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Abstract—In the recent past, a number of approaches have
been proposed to protect certain types of control data in a
program, such as return addresses saved on the stack, rendering
most traditional control flow hijacking attacks ineffective. Attack-
ers, however, can bypass these defenses by launching advanced
attacks that corrupt other data, e.g., pointers indirectly used to
access code. One of the most popular targets is virtual table
pointers (vfptr), which point to virtual function tables (vtable)
consisting of virtual function pointers. Attackers can exploit vul-
nerabilities, such as use-after-free and heap overflow, to overwrite
the vtable or vfptr, causing further virtual function calls to be
hijacked (vtable hijacking). In this paper we propose a lightweight
defense solution VTint to protect binary executables against
vtable hijacking attacks. It uses binary rewriting to instrument
security checks before virtual function dispatches to validate
vtables’ integrity. Experiments show that it only introduces a
low performance overhead (less than 2%), and it can effectively
protect real-world vtable hijacking attacks.

I. INTRODUCTION

Memory corruption bugs are still one of the most critical
problems in computer security. Attackers can use these bugs to
gain unauthorized access to the program state (e.g., the code
and data in memory), or even corrupt the state, to indirectly
control the program counter and hijack the control-flow to
execute malicious code.

In the last decades, pointers to code (i.e., control data),
such as return addresses, exception handlers and function
pointers, are the most common targets to corrupt. Many
defense solutions are proposed and deployed to defeat these
control data corruption attacks, e.g., StackGuard [8] for return
address, SafeSEH [27] for exception handlers. More gener-
ally, DEP (Data Execution Prevention [2]) or W⊕X prevents
writable memory from being executed, and prevents executable
memory from being written, making code corruption and code
injection attacks ineffective. ASLR (Address Space Layout
Randomization [37]) randomizes the locations of code and
data, raising the bar of code reuse attacks such as return-to-
libc [46] and ROP (Return Oriented Programming [45]).

The vtable hijacking attacks In addition to corrupting tradi-
tional control data, modern advanced attacks turn to corrupting

other data, e.g., pointers to control data, including the virtual
table pointers (vfptr). The vfptr is a hidden field of C++ objects
that have virtual functions, generated by all major compilers
(e.g., GCC, Visual C++ and LLVM). The vfptr points to a
table called virtual function table (vtable), consisting of virtual
function pointers associated with the object’s class.

By overwriting a vtable’s contents (i.e., vtable corruption),
or overwriting a vfptr to point to an attacker-crafted vtable
(i.e., vtable injection), or overwriting a vfptr to point to some
existing data (i.e., vtable reuse), attackers can hijack the control
flow later when a virtual function is invoked. These three types
of attacks form the well-known vtable hijacking attacks.

The vtable hijacking attacks have been increasing in pop-
ularity. Attackers can exploit vulnerabilities that can lead to
arbitrary or specific memory write, e.g., traditional buffer
overflow [42], type confusion [9, 30] and use-after-free [15],
to corrupt the vfptr or vtable, and launch the vtable hijacking
attacks. Among these vulnerabilities, the use-after-free vulner-
ability has become a major threat to applications. It accounts
for over 80% attacks against the Chrome browser [49], and
more than 50% known attacks targeted Windows 7 [25]. As
far as we know, most public known real-world exploits against
use-after-free vulnerabilities are vtable injection attacks, as this
type of attack is more reliable than the other two types.

Researchers have proposed several defenses against the
vtable hijacking attacks, such as SafeDispatch [20], a candidate
GCC extension [48, 49], and VTGuard [28] (see Section III-C
for more detail). These solutions, however, all need accurate
type and class inheritance information of target applications,
which are not available in binary executables. And thus, they
cannot protect the massive legacy applications and closed-
source applications. Moreover, these solutions either do not
offer sufficient protection against vtable hijacking attacks or
incur a high performance overhead.

