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Abstract—The Linux kernel has a rapid development cycle,
with 10 commits every hour, on average. While these updates
provide new features and bug fixes, they can also introduce new
bugs and security vulnerabilities. Recent techniques showed how
to detect some types of vulnerabilities using static analysis, but
these tools cannot run quickly enough to keep up with the pace
of kernel development. Ideally, an incremental analysis technique
could address this problem, by doing a complete analysis once and
then only analyzing changed portions of the code subsequently.
However, incremental analysis of the Linux kernel poses unique
challenges, due to its enormous scale and the high precision
required to reduce false positives.

In this paper, we design and implement INCRELUX, a
novel Linux kernel incremental analysis tool. It allows rapid
vulnerability detection after each update, via targeted analysis of
the new code and affected prior code, and also speeds the tracking
of pre-existing bugs to understand how long they have been
present, thereby increasing awareness of such bugs. Our approach
hinges on a bottom-up, function-summary-based approach, which
leverages the benefits of a one-time clean-slate, but expensive
analysis of a prior Linux baseline. INCRELUX also uses an
effective heuristic to apply symbolic execution to incremental
results to improve precision. Via extensive experiments on the
challenging problem of finding use-before-initialization (UBI)
bugs, we showcase a number of benefits of INCRELUX: (a)
we can rapidly check if any new releases introduce UBI bugs
and help eliminate them early in the process. (b) we perform a
historical analysis to determine when a bug was first introduced
and when it was fixed (a critical procedure in bug triage in the
Linux kernel). (c) we compare the incremental analysis results
with a clean-slate analysis and show our approach yields nearly
the exact same results, demonstrating its fidelity in addition
to efficiency. While the clean-slate analysis took 106.45 hours,
the incremental analysis was often completed within minutes,
achieving an average 200× speed-up for the mainline kernel and
440× on average, when analyzing stable branches.

I. INTRODUCTION

The Linux kernel has a fast paced evolution cycle, with
10 new commits on average, every hour. A new stable version
is released about every two months [7]. While these updates
provide new features and bug fixes, they can also introduce
new bugs and security vulnerabilities.

Due to the rapid development cycle, developers usually
do not have time to conduct thorough security checks before
committing new code. Unfortunately, once a bug is introduced,
it can take a long time to catch the bug and fix it, especially for
downstream distributions [35], [39], [76], [77]. For example,
Cook [35] reported that the average lifetime of kernel bugs in
Ubuntu (according to CVE tracker) from 2011 through 2016,
is 3.3 years for critical bugs and 6.4 years for high-severity
bugs. This provides ample time for adversaries to discover
and exploit the vulnerabilities in the wild [3]–[5], [9], [46].

To alleviate the aforementioned security risks in the Linux
kernel, both dynamic testing and static analysis have been
applied. Dynamic testing, and fuzzing specifically [17], [30],
[32], [38], [52], [54], [57], [58], [60], [68], is currently the most
popular and effective approach to find bugs in the Linux kernel.
With the state-of-the-art kernel fuzzer Syzkaller and the help
of various sanitizers [24]–[26], thousands of bugs have been
discovered in the past 4 years using the continuous fuzzing
platform maintained by Google [27]. With regards to static
analysis, many tools have been developed specifically for the
Linux kernel, including commercial ones such as Coverity [18]
and academic ones as in [12], [20], [22], [40], [42], [45],
[59], [62], [63], [66], [69], [70], [74]. In practice, fuzzing is
much more popular because it generates no false positives by
design. Static analysis tools, on the other hand, often generate
too many false positives in the pursue of soundness (i.e.,
no false negatives). To mitigate this problem, modern kernel
static analyzers usually leverage more precise (field-, flow-,
and context-sensitive) whole kernel analysis to reduce false
positives.

One distinctive advantage of static analysis over dynamic
testing is the code coverage—it does not require a concrete in-
put to exercise the code to be analyzed. Therefore, static anal-
ysis has better potential to identify bugs in newly introduced
code, where a corresponding input to trigger the code is usually
missing. Unfortunately, to maintain decent precision, whole-
kernel static analysis is often too expensive to be integrated
into the rapid Linux kernel development cycle. For example,
the state-of-the-art soundy static analysis tool Dr. Checker [45]
needs minutes to analyze just a single driver (already with
significant simplifications of the analysis). The state-of-the-art
summary-based bottom-up analysis tool UBITect [74] needs a
week to fully analyze the kernel. This makes them ill-suited for
tight integration with the development cycle, as new commits
and kernel versions arrive much more quickly than what the
analysis can handle.
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Given that the Linux kernel is huge and the changes are
often localized in small pockets of the codebase, it is an ideal
target to apply the kernel static analysis incrementally [55], on
the changed portion only. Such an incremental analysis could
dramatically reduce the analysis time, but without compro-
mising the precision or the impact of the new changes on
the whole kernel. This can bring several benefits for both
kernel developers and maintainers. First, it enables a much
quicker turnaround time for each analysis (e.g., applied before
every minor version release and even in between), allowing (an
otherwise infeasible) a precise and expensive static analysis to
be integrated into the development cycle. Second, it enables
quick validations of newly proposed patches. Currently, after
a new patch is proposed, the kernel community heavily relies
on manual inspection from peers (e.g., e-mail exchanges with
maintainers for feedback) to spot potential bugs, which is
both time consuming and error prone (as it is hard to reason
about how the patch would affect other kernel components
beyond the local scope). With an automated, whole kernel
incremental analysis, a much more timely feedback can be
provided, even before the patch is officially merged into the
development branch. Third, because incremental analysis is
based on static analysis, it provides an exhaustive coverage
unlike what dynamic testing can offer.

Even though incremental analysis was conceptualized
nearly 25 years ago [61] and has been applied recently in
industry [18], [31], to the best of our knowledge, there is
no publicly available tool that can be applied directly to the
Linux kernel. In addition, few technical details are documented
regarding the inner workings of [18], [31]. In this project,
we develop a whole kernel incremental analysis framework,
which we name INCRELUX. INCRELUX is flow-sensitive,
field-sensitive, context-sensitive, and partially path-sensitive.
Our choice is motivated by the publicly-available repository
for “clean-slate” analysis of UBI bugs that was recently made
available, and the relative difficulty of discovering such bugs in
Linux [74]. Incrementalizing such an analysis poses particular
challenges due to the scale and complexity of the kernel and
the need for highly-precise analysis to reduce false positives.
To facilitate the reproduction of results and further research,
we open sourced our framework at https://github.com/seclab-
ucr/IncreLux.git.

In this paper, we make the following contributions.

• Design of incremental analysis. We design
INCRELUX which is an efficient and scalable tool
to incrementally detect and track the evolution of
use-before-initialization bugs in the Linux kernel.
We document in detail how to turn a bottom-up
summary-based static analysis into an incremental
version.

• Path-sensitive analysis of UBI bugs. Due to the
nature of UBI bugs being manifested only along
certain paths, path-sensitive analysis is essential for
a precise analysis. We show an effective technique
for integrating path-sensitive symbolic execution into
our incremental analysis that maintains scalability and
empirically does not lead to missed warnings.

• Measurement and evaluation. Via evaluations of
INCRELUX on the Linux kernel, we show that com-

pared to the clean slate analysis which took one
week to complete, it takes a significantly shorter time
(depending on the situation, hundreds to thousands of
times faster), detecting almost all the bugs that the
clean slate approach would have found. In addition,
we showcase the opportunity to catch bugs as soon
as they are introduced, and timely confirmation on
correct bug fixes.

II. BACKGROUND

In this section, we provide some brief background relevant
to our work. First, we describe the workings of the rapid Linux
kernel development cycle, which is the main motivation for our
incremental analysis. Then, we describe the general concept of
a bottom-up, summary-based static analysis, as well as prior
work that does a whole-kernel clean-slate static analysis for
detecting UBI bugs; this will lay the foundation for the design
of our incremental analysis.

A. Linux Kernel Development

The Linux kernel is composed by tens of thousands of
contributors around the world and has been customized for
different usage scenarios. Thus, there are various actively-
maintained kernel branches. Ubuntu and RedHat are two popu-
lar downstream distributions for desktops and servers. The An-
droid Open Source Project (AOSP) also adopts the Linux ker-
nel with some additional kernel features (e.g., the binder inter-
process communication mechanism) and customized drivers.
All such Linux distributions inherit code from the Linux
upstream versions, including the Linux mainline and Linux
stable / long-term-support (LTS) branches.

In our work, we focus on the Linux mainline [8] and stable
versions. To be clear, there is a single Linux mainline branch
where new features and bug fixes are continuously being
added, while there are multiple Linux stable versions that are
forked from the mainline and maintained separately. Typically,
once a Linux stable branch is forked, no new features are
added and only the necessary bug fixes are applied, hence the
name “stable.” Long-term support (LTS) branches are special
stable branches that are maintained for much longer times.
Mainline and stable versions adhere to the following versioning
convention:

Major Versions. Major versions correspond to the Linux
mainline. The version numbers are usually represented by x.y
(e.g., Linux 4.4). A new version (e.g., 4.5) is released roughly
every two months. Compared to the immediately previous
version, both new features and bug fixes (typically consisting
of at least thousands of commits) could be present in the new
version. It is critical to monitor the mainline branch because
it contains all the features which are the main source of bug
introduction.

