Malware 3: Analysis

Chengyu Song

Slides modified from Vern Paxson and Dawn Song
Administrivia

- Lab1
 - Feedback
Malware detection

- Static signature based approach
 - Countermeasures from malware authors
- Dynamic behavior based approach
 - Countermeasures from malware authors
- Network based approach
 - Worm detection and botnet take down
Malware analysis

- To answer following questions
 - Is this piece of software a malware?
 - If so, what does the malware do?
 - Interesting behaviors (e.g., detection avoidance)
 - Information for repair/mitigation/takedown
 - Information about the business model
Static analysis

• Static reverse engineering
 • Disassemble, read the code, like in the lab
 • Would this work?
 • Obfuscation
 • Auto unpacking
Dynamic analysis

- Execute the malware and observe its behaviors
- Challenges
 - How to contain/recover from damages?
 - How to trigger behaviors?
Sandboxes

- A (usually) virtualized execution environment to confine host damages
 - Emulators
 - OS-level sandboxes
 - Virtual machines
Arm race

- Countermeasures from malware authors
 - Is there a way to detect you're in a virtualized environment?
 - Instructions
 - OS environment
 - Network environment
 - If we know how malware detects, can we always fix?
State-of-the-art

• Bare metal analysis platform
 • How to recover?
• Countermeasures?
 • Environment-binding malware
Okay, suppose we have a good dynamic analysis environment, how do we know what kind of behaviors the analysis target does?

Behaviors
 - Coarse-grained behaviors: OS-level behaviors
 - Fine-grained behaviors: function-level behaviors
OS-level monitoring

- OS refresh
 - Processes are isolated by OS
 - Modifications have to be done through system calls
- System call monitoring
 - Introspection
Traps and pitfalls

• Tal Garfinkel, *Traps and Pitfalls: Practical Problems in System Call Interposition Based Security Tools*

 • Incorrect replication/mirroring of OS state
 • Indirect paths
 • **Race conditions**
 • Incorrect subsetting of complex interfaces
 • Side-effects
Fine-grained tracing

• What kind of behaviors **cannot** be revealed at syscall level?
 • Countermeasures!!
 • Mutation engine (polymorphic/metamorphic)
 • Anti-analysis techniques
 • Domain name generation
 • etc
Fine-grained tracing (cont.)

- How?
 - Debugging
 - Emulators -> natively support
 - Hardware support
Triggers

• Malicious behaviors may only be revealed if certain preconditions are satisfied

• How to solve?
 • Decoys: typical targets of malware
 • Forced execution: not always doable
Network behaviors

• What if the malware tries to infect other machines?
 • Local network
 • Internet

• What if the malware tries to connect to C&C server?
 • How can you tell?
 • Allow or forbid?
Honeynet

- Two major components
 - Network decoys -> allow local infection
 - Gateway -> disallow Internet infection
 - Unless in whitelist
Malicious behaviors

- What kind of behaviors would cause the target to be classified as malware?
 - Replication, both locally and through network
 - Compromising the integrity of the OS
 - Autorun, rootkit, backdoor, etc
 - Leak the privacy of the users
 - Connecting to known malicious host or host of bad reputation
 - Monetization channels
 - Send spam, DDoS, premium SMS, AD fraud, fake AV, encryption, etc.
Make it scale

• Due to polymorphic and metamorphic, AV companies may collect millions of unique instances per day, how to make sure they are all analyzed?
 • Automation!!

• Limitations
 • Limited execution time
 • Only detects known malicious behaviors
By the way, how they collect samples?

- Exchange
- Client submissions
- Crawling
- Honeypot (worm-like malware)
- Honeyclient (drive-by downloads)
Infection cleanup

• Once malware detected on a system, how do we get rid of it?
• Restoring/repairing files (registry is also files)
 • Part of what AV companies sell
• Is there any guarantee?
 • What if there is a rootkit?
 • What if there is a bootkit?
 • What if the BIOS/firmware is infected?

“nuke the entire site from orbit. It’s the only way to be sure”
- Aliens
Two types of malware

- Two types of malware
 - Targeted (a.k.a. advanced persistent threat, APT), state-driven, high tech, highly stealthy
 - Large-scale infection, monetization-driven, low tech
- For the second type of malware, the most effective way to stop them is the economical way
 - **Cut their monetization channel**
- But we need to understand how they monetize first!
Understanding the underground economy

- What is their business model?
 - Where does the money come from?
 - How money flows?
- What is the criminal infrastructure?
 - Hosts, DNS provider, payment processor
- Goal: find the weakest link
Example: pay per install (PPI) ecosystem
The walled-garden model

- Why there are only a few malware on iOS devices?
 - How can you monetize on iOS?
 - How can you achieve large infection/installation?
- A healthy ecosystem matters a lot!
For next class ...

• Software security I: memory errors