The approach In this paper, we propose a novel solution
VTint to protect binary executables against vtable hijacking
attacks with a low performance overhead. In particular, we
notice that most legitimate vtables are in read-only sections be-
cause no vtables are ever modified during runtime in legitimate
programs. On the other hand, the vtable corruption attacks
require vtables to be writable, and vtable injection attacks will
inject writable vtables into applications at runtime. Based on
this observation, we check whether vtables are read-only to
validate their integrity at runtime. In this way, our solution
VTint prevents writable vtables from being used in virtual
calls, and can defeat all vtable corruption and vtable injection
attacks. This solution is simple but effective, similar to the DEP
solution that prevents writable memory from being executed.
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Moreover, it will also identify all candidate vtables. Ad-
dresses of vtables will be used in classes’ constructor func-
tions, and thus they must be relocation entries. Furthermore,
entries in vtables are all virtual function pointers, and thus
they are also relocation entries. So, by examining all relocation
entries via the relocation table, we can identify a candidate
vtable, if and only if we find a relocation entry which points
to an array, and this array is composed of (maybe only one)
other relocation entries which point into code sections. In this
way, PEParser is able to find out all candidate vtables.

D. Disassembling and Identification

BitCover disassembles the given binary and identifies
all vtables and virtual function call sites in it.

1) Disassembling: BitCover takes the original PE exe-
cutable file as input, as well as the candidate function entries
produced by the previous component PEParser, and gener-
ates the target binary’s disassembly information.

In general, the workflow of BitCover consists of two
phases. First, it greedily explores all the code and data in
the program, looking for function entries. For each candidate
function entry, BitCover starts a recursive disassembling
from it until a stop condition is met. For example, it will
stop when an invalid instruction is met, or the new instruc-
tion overlaps with some previous resolved instructions. Once
BitCover meets an invalid byte sequence, it will mark the
code entry from where it starts disassembling as invalid, and
continues disassembling the next candidate function entry. In
the second phase, BitCover refines the disassembling result.
In particular, it will mark some code entries as reliable code
entries based on some rules. Then, it propagates the reliability
across code entries based on the call graph. Finally it removes
unreachable code entries. More details of the disassembler
are discussed in our previous work [52], including other stop
conditions, and other control data tables’ identification.

2) Identifying VTables: After disassembling, we are able
to filter out all vtables from the candidate vtables provided by
PEParser. For each vtable, it will be used in the associated
class’s constructor function, and its pointer will be assigned
to the generated object’s vfptr. Based on this observation, we
propose a new forward data-flow analysis to identify these
vtable assignment operations, and filter real vtables. More
implementation details are discussed in Section V-B.

3) Identifying Virtual Function Call Sites: As Section II-A
describes, to dispatch a virtual function call, vtables will
be indirectly accessed to get the address of a target virtual
function. The workflow is that, a vfptr is read out from an
object first (i.e., a memory read operation), and then a function
pointer is read out from the table pointed by the vfptr (i.e.,
another memory read operation), finally the function pointer
is indirectly jumped to or called.

Based on this general pattern, we can identify all candidate
virtual function call sites. Combining with other rules, such as
the propagation of the object pointer (i.e., this pointer) from
caller to callee functions, we can further filter out all valid vir-
tual function call sites. In this process, we use several backward
data-flow analyses to help identify the propagation of pointers
to objects and pointers to vtables. More implementation details
are discussed in Section V-C.

E. Rewriting and Instrumentation

Based on the output of BitCover, the next component
VRewriter will rewrite the original binary to enforce our
security policies. First, it creates a read-only section, and
moves all identified vtables to this section, and instruments IDs
for vtables in this section. Then, all references to vtables will
be updated to the vtables’ new addresses. Finally, VRewriter
will instrument security checks for each virtual function dis-
patch to validate the target vtable’s integrity (i.e., whether it is
read-only and contains a correct ID). The instrumented security
enforcement code will be put into a new code section, leaving
most of the original code section intact.

1) VTable Instrumentation: First, we will move all iden-
tified vtables to a new read-only section, in case that some
legitimate vtables locate in writable sections. To move a vtable,
we need to know its size. However, it is challenging to identify
the exact size of a vtable in a binary. We conservatively move
several more bytes around vtables to the new section. More
implementation details are discussed in Section V-D1.