Minor Versions. The Linux stable branches inherit the major
version from the mainline and add a minor version (e.g.,
4.4.12). From one minor version to the next (e.g., 4.4.13),
only applicable bug fixes (as opposed to new features) from
the mainline will be backported. These minor versions are
important because downstream Linux distributions such as
Ubuntu follow these stable or LTS branches (porting almost
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all patches). It is important to check whether patches applied
to stable branches indeed fix a bug.

Release Candidates. Release candidates refer to the can-
didates for the next major version in Linux mainline; each
candidate has a suffix to the major version to indicate which
release candidate it is, e.g., 4.4-rc1. The release candidates are
released every week, representing intermediate states between
major versions, which should also be analyzed.

B. Bottom Up, Summary-based Static Analysis

Scalability is often a challenge in performing static analysis
on large codebases, especially the Linux kernel. Many static
analysis tools for the kernel like Dr. Checker [45] are top-
down. They start the analysis from an entry function (e.g.,
syscall entry), following its callees level-by-level. This means
that many functions would have to be re-analyzed if they are
invoked more than once. Bottom-up, summary-based analysis
can avoid such redundant analysis of the same function.
At a high level, it works by first building some program
dependencies such as the call graph. Then the tool starts by
analyzing the leaf functions (with no callees) and storing the
analysis results for the function into a summary. Summaries
are computed once and reused when analyzing all callers.

A few bottom-up static analysis tools have been developed
in the literature, e.g., for Java [56], [72] and C [14], [50], [67],
[74]. Some have been shown to be successfully applied to the
Linux kernel [14], [67], [74]. Typically such analyses need to
decide what kind of information to record in the summary,
e.g., points-to information [50], locking behaviors [67], and
data flow [14], [74].

C. UBITect: Summary-based Analysis for Detecting UBI Bugs

The Use-before-Initialization (UBI) bug is a kind of mem-
ory error caused by the use of uninitialized variables [6]. A
use of an uninitialized variable is an undefined behavior. Im-
portantly, UBI bugs in the Linux kernel can introduce serious
security threats such as opening the door for arbitrary code
execution [16] and information leakage [43], [48]. Previous
work [44] has shown that UBI bugs are exploitable in an
automated way, making their detection critical. To mitigate
such threats, the Linux kernel added the INIT_STACK_ALL
option to set uninitialized variables to a unified value viz.,
either zero or 0xAA. However, Zhai et al. [74] argue that
this method cannot fully eliminate such threats and since the
correct initialization value is hard to infer, the best solution is
detection and case-by-case patching. Based on this observa-
tion, they developed and open sourced UBITect, a clean-slate
bottom-up, summary-based analysis. UBITect combines flow-
sensitive static analysis and path-sensitive symbolic execution
to perform a precise and scalable analysis for the Linux kernel.

Specifically, it constructs the global call graph for the
whole kernel, i.e., the tool not only accounts for direct calls
but also resolves UBI bugs that may carry over across indirect
call relations. Based on this call graph, UBITect analyzes
the leaf functions first; once these functions are analyzed, it
summarizes the initialization and use behaviors of each of the
arguments and return values of these functions.

The function summary primarily records two types of
information, which serves as the contracts between the caller

and the callee: 1) Requirements on the inputs (i.e., arguments)
for the callee to be invoked safely. For example, in the
context of detecting UBI bugs, the requirements of memcpy
specify that all arguments (two pointers and the size) must
be initialized; otherwise a UBI could happen. 2) Updates to
outputs (including the return value and output arguments) after
the invocation of the callee, with regards to the inputs. For
example, in UBI bug detection, the updates of memset specify
that the memory object point-to by the destination pointer will
be initialized after the invocation; and the updates of memcpy
specify that the memory object point-to by the destination
pointer would have the same initialization status as the memory
object point-to by the source pointer. These summaries are then
provided to the callers of these leaf functions and the process
continues, i.e., at each step, after all the callee functions are
analyzed, the caller function uses these summaries to obtain
the analysis result (instead of re-analyzing the callee functions
again). In addition, warnings about potential UBI bugs, and
some additional guidance for symbolic execution to assess
the warnings, are generated during this process. Symbolic
execution is then used to attempt to find a feasible path
corresponding to each warning, leveraging the extra guidance
to avoid exploration of certain irrelevant paths. A bug is
reported if and when such a path is discovered. The symbolic
execution step is necessary to filter false positives, because in
the kernel, variable initialization and uses are often performed
under correlated path conditions that the baseline analysis does
not track.

An Example. Now we would like to present some
necessary details with a simplified example in Figure 1. This
example is taken from a real kernel UBI bug. There are two
functions stm32_dfsdm_irq() and regmap_read() in this
example, and stm32_dfsdm_irq() calls regmap_read().
UBITect will start its analysis from regmap_read(), and
then generate the summary shown in Table I. The summary
contains primarily two types of information for each variable:
requirements and updates. The requirements describe what
states are expected from the caller in order for the function to
ensure no UBI bugs, whereas the updates describe the state
updates of the variables after the function finishes executing.
Variable reg and val are used in the if statement and the
pointer dereferences respectively; therefore, to be free of
UBI bugs, the requirements for these two arguments are
init, meaning that callers should always pass in initialized
variables. Regarding the updates, there are no assignments to
reg and val, so their initialization status after the execution
of regmap_read() will remain the same. For the object
val_obj pointed to by val, it is initialized in only one
branch but is left uninitialized in another branch (i.e., the error
branch); therefore, after the caller calls regmap_read(), it is
possible that the variable keeps the same initialization status
as before. Therefore, to be conservative, the summary records
there is no update to its initialization status. Finally, since
regmap_read() returns a constant, either 0 or -EINVAL,
the update of the return value is init. At the same time,
since the branch *var = some_init_number would make
the object of var to become initialized, UBITect adds this
branch into the avoidlist of var_obj so that the symbolic
execution later will avoid exploring this branch (when
confirming a potential UBI bug). After having the summary
for function regmap_read(), UBITect would analyze the
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1 /* A simplified buggy code from
2 * drivers/iio/adc/stm32-dfsdm-adc.c
3 * uninteresting code lines are ommited
4 */
5 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
6 {
7 struct stm32_dfsdm_adc *adc = arg;
8 unsigned int status, int_en;
9

10 regmap_read(DFSDM_ISR(adc->fl_id), &status);
11 regmap_read(DFSDM_CR2(adc->fl_id), &int_en);
12

13 if (status & DFSDM_ISR_ROVRF_MASK) {
14 if (int_en & DFSDM_CR2_ROVRIE_MASK)
15 //do sth here.
16 }
17

18 return IRQ_HANDLED;
19 }
20 int regmap_read(unsigned int reg, unsigned int *val)
21 {
22 if (reg)
23 return -EINVAL;
24

25 *val = some_init_number;
26 return 0;
27 }

Fig. 1: A piece of buggy code that adapted from a real UBI bug in
the Linux kernel.

caller (i.e., stm32_dfsdm_irq()), when analyzing the
function call at line 10 and line 11, instead of going into
regmap_read(), the caller would look at the function
summary in Table I. Using status as an example (int_en
shares the same analysis step), the input &status corresponds
to val, and status corresponds to val_obj in the function
summary, respectively. The requirement for val is init
and INCRELUX would check this before the function call;
&status is an initialized variable, as it is the stack address
and is therefore deemed to have met the requirements. The
variable status would share the same status as there is
no update for it; therefore, status remains uninitialized
after the function call. Then, status is used in the if
statement (line 13) after an and operation, and so INCRELUX
reports a UBI bug here and pinpoints the uninitialized
variable status. The warning contains the bitcode
drivers/iio/adc/stm32-dfsdm-adc.c, the function
stm32_dfsdm_irq that declared status, the id of the bug
driversiioadcstm32-dfsdm-adc.bc_stm32_dfsdm_irq
_%status$obj$and$2, the basic block for the use (line 13),
and the avoidlist containing the basicblock in line 25.

After the warnings are generated, the symbolic execution
would search for a feasible path from the declaration basic
block of status (the block of line 8) to its (uninitialized) use.
During the exploration, it would avoid the basic blocks (line
25) which initialize the variable. In this example, the feasible
path exists if reg is equal to zero. The symbolic execution
would report it as a true bug, and generate a detailed report
containing the input and the path to trigger the bug. The bug
report retains the information from the original warning (see
the end of the previous paragraph). The same process would
apply to int_en as well.

As shown by the authors of UBITect and verified by us, it
takes over a week to do the whole kernel analysis to cover all
the functions compiled in an allyes config. Motivated by the
observation that function summaries are reusable, we posit that
we can avoid analyzing the same function not only within a

TABLE I: Function summary for function regmap_read().

Argument Requirements Updates
reg init no
val init no
val obj no no
regmap read ret n/a init

specific version, but across Linux releases as well. In particular,
we can run the whole kernel analysis once as a clean-slate
baseline, and then focus on analyzing only those functions that
got changed. Based on this idea, we develop an incremental
analysis to significantly reduce the analysis time of evolving
Linux versions to detect bugs.

III. DESIGN OF INCRELUX

In this section, we present the design of our tool for
an incremental analysis of the Linux kernel. We begin with
an example to motivate the design. Then, we discuss the
challenges that arise in conducting this incremental analysis.
Subsequently, we describe specific design choices we make to
address these challenges.

