then,
the leader sensor decides which subsequent cells have
to be activated in order to carry on the tracking. Our
approach uses Kernel functions to compute the prob-
ability density function for the location of the target
and to identify the neighboring cells of the sensors to
be awaken.

The experimental results show the accuracy and
efficiency of our approach to track a moving object
in sensor networks and predict its next location.

A path for future work is the study of issues re-
lated to tracking multiple objects, as well as objects
that spread through an area (e.g. clouds, poisonous
gas etc). Furthermore, the handling of obstacles in
sensor networks and their influence in tracking is an-
other open research issue. In this work we briefly
discuss this problem, while we give some directions
for addressing it. However, we are planning to study
it further, as well as to thoroughly evaluate the initial
approach outlined in Section 3.4.
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