Then we instrument an identical ID at the beginning of each
page in the new vtable section. This ID is randomly selected,
and is different from any words at the beginning of any page
in any exiting read-only sections. In this way, we only need to
instrument an identical ID for a small number of pages, and
do not need to modify vtable’ layout. More implementation
details are discussed in Section V-D2.

2) Virtual Call Instrumentation: As Figure 1 shows, when
a virtual function is invoked, the corresponding vtable will be
implicitly accessed to get the target virtual function. VTint
will validate the property of the vtable before it is accessed,
to enforce the aforementioned security policy.

In particular, before the vtable is accessed, VTint will
check whether it is read-only, and whether there is a legitimate
ID associated with this table. If either condition is not satisfied,
the target vtable is a vulnerable table that can be exploited,
and thus will be rejected by the security check. Once a vtable
is rejected, a warning can be raised and the program can
be blocked. More implementation details are discussed in
Section V-E.

F. Modularity and Compatibility Support

For any single module, VTint can identify all of its
vtables and virtual function dispatches, only using information
collected from the module itself. In addition, the security
checks instrumented for this module also work independently.
As a result, VTint can be applied to a single module without
any problem, i.e., it has a perfect modularity support.

Further, if VTint hardens all modules, there will be
no compatibility issues. For legitimate virtual function calls,
the instrumented security checks should not fail, because all
legitimate vtables have been put in read-only sections and
instrumented with an identical ID.

In some cases, however, we cannot harden all modules at
the same time. For example, some modules belonging to the
operating system cannot be altered by user space applications.
For these unhardened modules, there are no IDs instrumented
for their vtables. As a result, when these vtables are accessed in
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TABLE II: Analysis results of the SPEC2000 and SPEC2006 benchmark applications. Only applications having virtual functions are listed
here. The second column SPEC describes which SPEC subset the application is from. The third column source LOC counts the applications’
line of source code. The following column shows the analysis time that VTint takes to disassemble and rewrite this application’s binary. The
file size group of columns shows the original file size, the hardened binary’s size and the size overhead. The VTbale info group of
columns shows the statistics of information related to virtual tables, including the count of instructions, the count of virtual tables and the
count of virtual function dispatches. The last group of columns describes the runtime performance of the original SPEC applications and the
hardened ones, and the performance overhead is then computed. The geometry mean value of these performance overheads is about 0.37%.

analysis file size (KB) VTable info Run Time (sec.)
App SPEC source time size perf.

LOC (sec) orig new overhead #inst #vtables #vcalls orig new overhead

252.eon spec2000int 41,188 5.9 572 605 5.81% 135,253 68 205 33.8 34.8 2.96%
444.namd spec2006fp 3,886 5.5 532 544 2.20% 127,593 3 2 989 979 -1.0%
447.dealII spec2006fp 94,384 12.3 1,639 1,684 2.70% 360,153 115 200 2,172 2,180 0.37%
450.soplex spec2006fp 28,277 6.7 516 551 6.72% 210,347 51 495 556 560 0.72%
453.povray spec2006fp 78,705 136.3 1,170 1,221 4.34% 226,923 48 112 440 429 -2.5%
471.omnetpp spec2006int 19,991 9.2 811 910 12.20% 242,166 127 1,431 218 221 1.38%
473.astar spec2006int 4,280 1.5 119 119 0.03% 41,710 2 0 292 292 0
483.xalancbmk spec2006int 267,399 211.6 3,767 4,030 6.97% 872,069 29 4,248 179 181 1.12%

As a result, the instruction jmp ERROR2 (5 bytes) will be
skipped, and the testing function try_write_vtable will
return to the original virtual function call site.

F. Fail-Safe Check

As discussed earlier, in case that some modules are not
hardened by VTint, the instrumented security check may fail
and cause false positives, because there is no ID instrumented
before the vtables in unhardened modules.