A. Motivating example

Prior to delving into the details of INCRELUX, we present
a motivating example of a bug that was introduced in Linux
v4.16-rc1. Compared with v4.15, v4.16-rc1 added a function
mlx5e_params_calculate_tx_min_inline(), with 11
lines of code in total. Figure 2 depicts the details of the bug.
The variable min_inline_mode will be left uninitialized if
a query function mlx5_query_nic_vport_min_inline()
inside the function mlx5_query_min_inline()
fails. However, both the function
mlx5_query_nic_vport_min_inline() and the caller
function mlx5e_params_calculate_tx_min_inline()
use this variable directly without any return value check.

To detect this bug, an interprocedual holistic program
analysis is necessary as there are three functions involved.
For the prior work UBITect to catch this bug in v4.16-rc1
(the major version immediately after v4.15), it would need
to construct the global call graph, and beginning with
the leaf functions, generate summaries and continue the
analysis upwards to the callers. Based on the function
summary of mlx5_query_min_inline(), the caller
could infer that the variable min_inline_mode might
be uninitialized and upon the use on line 9, generate
a warning and begin a check using symbolic execution
for verifying the path feasibility. The observation here
is that the functions mlx5_query_min_inline(),
mlx5_query_nic_vport_min_inline() and other
low level functions are unchanged from version v4.15.
Therefore, if we still have the function summaries
for these, then we can significantly expedite the
analysis by analyzing only the new added function
mlx5e_params_calculate_tx_min_inline(). This
observation motivates us to reuse function summaries not
only in analyzing a single kernel version (as what UBITect
did), but across Linux versions that have a large overlap in
code. After obtaining summaries from the clean-slate whole
program analysis (WPA), when analyzing a new version of
the Linux kernel code, we reuse summaries aggressively,

4



1 /* drivers/net/ethernet/mellanox/mlx5/core/en_common.c
2 * uninteresting code lines are ommited
3 */
4 + u8 mlx5e_params_calculate_tx_min_inline(
5 + struct mlx5_core_dev *mdev)
6 + {
7 + u8 min_inline_mode;
8 +
9 + mlx5_query_min_inline(mdev, &min_inline_mode);

10 + if (min_inline_mode == MLX5_INLINE_MODE_NONE)
11 + //do something here
12 + return min_inline_mode;
13 + }
14

15 /* drivers/net/ethernet/mellanox/mlx5/core/vport.c
16 * uninteresting code lines are ommited
17 */
18 void mlx5_query_min_inline(struct mlx5_core_dev *mdev,
19 u8 *min_inline_mode)
20 {
21 switch (MLX5_CAP_ETH(mdev, wqe_inline_mode)) {
22 case MLX5_CAP_INLINE_MODE_VPORT_CONTEXT:
23 mlx5_query_nic_vport_min_inline(mdev, 0,
24 min_inline_mode);
25 break;
26 }
27 }
28 int mlx5_query_nic_vport_min_inline(
29 struct mlx5_core_dev *mdev,
30 u16 vport, u8 *min_inline)
31 {
32 u32 out[MLX5_ST_SZ_DW(
33 query_nic_vport_context_out)] = {0};
34 int err;
35

36 err = mlx5_query_nic_vport_context(mdev, v
37 port, out, sizeof(out));
38 if (!err)
39 *min_inline = MLX5_GET(
40 query_nic_vport_context_out, out,
41 nic_vport_context.min_wqe_inline_mode);
42 return err;
43 }

Fig. 2: A use before initialization bug introduced in v4.16-rc1. Lines
with the + sign indicate those that are added because of the new
function that was introduced.

only re-analyzing code that is affected by any modifications.
Progressively, as new versions are released, we can in
this way, incrementally analyze only code changes in each
subsequent version.

B. Considerations

In designing INCRELUX, we need to consider the following
three points:

Consideration 1: Correctness compared to the whole-
program analysis. Incremental analysis should yield the same
result as if each version were analyzed from scratch. Other-
wise, the incremental analysis may miss critical bugs. Cor-
rectness boils down to how we determine which part of the
program can be safely skipped during incremental analysis.
First, all modified code and newly added functions should be
analyzed. Functions must also be re-analyzed if their analysis
results depend on a function whose summary has changed.
Finally, symbolic execution should be re-run for warnings that
may have been impacted by code changes.

Consideration 2: Function summary design and re-analysis
scope. As mentioned above, when a function summary
changes, we need to re-analyze any function whose analysis
results depend on the summary. Therefore, what to include in
a function summary have important implications on scalability

and accuracy. In UBITect, function summaries contain infor-
mation limited to how the caller/callee may directly interact
with each other based on arguments and return values; so, a
change to the summary only affects callers of the function.
Technically, the summary could also include other depen-
dencies, such as indirect interactions through global states
(e.g., global variables). For example, the modification of a
global variable (e.g., from initialized to uninitialized) in one
function can potentially affect many subsequently invoked
functions — not only callees but also functions invoked from a
different concurrent syscall. Capturing such dependencies can
lead to more accurate results; but on the other hand, this can
potentially lead to a much larger “radius of changes” and make
the incremental analysis less scalable. We note that the goal
of our incremental analysis is not to improve the accuracy of
the underlying static analysis, but to ensure that the analysis
results will be identical to the clean-slate analysis. Therefore,
the task for our incremental is not to re-design the summary
used by the underlying analysis, but to make sure all code that
needs to be re-analyzed will be included. Fortunately, as a
summary-based bottom-up analysis already needs to calculate
the dependencies between functions, we can just reuse the
same dependency graph to calculate the re-analysis scope. For
example, our prototype re-uses the same call-graph analysis
of UBITect to identify the scope of functions that need to be
re-analyzed.

Consideration 3: Extensibility. Even though we focus on
UBI bugs, we aim for a design that can be extended with
relative ease to catch other types of bugs. Indeed, we make
the observation that the UBI bugs are fundamentally bugs
that can be discovered by data flow analysis. In fact, it can
be viewed as a taint analysis problem, where an uninitialized
variable can be considered a taint source, and any use of the
tainted variable can be considered the sink (e.g., arithmetic
operation or deference of a tainted pointer). Therefore, we note
that the summary used in UBITect can be easily adapted to
store taint information representing other semantic information
(e.g., inputs from userspace [33], [45]). Using Dr. Checker’s
loop bounds checker [45] as an example. It checks if userspace
data is used as loop bounds, which may lead to out-of-bound
accesses (i.e., buffer overflows). To do so, Dr. Checker defines
all user inputs from syscalls as tainted variables; then along
with the top-down data-flow analysis, it propagates the taint
tag to other variables to identify the use of any tainted variable
as loop bound. To fit it in a bottom-up style analysis, we
can reuse the same semantics of tainted (userspace data)
and untained (non-userspace data). Then in the function
summary, we can require that if an input of the function will
affect a loop bound, then the caller must pass an untainted
argument for safe invocation. For updates, UBITect’s current
summary (subsection II-C) already includes how inputs would
affect the outputs (i.e., the taint propagation from inputs to
the outputs). For instance, if the function includes a statement
retvalue = input0;, then we will record in the function
summary as “the tainted status of retvalue will be changed
to whatever the taint status input0 is.”

C. System Overview

Having described key design considerations, we next pro-
vide an overview of INCRELUX with a high-level workflow
depicted in Figure 3. In particular, the workflow includes a
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few pre-processing steps followed by the main incremental
analysis.

We assume that function summaries have already been
computed for some previous kernel version via a whole-
program analysis. When a new kernel version needs to be ana-
lyzed, we first perform a simple diff with the previous version
to figure out which functions have been changed. Second, we
perform a dependency analysis to calculate the dependency
graph between functions. Specific to detecting UBI bugs, we
perform a global call graph analysis on the new kernel version
(including indirect call resolution). Note that we have not
attempted to perform the call graph analysis incrementally
as the call graph analysis is relatively inexpensive anyways.
We also compute strongly connected components (SCC) of
the call graph [74] so that we can be ready for fixed point
analysis. Finally, we proceed to the actual incremental analysis
which will be described next. This step combines the static
analysis and the under-constrained symbolic execution(UCSE),
the different bugs set between the previous version and the
current version would be generated.

D. Bottom-up, Summary-based Incremental Analysis

We use a typical worklist algorithm to perform the bottom-
up summary-based incremental analysis (algorithm 1). Specif-
ically, the inputs include the call graph(CG), the old version
code (OC), the new version code(NC) and all the function
summaries for the old code (OldSum). OC and NC represent the
source codes of the two kernel versions in their entirety. The
analysis first initializes the worklist with modified/new func-
tions (DiffSet). For each function in the worklist, INCRELUX
computes a new summary (newFSum) for it. If the new sum-
mary differs from that of the previous version ((OldFSum)),
or the previous summary does not exist, INCRELUX then
adds all the callers of the current function to the worklist for
further analysis. The process terminates when the worklist is
empty. The algorithm produces two sets of outputs viz., the
new function summaries newFSumSet which replace the old
summaries, and the set of warnings WS. The rules to generate
the warings are the same as in [74] (subsection II-C) for
consistency.

In the pseudocode, get_diff_functions() is used to
automatically extract the set of functions differing in the
old and new versions. After extracting these diff functions,
INCRELUX computes a bottom-up analysis ordering using
get_order(), based on a topological sort of the call graph.
The results are stored in SCCs. Each item in SCCs is a set of
functions; if there is more than one function in the set, then
each of the functions can reach the others in the set via a
call chain. If there is only one function in the set, it could
be a recursive function or a function that is not involved in
any loop in the callgraph. Note that these sets are ordered in
a bottom-up style, i.e., the function sets that are close to the
leaves appear before functions that are closer to the root.