To handle such cases, we deploy a fail-safe solution to
provide better compatibility. This fail-safe solution will only
enforce the vtable to be read-only, but not enforce the existence
of the ID if the current module is not hardened. If VTint is not
deployed on all modules, the error handler for ID mismatching
(i.e., ERROR1 in Figure 7) will first check whether current
module is hardened by VTint. If yes, it blocks the control
flow, and reports an attack. Otherwise, it will not block the
control flow, but just return back to the original code to further
check whether the vtable is read-only. In this way, VTint can
still defeat all vtable corruption and vtable injection attacks,
and also provides better compatibility.

To tell whether a module is hardened by VTint, we will
traverse the Process Environment Block (PEB) of the current
executable at runtime, to resolve the section information of the
current module. If a read-only section named vtsec is found,
and the first 4-bytes of this section is the matching ID we used
for vtables, we can conclude that it is hardened by VTint.

VI. EVALUATION

We have implemented a prototype of VTint for x86 PE
executables on the Windows platform. In this C++ implemen-
tation prototype, our custom disassembler BitCover uses an
open source disassembler library Udis86 [47] to decode x86
instructions. In addition to the 8K LOC of Udis86, BitCover
takes about 5k LOC, while VRewriter takes another 3k LOC
and PEParser takes 2k LOC.

We have tested VTint with the SPEC2000 [16] and
SPEC2006 [17] benchmark binaries, and some real world
browsers including Firefox, Chrome and Internet Explorer 6

and 8 (denoted as IE6 and IE8),1 to evaluate our defense
solution’s performance and protection effectiveness.

A. Performance of Static Analysis

In this section, we first describe our experiment setup,
and then show the analysis time of VTint, and the file size
overhead brought by VTint.

1) Experiment Setup: The SPEC2000 and SPEC2006
benchmarks are composed of applications written in C/C++
and Fortran. To harden these benchmarks with VTint, we first
compile them to PE binaries supporting relocation table. For
those applications written in C/C++, we compile them using
the Microsoft Visual Studio 2010 compiler. For those written
in Fortran, we use the Intel Fortran Compiler to compile them.
For each application, all modules are statically linked together.
This experiment is performed on a Windows 7 32bit system,
with an Intel Core2 Duo CPU at 3.00GHz.

We use VTint to automatically disassemble and rewrite
all these benchmark applications’ binaries. The functions iden-
tified by VTint are compared with the symbol information
from the source code. The result shows that there is no false
positives or false negatives when parsing these binaries. We
then replace the original SPEC binaries with the hardened bina-
ries generated by VTint, and then run the performance test by
using the original SPEC harness scripts. The performance test
scripts also check the behavior of the benchmark applications
by matching the outputs of applications with expected outputs.
Results show that the behavior of hardened applications is
same as the original ones’, indicating that the disassembling
and rewriting of VTint is correct and does not break target
applications.

For real world browsers including Firefox and Chrome, we
harden each executable module (i.e., *.dll and *.exe) of the
browser using VTint. We then replace the original modules
with the hardened ones to test the performance and protection
effectiveness. Results show that VTint is able to disassemble

1 Newer browsers often require newer OS, causing them hard to be replaced
by VTint due to the integrity protection provided by the OS. In addition, there
are fewer public exploits available for defense evaluation. Hereby, we chose
these two old version browsers for testing.
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TABLE III: Analysis results of Firefox modules, including the analysis time each module takes, the file size information of the original
binaries and the hardened binaries, and the statistics of the VTable related information.

analysis file size (KB) VTable info
App time size

(sec) orig new overhead #inst #vtables #vcalls

crashreporter.exe 1.8 116 117 0.52% 18,461 3 15
updater.exe 3.7 271 276 1.77% 112,693 9 17
webapprt-stub.exe 1.6 96 97 0.61% 38,589 2 17
D3DCompiler_43.dll 74.3 2,106 2,202 4.53% 2,135,041 48 1338
d3dx9_43.dll 36.9 1,998 2,184 9.33% 627,400 124 4152
gkmedias.dll 84.9 4,221 4,493 6.45% 2,130,418 483 5542
libEGL.dll 0.99 59 64 7.99% 17,772 3 156
libGLESv2.dll 23.7 473 519 9.91% 913,890 87 983
mozjs.dll 123.6 2,397 2,444 1.95% 4,553,743 35 174
msvcp100.dll 5.0 421 450 6.79% 78,586 116 438
msvcr100.dll 13.2 770 778 0.92% 291,484 91 270
xul.dll 328.9 15,112 17,768 17.57% 5,801,649 6548 54743

TABLE IV: Analysis results of Chrome modules, including the analysis time each module takes, the file size information of the original
binaries and the hardened binaries, and the statistics of the VTable related information.

analysis file size (KB) VTable info
App time size

(sec) orig new overhead #inst #vtable #vcalls

delegate_execute.exe 21.9 2,105 2,162 2.68% 629,884 428 1,628
chrome_elf.dll 1.9 132 131 -1.3 % 49,138 11 34
d3dcompiler_43.dll 59.4 2,106 2,199 4.42% 2,135,041 48 1,338
d3dcompiler_46.dll 106.8 3,231 3,489 7.99% 3,979,873 622 5,017
libegl.dll 1.8 174 174 -0.41% 47,588 9 64
libglesv2.dll 31 1,097 1,157 5.43% 1,303,450 165 1,885
libpeerconnection.dll 23.6 2,461 2,668 8.37% 658,700 437 6,416
metro_driver.dll 6 504 534 5.88% 181,753 177 920
pdf.dll 70.3 8,577 8,868 3.38% 2,145,987 1,048 8,602
ppgooglenaclpluginchrome.dll 3.7 331 334 0.64% 106,962 51 142
widevinecdmadapter.dll 1.5 137 138 0.28% 47,423 29 110
xinput1_3.dll 1.3 81 79 -3.12% 23,645 2 4
chrome.exe 8.1 852 865 1.47% 231,493 82 433

and rewrite real world binaries. For example, the module
xul.dll in Firefox (version 17.0.1) has a size of more
than 15MB, containing about 6 millions instructions and more
than 70,000 functions. VTint can automatically handle these
binaries without causing problems. These experiments are also
performed on a Windows 7 32bit system.

We also harden some modules of the IE browser (e.g.,
the core module mshtml.dll). These modules are extracted
from a virtual machine running Windows XP SP3. After
hardening, they are copied back to replace the original ones.2

2) Analysis Time: The disassembling and rewriting process
of VTint is quite fast. In general, it only takes several seconds
to harden a single module.

As shown in Table II, for most SPEC applications that have
virtual functions, the analysis time is less than 10 seconds. The
application 483.xalancbmk from the SPEC2006int subset
takes the longest time, about 212 seconds. Actually it is also
the largest one among these applications, with 267K lines of
source code and about 900K machine code instructions.

Table III and Table IV show the analysis time of VTint
when handling the executable modules of Firefox and Chrome
respectively. Most of these modules take less than one minute.
The module xul.dll in Firefox takes the longest time (about

2These modules are in the system directory, protected by the operating
system. And thus, special efforts are needed to replace these modules.

5 minutes), due to its size. This module is more than 15MB
and has about 6 million instructions.

We also tested the IE 6 browser, the results are similar
and we omit the detailed data. For example, the core module
mshtml.dll is about 4MB and has about 1 million instruc-
tions. It only takes 51 seconds for VTint to disassemble and
rewrite this module.

3) File Size Overhead: VTint needs to copy the original
vtables to a new data section, instrument IDs in this section,
and also instruments virtual function dispatches with security
checks to validate the target vtable’s integrity. In general,
VTint will allocate new data and code sections to put the
new vtables and the security check instructions in.

Moreover, entries in the vtables are all function pointers,
and need to be relocated when the binary module is loaded
into memory. As a result, we need to update the executable
binary’s relocation table, to record all entries in the new
vtables. In addition, the security checks may introduce new
relocation entries too. These entries also need to be recorded
in the relocation table. Therefore, VTint also creates a new
relocation table. All these newly generated relocation table and
sections contribute to a file size increment to target binaries.