After INCRELUX computes the order in which the func-
tions are to be analyzed, starting from the modified functions
in DiffSet, it follows the callgraph and conducts the bottom-
up analysis. If the summary of a modified function is changed,
then all its callers are reanalyzed, and iteratively INCRELUX
checks if their summaries change and so on. Note that we will

Algorithm 1: Bottom-Up, Summary-Based, Incre-
mental Analysis

Input: CG: Callgraph;
OC: Old version code;
NC: New version code;
OldSum: Old Function Summary

Output: newFSumSet: New Function Summary;
WS: Warning Set

1 DiffSet=get diff functions(OC, NC);
2 SCCs=get order(CG);
3 foreach SC ∈ SCCs do
4 worklist ← ∅;
5 foreach func ∈ SC do
6 if func in DiffSet then
7 worklist.push(func);

8 while is not empty(worklist) do
9 func = worklist.front() ;

10 worklist.remove(func);
11 oldFSum = get old sum(OC, func);
12 (warnings, newFSum) = analyze funcs(func);
13 WS.append(warnings);
14 newFSumSet.append(newFSum);
15 if not equal(oldFSum, newFSum) then
16 callerSet ←get callers(func);
17 foreach caller ∈ callerSet do
18 if caller /∈ worklist and caller ∈ SC

then
19 worklist.push(caller);
20 continue;
21 if caller /∈ worklist then
22 DiffSet.push(caller);

perform a fixed point analysis for each SCC, which means
that sometimes the same function can be analyzed multiple
times until their summaries converge. Once no more summary
changes are left, we go back and start from the next function
in DiffSet. After all functions in DiffSet are processed,
we can be sure that all necessary functions have been re-
analyzed, and all the function summary changes should have
been collected completely.

Tracking Warnings Changes. After the above steps, warn-
ings are generated automatically. We retain the rules for
generating warnings from [74] for consistency. Furthermore,
since we are now analyzing multiple versions of kernels, we
now need to track the warnings across versions. We place
warnings in three categories:

1) Disappearing – these disappear in the new version.
2) Remaining – these remain across the old and the new

versions.
3) New – these are introduced in the new version.

We will describe in §IV, how the categorization is performed.

Under-Constrained Symbolic Execution (UCSE). As men-
tioned before, UBITect applies under constrained symbolic
execution on the reported warnings to confirm whether there
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Fig. 3: Upon obtaining a new version, INCRELUX leverages function summaries that were previously computed (in a clean slate version or
a prior incremental analysis) to do an expedited incremental analysis. First, warnings relating to potential UBI bugs are generated and then
under-constrained symbolic execution is applied to find a potential feasible path to triger the bug.

is a feasible path that leads to the potential bug. The bug is
reported only if UCSE finds a feasible path. Otherwise, the
warning is filtered.

In the original UBITect, symbolic execution is applied to all
the warnings reported. However, INCRELUX applies symbolic
execution to only new warnings or those existing warnings
whose associated functions are re-analyzed. A function is
associated with a warning if it is a transitive caller or callee
of the function containing the warning’s variable declaration;
these are the functions that could possibly affect path feasi-
bility. If all these associated functions are unchanged, then
the path feasibility of the warning cannot change. However, if
some associated function has been changed (diffed), even if its
summary remains the same, we conservatively run symbolic
execution for the warning again, in case the path feasibility is
influenced.

Note that here we do not consider the influence of global
states. In theory, if the newer kernel version gives a global
variable a different value, it could affect the warning if the
global variable is used somewhere along the path. Neverthe-
less, since our symbolic execution is under-constrained, by
design, we do not capture the constraints for global variables
that are modified outside of the scope of our analysis.

There is an additional issue regarding whether
INCRELUX’s UCSE component yields the same results
as what is obtained by running the process from scratch
(clean-slate). Due to the non-determinisms in KLEE (e.g.,
path scheduling), INCRELUX cannot fully guarantee identical
results. However, we argue that this is not a fundamental
limitation of INCRELUX as the same non-determinisms would
also affect two different runs of the same clean-slate analysis.
Moreover, we show in our evaluation (section V) that in
practice this case is very rare.

IV. IMPLEMENTATION

In this section, we describe the implementation of
INCRELUX. We implement INCRELUX on top of UBITect,
which was developed based on LLVM-7.0.0. We ported it

to LLVM-9.0.0, which has a better support of Linux ker-
nel (e.g., supporting asm goto). The main functionality we
added includes the diff function extraction, function summary
adaptation, logic to reuse function summaries from previous
versions, and logic for under-constrained symbolic execution
on warnings. We use KLEE as our symbolic execution engine,
and the boost library to serialize the function summaries to the
disk. We will describe a few aspects to help explain some of
the details left out in the design section.

Compiling kernel source code. To generate the IR bitcode
files from the Linux source code, we use -O0 optimization
level and enable debug information (-g), to ensure we have
source location and variable name information required for
identifying bugs. In addition, the unoptimized LLVM IR is
generally easier to analyze compared to -O1 and -O2.

Indirect Call Resolution. There are generally three types
of indirect call resolution techniques that are widely used
for static analysis of the Linux kernel: the pointer analysis
from KINT [63], the type-based analysis from Unisan [43],
and a hybrid of these two methods used in multi-layer type-
based analysis [41]. We chose the points-to based algorithm
from [63]. This is because the other two type-based methods
lead to a large number indirect call targets, which causes a
significant bloating of some strongly connected components,
leading to much longer analysis time. The downside of using
the points-based algorithm is that it may miss valid indirect call
targets. We plan to investigate ways to leverage the type-based
methods and yet still be able to break the strongly connected
components (we suspect they should have been much smaller).

Diff Function Extraction. There are two possible sources for
function changes. The first is from direct modifications in the
source code; these changes can be caught easily by the diff
tool. Another source of changes is addition or deletion of entire
files, typically reflected in a change to some Makefile. Both
types of changes are fully supported by INCRELUX.

UBI warning detector. Given that we currently support
only the UBI bugs, we follow the same rules that were
used in UBITect [74] to detect UBI bugs, i.e., any use of
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variables that are uninitialized. No changes are needed in the
incremental analysis because the analysis follows largely the
same procedure except that it ignores the vast majority of
unchanged functions. However, as mentioned earlier in §III,
it is possible to add additional taint-style bug detectors, e.g.,
integer overflow, which we leave as future work.

Guided Symbolic Execution. We have described how to
apply symbolic execution in an incremental fashion in §III,
by avoiding re-execution on the cases where functions do not
change at all. Nevertheless, symbolic execution is extremely
expensive as we can still face the path explosion problem,
especially when considering that the number of warnings can
be large as the static analysis is flow-sensitive only (instead
of path-sensitive). Therefore, we choose to limit the time
and memory usage of each warning to 10 minutes and 2GB.
The thresholds are decided empirically based on a small-
scale experiments (sampled warnings) with much loose limit
(12 hours and 4 GB). Basically, the results of small-scale
experiments showed that 90% of the warnings finish within
10 minutes, consuming at most 2GB. Note that UBITect used
only a 2-min time limit which will yield fewer confirmed bugs
according to our analysis.

Bug Identification and Tracking Across Versions. Given
that there are often multiple warnings associated with the
same uninitialized variable, e.g., multiple uses of the same
uninitialized variable, we decide to group warnings that share
the same associated variable name (including the field name
if the uninitialized variable is a part of a struct) into a bug.
Furthermore, given that we are interested in understanding the
lifetime of a bug, we simply consider bugs in two different
kernel versions that share same variable name to be the same
bug. This is a reasonable approach become the exact warnings
may look different on different kernel versions, and yet they
are highly likely sharing the same root cause of failing to
initialize the same variable.

V. EVALUATIONS

To evaluate the efficacy of INCRELUX and demonstrate
the benefits of incremental analysis, we perform a large-scale
analysis from Linux kernel v4.15-rc1 mainline, progressively
to Linux v4.19, covering one year worth of development
period. In addition, we analyzed the stable version (a long-
term-support version) of v4.14.y that spans over three years,
and v4.15.y that spans over three months. In total, we have
analyzed 46 mainline and 28 stable versions. To see how
well the incremental analysis would work when the amount
of changes is significant, we also analyzed v5.4 using the
base of v4.19, and v5.9 using the base of v5.4. All kernel
versions are analyzed using allyesconfig, i.e., most of
the non-conflicting configuration options are set to “yes”
and the corresponding features will be analyzed. Then, we
present the results from applying INCRELUX, including the
speed improvement, new bug discovery, patch confirmation,
and equivalence analysis (i.e., to check if the results are
consistent between incremental and whole-program analysis).
We conduct our static analysis on a server with Intel Xeon
E5-2697v3 CPU and 157G RAM, 160G swapping, running
Ubuntu 20.04. All experiments use the -O0 optimization level
to compile the kernel to LLVM IR. The symbolic execution

experiments were run on a machine with Intel Xeon CPU E5-
2698v4 CPU cores and 256G RAM.