As shown in Table II, Table III and Table IV, the over-
all file size overhead brought by VTint is about 5%. For
example, the file size overhead of the SPEC2006 application
483.xalancbmk is about 6.97%. The file size overhead of
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TABLE V: Real World Exploit Samples Prevented By VTint. These
exploits are collected from public resources, including the famous
database exploit-db. IE here stands for Internet Explorer, and FF
stands for Firefox.

CVE-ID App Vul Type POC Exploit Protected
CVE-2010-0249 IE6 use-after-free vtable injection [5] YES
CVE-2012-1876 IE8 heap overflow vtable injection [38] YES
CVE-2013-3205 IE8 use-after-free vtable injection [7] YES
CVE-2011-0065 FF3 use-after-free vtable injection [40] YES
CVE-2012-0469 FF6 use-after-free vtable injection [15] YES
CVE-2013-0753 FF17 use-after-free vtable injection [23] YES

solution used by VTint is based on Windows’ Structured Ex-
ception Handling (SEH) mechanism. When testing legitimate
read-only vtables, the security checks will trigger memory
write violation exceptions. The registered SEH handler will
then catch these exceptions, and finally redirect the control
flow to the application’s original code. When testing illegal
vtables that are writable, the security checks will not trigger
exceptions, but flow to a predefined error handler.

This testing works fine, but its performance overhead
is still high. Most (even all) target vtables at runtime are
legitimate and thus are read-only, and cause many memory
write exceptions, leading to a higher-than-desired performance
overhead. As far as we know, there is no other alternate
solution that is more efficient to check whether a memory is
writable. We hope the hardware or the operating system can
provide supports to do a quick memory property check in the
future, similar to the hardware support for DEP. In that case,
the performance overhead of VTint will become much lower.

D. Protection against Real World Exploits

To evaluate the effectiveness of VTint, we choose 6
publicly available vtable hijacking exploits from the Internet,
including security research blogs such as Vupen’s blog, the
penetration testing framework Metasploit [24] and the exploit
database exploit-db [35], as shown in Table V. These exploits
all target real-world browser applications, e.g., Internet Ex-
plorer and FireFox, by exploiting vulnerabilities such as use-
after-free and heap overflow. They all inject fake vtables into
the memory and finally launch the vtable injection attacks.
For the Chrome browser, there are very few public available
exploits. So, it is not tested here.

Table V also lists other detailed information of the 6
exploits we used. For each exploit, we list the vulnerabilities’
CVE-ID, application version, and type of the vulnerabilities and
the reference of a detailed POC description.

We carry out these experiments in a virtual machine
running Windows XP SP3. Core modules of target applications
are extracted from the virtual machine first. Then VTint
disassembles and rewrites these modules in our analysis plat-
form. Finally, these hardened modules are copied back to the
virtual machine to replace the original ones. After deploying
the hardened modules, we drive target applications to access
the malicious URLs that contain these exploits. Results show
that, the security checks instrumented by VTint will block all
these exploits. In other words, VTint is able to protect real
world browsers from vtable hijacking attacks.

VII. SECURITY ANALYSIS AND DISCUSSION

By checking the memory property of vtables, VTint can
defeat all vtable corruption and vtable injection attacks. The
only way to bypass VTint is to reuse fake vtables in the read-
only memory, like using code reuse attacks (e.g., return-to-libc
or ROP attacks) to bypass DEP.

In addition, VTint will instrument a special ID for vtables,
and match this ID before virtual function dispatches. This
solution is resilient to information leakage attacks. As a result,
attackers can only reuse existing vtables in the read-only
memory to bypass VTint. As there are not many vtables in
an application, the attack surface is small. It is also hard to
find an existing vtable that is useful to launch further attacks.