A. Evaluation Scope

According to the Linux kernel development guide [37],
once a stable version (i.e., denoted by a new major version
such as v4.14) is released, a two-week window called the
“merge window” is open for the next stable version. During
these two weeks, all feature changes and bug fixes are allowed.
After two weeks, a series of release candidate (with suffix
-rc and a number) are published weekly to stabilize the
version. Starting from rc1, only regression fixes or entirely new
drivers can be added. Once the kernel is sufficiently stable,
a new stable version is released and the two-week “merge
window” is opened again for the next stable version. Due
to this development process, the first release candidate (rc1)
usually has significantly more code changes than later release
candidates. For example, there are 23,941 functions modified
or newly added in v4.15-rc1 compared to v4.14, but only 719
functions in the subsequent v4.15-rc2.

As mentioned in §II, once a stable version (identified by
the major version number such as 4.14) is released, it is forked
into an independent branch for maintenance (identified by
minor version number such as 4.14.1). Each minor version
consists of relatively small number of bug fixes only (no
feature additions). For example, on average, 102 functions
are modified or added to the v4.15 branch between two
consecutive minor versions.

B. Speed Improvement Analysis

Incremental Analysis for the Mainline Versions. Table II
shows the key experimental results for the mainline analysis.
Due to space constraints, we leave the results for v4.17-rc1 to
v4.19 to Appendix , which are consistent with the results in
earlier versions.

As mentioned, typically, rc1 releases contain a large num-
ber of changes, as they include changes from the “merge
window” where new features are accepted [1]. Despite the
large number of changes we still see an almost 3× speed up in
analyzing the rc1 versions as compared to the initial exhaustive
analysis. For versions with fewer changes the speed ups are
much more dramatic, ranging from 31× to 937×.

For the experiment that “stress tests” our incremental
analysis with major changes from v4.19 to v5.4 and from v5.4
to v5.9. Compared to the 106.75 hours baseline clean-slate
analysis time, the incremental analysis from v4.19 to v5.4 took
97.9 hours, and from v5.4 to v5.9 took 99.65 hours. The results
indicate that incremental analysis does not yield benefits when
changes are significant. This is expected because the version
gaps represent a whole year worth of development effort, with
90K functions modified (compared to the 625K functions in
total in v4.14). Consequently, INCRELUX re-analyzed 205,327
functions for v5.4, and 197,413 functions for v5.9. We suggest
doing the clean slate analysis for such big changes.

We note that as the distance between versions increases,
the number of functions that are to be analyzed grows, and
the benefits of INCRELUX diminish; our expectation is that
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TABLE II: Incremental analysis results for mainline versions v4.14 to v4.16. Please refer to the Appendix for the full table from v4.14
to v5.9. T(h) : Total analysis time in hours. SU : Speedup compared to exhaustive analysis of v4.14. FM : Number of functions modified

compared to the immediate. predecessor. FR : Number of functions (re-)analyzed in this version. Warn : Number of Warnings reported in the

current version. Disappearing : Number of warnings that disappear in the current version (compared with the last analyzed version). Equal
: Number of warnings that remain in the current version compared to the immediate previous analyzed version. New : Number of warnings
newly introduced in the current version compared with the last analyzed version. SE-New : New bugs confirmed by SE that are introduced
in the new version.

versions T(h) SU FM FR Warn Disappearing Remaining New SE-New
v4.14 106.75 N/A N/A 629862 103616 N/A N/A N/A 622
v4.15-rc1 28.26 3.78 23941 42548 21190 4325 99291 4979 69
v4.15-rc2 2.91 36.74 719 2617 2190 422 103848 211 0
v4.15-rc3 2.27 47.04 656 3084 1937 301 103758 238 0
v4.15-rc4 1.13 94.52 332 1268 718 116 103880 70 0
v4.15-rc5 1.28 83.31 329 1793 1339 207 103743 331 0
v4.15-rc6 1.15 92.6 273 1761 1282 96 103978 96 0
v4.15-rc7 0.43 248.74 101 403 263 21 104053 27 0
v4.15-rc8 1.33 80.15 243 1707 1305 114 103966 151 0
v4.15-rc9 0.63 169.82 217 1031 696 49 104068 48 0
v4.15 0.13 800.63 122 262 215 36 104080 48 2
v4.16-rc1 26.77 3.99 21251 52151 26922 4240 99888 4742 55
v4.16-rc2 0.24 453.72 220 521 342 10 104620 25 0
v4.16-rc3 0.7 151.6 434 1012 713 136 104509 77 1
v4.16-rc4 3.39 31.48 278 7398 3446 502 104084 509 4
v4.16-rc5 0.76 141.23 422 979 598 80 104513 76 0
v4.16-rc6 0.26 415.01 144 401 279 15 104574 27 0
v4.16-rc7 0.93 115.2 498 1543 819 107 104494 190 2
v4.16 0.33 318.92 183 535 278 18 104666 15 0
v4.17rc1-v4.19 ... ... ... ... ... ... ... ... ...
v5.4 97.9 1.09 99370 205327 158018 43762 69652 88366 N/A
v5.9 99.65 1.07 91741 197413 152746 40720 85425 67321 N/A

INCRELUX will be applied over nearby versions so that a
continuous process of analysis and bug finding is viable.

Incremental Analysis for Stable Versions. Table III and
Table IV show the incremental analysis results for stable v4.14
and v4.15 kernel versions, respectively. As v4.14 is a long-
term-support branch and has more than 200 minor versions
released, we sampled and only ran incremental analysis for
every 20 minor versions. For v4.15 we analyzed all the minor
versions till the end of the branch (i.e., v4.15.18). For these
kernel versions, we again see impressive analysis speedups. In
fact, for the v4.15 versions, since the number of changes in
each version is quite small, we see enormous speedups (up
to 2,260×), and we display the analysis time in Table IV in
seconds rather than hours.

Relations between the number of functions reanalyzed and
the time that the incremental analysis incurs. To confirm
the factors which affect the analysis time, we draw the relations
between the number of functions analyzed and the analysis
time in Figure 4. As we can see, the accumulated analysis
time is proportional to the number of analyzed functions.

Incremental Analysis for Each Patch. Our incremental anal-
ysis can also be used to perform regression check for individual
commits. This can be useful for individual developers who
might be submitting commits to get quick feedback on whether
their changes would introduce new UBI bugs, or fix existing
ones (if they are submitting patches), without having to wait
for the much slower feedback from peers or the automated
fuzz testing results. Specifically, we extract a few patches that
fixes UBI bugs reported in prior work [74]. We performed

the incremental analysis for each patch (using its immediate
predecessor commit as the baseline), and the results are shown
in Table V. We can see incremental analysis quickly finishes
checking for each patch, showing that the intended bug was
fixed and did not add new UBI bugs. Except for one patch that
took 32.46s to finish, other patches were checked within 5.46s,
and the average time for checking was ∼5.01s. We believe this
instantaneous feedback can be extremely valuable for kernel
development.

To summarize, our experiments show that INCRELUX
yields substantial speedups in a variety of scenarios. Even
for an rc1 release with more than 20k function changes,
INCRELUX runs faster than an exhaustive analysis. For
changes touching fewer functions, the incremental analysis can
run in minutes or even seconds. This efficiency of analysis
enables new possibilities, like immediate validation of patches
before merging.

C. Time Breakdown

In Figure 5, we took the analysis results from v4.14 to
v4.15-rc1 as an example to show the time breakdown of our
incremental static analysis. The first step is to construct the
call graph, which takes a few minutes — we currently do not
attempt to incrementally construct the call graph as it is not
a bottleneck. For each function, INCRELUX follows the same
analysis step in [74]: points-to analysis, alias set generation,
qualifier inference, and the summary generation. We see that
the most time costly phase is the alias set generation (14.42
hours), followed by the points-to analysis (6.13 hours), the
qualifier analysis and function summary generation take a
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TABLE III: The incremental analysis result of v4.14 stable, we sampled every 20 versions.

versions T(h) SU FM FR Warn Disappearing Remaining New SE-New
V4.14 106h45min N/A N/A 629862 103616 N/A N/A N/A 622
v4.14.20 3.93 27.18 2123 2519 1358 235 103381 257 12
v4.14.40 5.92 18.02 2079 3289 2334 350 103288 230 2
v4.14.60 5.25 20.33 2096 3033 2079 384 103134 351 4
v4.14.80 6.43 16.6 1879 3934 3021 726 102759 470 6
v4.14.100 9.67 11.04 1812 6029 3222 462 102767 340 3
v4.14.120 3.35 31.86 1894 2700 6026 195 102912 235 2
v4.14.140 4.91 21.75 1565 2843 3079 534 107213 1249 0
v4.14.160 7.29 14.65 2354 4824 3042 1091 107371 463 2
v4.14.180 8.05 13.26 2336 3798 3289 1907 105927 641 0
v4.14.200 5.73 18.63 1773 3841 3218 1098 105470 385 0
v4.14.220 3.31 32.29 1221 2252 1343 250 105605 123 1

TABLE IV: The incremental analysis result of stable v4.15.

versions T(s) SU FM FR Warn Disappearing Remaining New SE-New
v4.14 106.75h N/A N/A 629862 103616 N/A N/A N/A 622
v4.15rc1-v4.15-rc9 ... ... ... ... ... ... ... ... ...
v4.15 468 800.63 122 262 215 36 104080 48 2
v4.15.1 559 687.48 56 100 61 6 104122 4 1
v4.15.2 622 617.85 73 93 47 6 104120 24 0
v4.15.3 170 2260.6 29 77 33 2 104142 2 1
v4.15.4 4864 79.01 268 804 492 46 104098 40 1
v4.15.5 2121 181.19 157 301 205 63 104075 23 0
v4.15.6 947 405.81 55 184 179 13 104085 11 0
v4.15.7 1007 381.63 65 119 131 20 104076 59 2
v4.15.8 8151 47.15 146 1136 1056 260 103875 158 0
v4.15.9 613 626.92 22 80 118 15 104018 13 0
v4.15.10 3866 99.41 175 663 247 18 104013 18 3
v4.15.11 11760 32.68 122 4482 2941 168 103863 147 0
v4.15.12 939 409.27 62 130 69 2 104008 1 0
v4.15.13 2592 148.26 86 540 243 11 103998 15 0
v4.15.14 855 449.47 109 253 189 4 104009 5 0
v4.15.15 1787 215.05 52 377 81 11 104003 9 0
v4.15.16 522 736.21 73 98 73 5 104007 8 1
v4.15.17 2934 130.98 180 630 815 146 103869 95 1
v4.15.18 920 417.72 72 150 109 23 103941 16 2

TABLE V: The incremental analysis for patches from UBITect. T(s)
: Time in seconds. FM : Number of functions modified compared to
predecessor. FR : Number of function (re-)analyzed after the patch.

commit # T(s) MF RF
4674686d6c897 32.46 1 12
0fb68ce02ae73 0.31 1 1
e20bfeb0b7d80 1.01 1 1
4a8191aa9e057 5.46 1 4
8c3590de0a378 0.64 1 3
e33b4325e60e1 2.17 1 3
1252b283141f0 0.85 1 1
53de429f4e88f 0.18 1 2
472b39c3d1bba 2.03 1 1

small portion of the incremental analysis, 4.07 hours and 0.05
hours, respectively. INCRELUX also took an additional 3.48
hours to generate bug reports and serialize function summaries
to the disk.

Finally, in addition to the time breakdown for different
phases, we also look at the variations across analyzing different
functions. We find that 31,926 out of 42,548 functions (75%)
are analyzed within 1s (for four phases combined), while
40,888 functions (96%) can be finished within 10s, only 3
functions take more than 1,000 seconds to finish where the
most time consuming functions took 1 hour to finish. We

did not calculate the time for symbolic execution here as we
impose a time budget for each warning.

D. Correctness/Equivalence Analysis

A key requirement of incremental analysis is that it yields
the same results as the clean-slate whole-program analysis
(WPA). Towards evaluating this requirement, we perform the
WPA for Linux v4.14.20 and v4.15 and then compare the bugs
reported with those reported by INCRELUX. The results show
that the same warning sets are obtained i.e., INCRELUX is
able to obtain the same results as the WPA. However, in the
warning validation phase, due to KLEE’s non-determinisms
(e.g., path scheduling), the bug set varies slightly after the sym-
bolic execution. For example, with v4.15, 634 warning from
INCRELUX are confirmed as bugs, while 635 warning from
WPA are confirmed. In particular, all of the 634 bugs from
INCRELUX were present in the results from WPA (leaving 1
bug being different). This is an insignificant difference. Given
the speedup that INCRELUX provides, we believe that this is
a very compelling result. More importantly, we note that the
non-determinisms in KLEE does not only affect INCRELUX—
even two difference runs of the WPA could generate different
results. To mitigate the non-determinism, one could provision
more resources or develop better heuristics for pruning the path
exploration.
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(a) The incremental results from the v4.15-rc1 to
v4.19, it plots the relations between the number
of functions reanalyzed and the analysis time in
hours.
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(b) The incremental results for sampled minor
versions of v4.14, it plots the relations beween
the number of functions reanalyzed and the
analysis time in hour.
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(c) The incremental results for minor versions of
v4.15, it plots the relations between the number
of functions reanalyzed and the analysis time in
second.
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Fig. 4: The incremental results for different versions.

Fig. 5: The time distributions for different analysis phase along the
incremental analysis from v4.14 to v4.15-rc1.

E. Bug Finding Results

Reported warnings. We first present the results of new UBI
bugs found as we analyze the mainline version from v4.14 to
v4.19. Since UBITect has been applied on v.4.14 already, we
look at only the new ones found by the incremental analysis.
Given that the analysis results can come out extremely fast,
we can catch the bugs when they are introduced in candidate
release versions and prevent them from slipping through the
production versions. In our evaluation, we randomly sample
44 bugs reported by INCRELUX, and find 22 true positives,
all of which, turned out to have been introduced in the first
release candidates. 5 of the 22 true positives are dismissed
by maintainers, as the conditions to trigger the bug cannot be
satisfied in reality (e.g., a failure of PCI config read). For the
rest 17 cases, we found that 7 are fixed later on in mainline;
and 10 bugs are still unpatched by the time of our reporting.
We have reported all unpatched bugs to the maintainers; 5
have been confirmed; but the remaining 5 are still awaiting
maintainers’ responses. The bugs are listed in Table VI.

False Positives and False Negatives. 22 out of 44 reported
bugs (50%) turn out to be false positives. Our manual inspec-
tion revealed that 14 are caused by the incomplete guidance
generated by the static analysis, 7 are caused by imprecise
indirect call analysis (missing indirect call), and 1 due to
the approximation of array. To evaluate the false negatives,
we need to obtain another set of UBI bugs with ground

TABLE VI: Bugs introduced in the new code, in the column of the
Patch, E means that the patch is not easy to draft; here, we e-mail the
bug to the maintainer. A means that the patch that we submitted was
applied; C means that our bug was confirmed by the maintainers. F
means that the bug has been fixed in the latest version of the kernel
by others. IL : Information Leakage. MC :Memory Corruption. B

:Benign. HWCC :Hardware configuration corruptions.

Sub-
System

Module Variable Line
No.

Intro. PatchImpact

Input/hideep hideep.c unmask code 380 v4.15-rc1 A IL
atomisp atomisp-

mt9m114.c
retvalue 1552 v4.15-rc1 A MC

drm/nouveau ioctl.c type 269 v4.15-rc1 S B
media/imx274 imx274.c err 659 v4.15-rc1 F B
net/mlx25 en common.c min inline mode 180 v4.15-rc1 F B
net/mlx5e en dcbnl.c params→

tx min inline mode
989 v4.15-rc1 F B

xfs xfs bmap.c got.br startoff 4868 v4.15-rc1 E MC
xfs xfs bmap.c s 1521 v4.15-rc1 E MC
iio/adc stm32-

dfsdm-
adc.c

status 866 v4.16-rc1 C MC

iio/adc stm32-
dfsdm-
adc.c

int en 873 v4.16-rc1 C MC

iio/adc qcom-
pm8xxx-
xoadc.c

ch 599 v4.16-rc1 F MC

net: mscc ocelot.c val 365 4.18-rc1 F MC
media:
davinci vpfe

dm365 isif.bc format.pixelformat 234 4.18-rc1 F HWCC

display dc link.c old downspread.raw1259 4.18-rc1 A HWCC
display dc link dp.c training rd interval 61 4.18-rc1 F HWCC
net:mscc ocelot.c val 34 4.18-rc1 E MC
scsi: sd sd.c sshdr.asc 2390 v4.19-rc1 E B

TABLE VII: INCRELUX detected 2 bug fixes in our data set.

Sub-
System

Module Variable Line No. Fixed

media/imx274 imx274.c err 659 v4.15-rc1
iommu/amd amd iommu.c unmap size 1524 4.19-rc1

truth. First, we use the keywords “uninit” and “Uninit” to
find commits in the mainline that are patches for UBI bugs.
Following the fixes tags label in the commit message [8], we
locate the bug-introducing commit. We then select bugs that
were introduced between v4.15-rc1 to v4.19 and involve stack
variables for evaluating false negatives. Overall, we find 12
UBI bugs, among which our detector successfully found 9
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TABLE VIII: The false negatives for bug finding and bug fixes for
mainline

GroundTruth TP FN FN-
iCall

FN-
Heap

FN-
Padding

Bug Finding 12 9 3 2 1 0
Bug Fixes 2 2 0 0 0 0

bugs. 2 false negatives are caused by the imprecision of indirect
call analysis, and 1 needs heap modeling.

Security Impact. We attempted to understand the security
impacts for the 17 bugs that are not dismissed by Linux
kernel maintainers. This turns out to be a non-trivial task
as the danger of uninitialized uses heavily depends on the
semantics of the variable. We consider a few conditions: (1)
whether the uninitialized variable can cause control flow to
diverge (e.g., used in an if condition); if so, does it cause
additional memory operations such as free() to occur, which
can likely lead to memory corruption. (2) whether the variable
represents the size of objects; if so, it may cause out-of-bounds
access. (3) whether the uninitialized variable will propagate
to userspace, e.g., through copy_to_user() or logging to
userspace-accessible places. Note that we did not confirm the
impact through end-to-end verification (e.g., fuzzing), which
we believe would be beyond the scope of the paper. Rather, we
aim to obtain a rough estimate on how dangerous these bugs
might be. Overall, we find 8 of these could potentially lead to
memory corruption, 1 could cause the information leakage, 3
could cause the hardware configuration corruption, and 5 are
benign.

F. Patch Identification Results

Reported Patches. INCRELUX can help developers reason
about whether their patches are indeed working as intended.
Specifically, in this evaluation, we choose to evaluate whether
INCRELUX is capable of finding patches for the confirmed UBI
bugs discovered by INCRELUX. This includes bugs discovered
from the baseline analysis on v4.14, as well as the incremental
analysis up to v4.19. This leaves us 74 confirmed UBI bugs.
Note that their patches may or may not appear in the range
of v4.14 to v4.19. It turns out only 2 are patched within this
range, and INCRELUX correctly identified exactly the change
that fixed the problem.

False Positives and False Negatives. Note that we do not
claim the analysis for patch identification is sound or complete.
Therefore, in principle, INCRELUX could report a commit
earlier than the actual bug-fixing commit as the patch, due
to false positives in the analysis. In the evaluation, we do not
find any such case. Similarly, INCRELUX could miss real bug-
fixing commits, due to false negatives. In this evaluation, we
do not find this case either. We believe that INCRELUX will
typically be quite accurate in identifying the correct patch for
UBI bugs that it was originally able to detect, due to its use
of precise symbolic execution to reason about path feasibility
before and after the patch.

Bug Lifetime and Case Study. As mentioned, there are two
bugs whose corresponding patches are correctly identified by
INCRELUX. Out of the two, one bug was introduced before
v4.14 (but captured by our baseline analysis of v4.14). For the

TABLE IX: The false positives for bug finding and bug fixes for
mainline

Total TP FP TN FP-
Guidance

FN-
iCall

FN-
Array

Bug Finding 44 22 22 N/A 14 7 1
Bug Fixes 2 2 0 72 N/A N/A N/A

1 /* drivers/media/i2c/imx274.c
2 * uninteresting code lines are omitted */
3 static int imx274_regmap_util_write_table_8 ()
4 {
5 int err;
6 if (range_count == 1)
7 err = regmap_write(regmap,
8 range_start, range_vals[0]);
9 else if (range_count > 1)

10 err = regmap_bulk_write(regmap, range_start,
11 &range_vals[0],
12 range_count);
13 + else
14 + err = 0;
15 if (err) {
16 return err;
17 }
18 }

Fig. 6: The patch that fixed the previous bug; this bug was introduced
in v4.15-rc1 and the patch was applied in v4.16-rc1. By continuously
tracking the bug, INCRELUX could find both the bug upon introduc-
tion, and the time of the bug disapperance. If we use this patch as
the input for the incremental analysis, the disapperance of the bug
indicates that this commit was related to a bug fix.

other one, it was introduced in v4.15-rc1 and fixed in v4.16-rc1
with a lifetime of about ten weeks. The bug had unfortunately
slipped through the stable release of v4.15. Below we use this
bug as a case study to demonstrate how INCRELUX identifies
the bug-introducing commit and the corresponding bug-fixing
commit.

This bug was introduced in v4.15-rc1 with the
addition of the imx274 module, which is a V4L2
driver for the Sony imx274 CMOS sensor. Function
imx274_regmap_util_write_table_8() is supposed
to write some values to some hardware resister; if the
write fails, it should notify the caller by assigning the
return value to an otherwise uninitialized local variable
err. In Figure 6, we show that clearly without the patch,
there is one branch where err will not be initialized and
yet used in a conditional statement at line 15, which can
potentially lead to logic errors in the kernel. This UBI bug
is relatively easy to capture, as there exists one feasible path
that triggers the uninitialized use. Furthermore, INCRELUX
detects this bug easily through incremental analysis because
the function regmap_write() and regmap_bulk_write()
are already defined and analyzed before the v4.15-rc1.
INCRELUX simply reuses their summaries. Similarly, when
the patch is applied, we can also reuse the summaries of
regmap_write() and regmap_bulk_write(), and simply
re-analyze iimx274_regmap_util_write_table_8().
Clearly, the patch has caused err to become initialized in all
branches before the use at line 15. We can therefore quickly
confirm that the patch is indeed effective.
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VI. RELATED WORK

A. Bug Detection Tools for the Linux Kernel

Static Analysis Tools for the Linux Kernel. A variety of
tools have been proposed to unearth bugs in the Linux kernel,
some target specific types of bug, others are more general
or extendable. KINT [63] is a static analysis tool designed
for detecting integer overflow bugs in the Linux kernel. K-
Miner [22] performs an inter-procedural analysis to detect
memory-corruption vulnerabilities. UniSan [43] adopts byte-
level data-flow analysis to detect information leakage caused
by uninitialized variables. UBITect [74] uses type-qualifier
inference to detect use-before-initialization (UBI) bugs on
the stack. It mitigate the false positive problem by using
under-constrained symbolic execution to find a feasible bug-
triggering path for human inspection. Similar strategy (i.e.,
using symbolic execution to reduce false positives) has also
been adopted by DEADLINE [69], which detects double-fetch
bugs, a type of time-of-check-to-time-of-use (TOCTTOU) bug
that is caused by fetching the same data from the user-space
twice; and KUBO [40], which detects undefined behavior bugs.
LRSan [62] aims to find a broader spectrum of TOCTTOU
bugs that can bypass kernel security checks. CRIX [42] detects
insufficient handling of erroneous states in the Linux kernel
(e.g., forgetting to check if kmalloc returns NULL). K-
MELD [20] detects kernel memory leak bugs through precise
ownership analysis.

Because error handling paths are usually less tested, several
tools have been developed to find bugs in error handling paths.
Juxta [49] finds semantic bugs in Linux file systems by cross-
checking paths that handle the same type of errors. RID [47]
and [59] detect reference count bugs using consistency checks
across error handling paths. EeCatch [53] aims to detect error
handling code that causes the kernel to enter a state that is
even worse than the error itself. HERO [66] finds bugs in error
return paths that perform cleanup operations in an incorrect
order, redundantly, or inadequately.

Coverity [18] is a commercial product (and thus incurs
cost) that is able to perform incremental static analysis. Beyond
its inner working being opaque, it seems to have the following
limitations: a) It seems that it does not use underconstrained
SE to automatically filter warnings and thus, is not able to
precisely confirm whether a warning leads to a true positive
in an automated way [18]. b) It also appears that it leaves
some expectations on customers [15] to annotate the code
to mark false positives – these warnings are later suppressed.
The danger of this is that, these warnings may turn into true
positives when other code is altered, and suppressing them
could potentially hide the bug. More importantly, if developers
do not annotate the code, the warnings related to false positives
could reappear and may need to be re-analyzed. In addition
to being fully transparent, INCRELUX does not have these
possible limitations.

Bug detection frameworks for the Linux Kernel.
Dr.Checker [45] is a framework for detecting bugs in Linux
drivers; it is extendable to detect different taint-style bugs such
as integer overflow and out-of-bound memory access caused
by untrusted user-space input. CQUAL [21] is a type qualifier
framework which is able to detect kernel bugs following user
customized type system. Several papers also leverage type

qualifier inference to find various bugs in the Linux kernel [74],
[75]. Some frameworks [10], [11], [36], [51], [73] also use
intra-procedural analysis to analyze Linux.

Dynamic Analysis Tools for the Linux Kernel. Dynamic
analysis is widely applied to catch bugs in the Linux kernel at
run time. Such techniques include hypervisor-based detection
and fuzzing. Since the hypervisor can monitor a guest OS
kernel, it can be used to dynamically catch kernel bugs. For
example, bochspwn-reloaded [34] exposes memory disclosure
bugs in the Linux kernel by tracking the flow of sensitive
locations using a dynamic taint analysis and shadow memory.

Fuzzing finds bugs in the Linux kernel by repeatedly
feeding system calls and other input dimensions like files
and devices with mutated inputs. The state-of-the-art off-the-
shelf kernel fuzzer is Syzkaller [60], which has been used
by Google to perform continuous fuzzing for all versions of
the Linux kernel [27]. Many research prototypes have also
been developed to improve kernel fuzzing. IMF [30] tries
to infer syscall dependencies from real-world applications.
MoonShine [52] tries to improve the quality of initial seeds
by “distilling” seeds from syscall traces of real-world ap-
plications. HFL [38] combines kernel fuzzing with symbolic
execution. Difuze [17] uses static analysis to help construct
well-formatted inputs to fuzz kernel drivers. Razzer [32] also
uses static analysis to guide the discovery of kernel data-
races. KRace [68] uses dynamic data-flow in addition to code
coverage to fuzz data race bugs in the file systems. Janus [71]
improve file system fuzzing by mutating both the syscalls and
the on-disk file system. PeriScope [58] focuses on fuzzing the
hardware interface of the kernel.

The fundamental limitation of all dynamic analysis tools is
that they cannot find bugs in code that is not exercised during
testing. Unfortunately, even with all recent advances in fuzzing,
the code coverage of fuzzers is still very limited. As a static
analysis tool, INCRELUX can find bugs in all the compiled
code.

B. Incremental Analysis and Regression Test

Relatively little attention has been paid to incremental
analysis of the Linux kernel. Facebook Infer [31] is a static
analysis framework that supports incremental analysis for
various bug types. Interestingly, according to our testing of
the UBI bugs, it appears the support is limited. One problem
is that it is not well aware of memory objects of structure
types pointed to by pointers. In other words, if an uninitialized
structure pointer gets dereferenced, sometimes no warning is
reported. For example, suppose struct *A a is a pointer
declared on the stack, any visit of its member (e.g. a− > x)
will not be reported, leading to false negatives. Infer also does
not store “requirements” in function summaries for UBI bugs,
which makes it difficult to precisely determine UBI bugs in an
interprocedural analysis. Furthermore, Infer does not use fixed
point analysis for recursive functions, and it does the bottom-
up analysis with a random starting point in the SCC, which can
lead to non-determinism in the results [2]. Finally, applying it
to the kernel may face other challenges like complex pointer
arithmetic in the kernel (e.g., the container_of macro).
And its incremental analysis inherits all those limitations.
Conc-iSE [29] designs a symbolic execution algorithm to
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help generate new test cases for concurrent code affected by
new changes. Due to the path exploration problems, inter-
procedural symbolic execution cannot scale to the whole Linux
kernel. Based on our experience, even with under-constrained
symbolic execution, our tool has to frequently tradeoff preci-
sion (i.e., by making a variable under-constrained) for scala-
bility. Regression verification [23] is another related concept
that focuses on code changes. It aims is to check for software
regression and make sure that an old function still works in the
new version. To efficiently verify the absence of regressions,
partition-based regression verification [13] divides the program
input space into units of verification (differential partitions),
allowing for gradual checking. None of these approaches
perform incremental analysis to discover bugs in the Linux
kernel, which poses new challenges because of scale, its rapid
evolution, indirect calls, and complex function relationships
(e.g., recursion).

C. Security patches

Maintainers of large software receive numerous bug reports
and proposed patches everyday. They need to manually inspect
these proposed commits and prioritize the security patches to
be applied. This process is time-consuming and thus, there is
a lot of work which targets differentiating security patches
from normal bug fixes. The first approach towards this is
based on leveraging commit messages; for example, supervised
and unsupervised learning techniques [19], [28], [78] classify
security vulnerabilities and general bugs based on commit
message text. There exist other statistical approaches [64] that
also heavily rely on bug messages. However, not all bug reports
are properly written with necessary annotations relating to
security information. We point out here that in fact, the kernel
actually requires developers to add a fix tag to indicate if the
patch is a bug fix. However, many independent developers
are still not aware of this requirement. The second approach
is leveraging static analysis and symbolic execution [65] to
automatically differentiate security patches from the normal
code commits. This approach compares the constraints from
the unpatched version and the patched version; then, with some
bug modeling, [65] can automatically identify security patches
and even infer the type of the security vulnerability associated
with a patch. As shown in section V, INCRELUX can very
quickly verify if a patch adds or removes UBI bugs.

VII. DISCUSSION

INCRELUX uses a principled way to conduct an incre-
mental analysis for the Linux kernel. To achieve scalability
and reduce the turnaround time, it uses function summaries to
avoid analyzing functions that are not affected by new code
changes. Our evaluation over individual patches suggests that
IncreLux might be useful in checking for individual commits
before merging them to the mainline. Although our evaluations
are on the allyes configuration, the approach can be used with
other configurations as well.

While extremely effective in achieving its goals,
INCRELUX does have some limitations on UBI bug detection.
However, we note that all these limitation are inherited from
the underlying analysis UBITect [74]. First, it only tracks
uninitialized stack variables, as opposed to uninitialized
global state variables (i.e., heap or global variables). This

turns out to be a minor issue as the majority of UBI bugs
we find are indeed due to uninitialized stack variables. We
have verified this by sampling 51 UBI bugs through keyword
search, i.e., “uninit” and “Uninit” from minor versions of
v4.14.y and v4.15.y. Only 9 of them are not uninitialized stack
variables. Second, we also do not track how an uninitialized
stack variable may propagate to global states which then
encounter uses. From analyzing the above 42 uninitialized
stack variables, we find that only 5 did propagate to global
states. Third, it only detects UBI bugs in a single thread
and does not yet handle bugs that span multiple threads. In
summary, we believe that INCRELUX is a significant step in
enabling the timely analysis of bugs in the Linux kernel and
leave these open problems to future research.

VIII. CONCLUSIONS

In this paper, we design and implement INCRELUX, a
framework for principled incremental analysis of the Linux
kernel. INCRELUX is effective across both mainline and stable
versions, and provides an effective progressive way to detect
bugs with dramatic speed ups compared to today’s expensive
whole-kernel analysis that needs to be performed each time
a new Linux kernel version is released. This speed up aids
developers in quickly identifying bugs before merges can
happen, thereby enabling much safer Linux kernel version
releases. By tracking bug lifetimes across Linux versions,
INCRELUX is able to identify bugs that potentially are hard
to exploit (since they have remained for long) and newer bugs
that need more immediate attention. The same feature also
allows INCRELUX to effectively disambiguate bug fixes from
other normal commits. Our evaluations of INCRELUX over
a fairly large set of Linux versions show that INCRELUX
dramatically reduces the analysis time towards detecting bugs
(a factor of nearly a 1000× speed up at times). Furthermore,
we show that it is able to achieve almost perfect accuracy in
terms of conclusions that it draws via its incremental analysis
of a new version, in comparison to a holistic clean slate
analysis of the same version. We also point out some future
directions that can further expand and improve the capabilities
of INCRELUX.
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TABLE X: Incremental analysis results for mainline versions v4.14 to v5.4. T(h) : Total analysis time in hours. CG Analysis(s) : Call graph

analysis time. SU : Speedup compared to exhaustive analysis of v4.14. FM : Number of functions modified compared to the immediate.

predecessor. FR : Number of functions (re-)analyzed in this version. Warn : Number of Warnings reported in the current version. Disappearing

: Number of warnings that disappear in the current version (compared with the last analyzed version). Equal : Number of warnings that
remain in the current version compared to the immediate previous analyzed version. New : Number of warnings newly introduced in the
current version compared with the last analyzed version. SE-New : New bugs confirmed by SE that are introduced in the new version.

versions T(h) SU FM FR Warn Disappearing Remaining New SE-New
v4.14 106h45min N/A N/A 629862 103616 N/A N/A N/A 622
v4.15-rc1 28.26 3.78 23941 42548 21190 4325 99291 4979 69
v4.15-rc2 2.91 36.74 719 2617 2190 422 103848 211 0
v4.15-rc3 2.27 47.04 656 3084 1937 301 103758 238 0
v4.15-rc4 1.13 94.52 332 1268 718 116 103880 70 0
v4.15-rc5 1.28 83.31 329 1793 1339 207 103743 331 0
v4.15-rc6 1.15 92.6 273 1761 1282 96 103978 96 0
v4.15-rc7 0.43 248.74 101 403 263 21 104053 27 0
v4.15-rc8 1.33 80.15 243 1707 1305 114 103966 151 0
v4.15-rc9 0.63 169.82 217 1031 696 49 104068 48 0
v4.15 0.13 800.63 122 262 215 36 104080 48 2
v4.16-rc1 26.77 3.99 21251 52151 26922 4240 99888 4742 55
v4.16-rc2 0.24 453.72 220 521 342 10 104620 25 0
v4.16-rc3 0.7 151.6 434 1012 713 136 104509 77 1
v4.16-rc4 3.39 31.48 278 7398 3446 502 104084 509 4
v4.16-rc5 0.76 141.23 422 979 598 80 104513 76 0
v4.16-rc6 0.26 415.01 144 401 279 15 104574 27 0
v4.16-rc7 0.93 115.2 498 1543 819 107 104494 190 2
v4.16 0.33 318.92 183 535 278 18 104666 15 0
v4.17-rc1 35.1 3.04 23807 64758 33619 4493 100188 6620 28
v4.17-rc2 1.38 77.36 310 1290 1133 90 106718 89 0
v4.17-rc3 0.38 281.13 387 671 466 133 106674 72 1
v4.17-rc4 0.53 203.23 302 546 335 49 106697 30 4
v4.17-rc5 0.56 192.05 267 686 499 36 106691 31 0
v4.17-rc6 0.18 590.32 151 213 128 10 106712 15 0
v4.17-rc7 0.69 154.21 367 729 610 64 106663 56 0
v4.17 0.22 490.8 133 274 183 40 106679 17 0
v4.18-rc1 34.55 3.09 26607 64907 34669 3736 102960 7696 50
v4.18-rc2 3.25 32.85 597 7573 2060 159 110497 221 0
v4.18-rc3 0.32 336.81 251 557 281 14 110704 22 0
v4.18-rc4 1.1 97.41 587 1070 909 53 110673 183 1
v4.18-rc5 0.11 937.32 123 210 301 11 110845 143 0
v4.18-rc6 0.52 203.87 374 667 481 107 110881 136 0
v4.18-rc7 1.03 103.81 266 796 586 41 110976 53 0
v4.18-rc8 0.23 470.38 181 294 143 18 111011 2 0
v4.18 0.14 771.69 81 194 87 11 111002 13 0
v4.19-rc1 32.11 3.32 21896 55931 28780 4182 106833 6109 51
v4.19-rc2 0.55 195.37 271 1121 789 88 112854 126 0
v4.19-rc3 0.6 178.08 304 824 618 38 112942 39 0
v4.19-rc4 0.82 129.87 713 1717 1121 157 112824 218 1
v4.19-rc5 1.06 100.89 252 1015 867 157 112885 128 0
v4.19-rc6 0.53 201.73 231 693 686 45 112968 31 0
v4.19-rc7 2.56 41.72 384 3317 4634 70 112929 486 1
v4.19-rc8 0.39 271.21 129 491 411 6 113409 27 0
v4.19 0.43 247.3 116 579 484 62 113374 40 0
v5.4 97.9 1.09 99370 205327 158018 43762 69652 88366 N/A
v5.9 99.65 1.07 91741 197413 152746 40720 85425 67321 N/A
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