Further, a fine-grained vtable checking policy is able to
defeat this type of vtable reuse attack. A fine-grained vtable
checking policy, however, requires the type information and
class hierarchy information of target applications, which is
hard to retrieve using binary analysis. Our future work will
focus on identifying this information from binaries, and extend
VTint to defeat all vtable hijacking attacks.

Currently, to deploy VTint in practice, we can combine it
with other lightweight solution to provide better security. For
example, the solution VTGuard is a perfect choice. VTGuard
also instruments IDs for each vtable. It can defeat vtable
reuse attacks, but is vulnerable to vtable corruption and vtable
injection attacks. It also has a negligible performance overhead
(less than 0.5%).

Combining with the VTGuard solution, VTint can defeat
all vtable hijacking attacks. The overall performance overhead
is still acceptable (it should be less than 2% together). It is
worth noting that, after combining, the VTGuard solution is
also resilient to information leakage attacks, because the target
vtables must be read-only and cannot be forged or corrupted by
attackers even if VTGuard’s IDs have been leaked. Moreover,
currently VTint implements a similar ID checking to defeat
some vtable reuse attacks. When combining with VTGuard,
this ID checking can be merged with VTGuard’s. As a result,
the overall performance overhead can be further reduced.

VTint is a pure binary instrumentation solution. It iden-
tifies vtable-related components (e.g., virtual function tables
and virtual function call sites) from the binary, by leverag-
ing certain patterns and calling conventions implemented by
major compilers. VTint also cannot handle binaries that are
obfuscated. For binaries which are obfuscated or do not follow
these patterns, it is still an open challenge to enable the needed
binary analysis.

VIII. RELATED WORK

In this section, we discuss some representative works on
the defense of vtable hijacking attacks and other control flow
hijacking attacks, as well as the binary analysis work.

Memory Safety. The memory safety policy ensures that
no out-of-bounds or dangling pointers can be exploited for
unauthorized read or write of memory. As a result, attackers
cannot tamper target applications’ program states, or launch
control-flow hijacking attacks, including the vtable hijacking
attacks. There are many memory safety solutions proposed
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by researchers, e.g., [10, 36, 44, 51]. These solutions usually
instrument pointers with extra metadata when they are created,
track the metadata during the program execution, and check
the metadata when these pointers are used to access memory.

The most representative solutions are the spatial memory
safety solution SoftBound [31] and the temporal memory
safety solution CETS [32]. These solutions, however, all intro-
duce a high performance overhead, prohibiting their adoptions.
For example, the combination of SoftBound and CETS will
enforce a complete memory safety at the cost of 2x or more
performance overhead.

Code Pointer Integrity (CPI) [21] proposed a lightweight
memory safety solution, protecting only sensitive pointers
including code pointers. The performance overhead of CPI is
about 8.4%. It also needs the source code to enable the code
pointer analysis and instrumentation.

Control-Flow Integrity. The CFI solution provides a strong
guarantee that all control flow transfers must comply with
programmers’ intentions, i.e., they must respect the program’s
compile-time Control-Flow Graph (CFG). It can stop many
different types of control flow hijacking attacks including
ROP [45], return-to-libc [46] and vtable hijacking attacks. The
original CFI solution was proposed in 2005 [1]. It is not
adopted by the industry, however, because it requires source
code of target applications and introduces a high overhead.

Recently proposed coarse-grained CFI solutions [52, 53]
deploy CFI directly on binary executables. As there is no type
information in binaries, only a coarse-grained CFI policy is
thus enforced. As a result, attackers can bypass the protection
in some cases [13].

Some other CFI solutions [33, 50] enforce a fine-grained
CFI policy on target applications. These solutions depend on
the information collected by compilers at compile-time or by
virtual machines. The dependency on source code and the high
performance overhead, however, also restrict their adoption.

VTable Hijacking Defense. SafeDispatch [20] hardens the
program at compile time to defeat vtable hijacking attacks. It
utilizes the LLVM complier infrastructure to perform a whole
program Class Hierarchy Analysis, and compute the valid
method set and the valid vtable set for each virtual function
dispatch, and then validate them at runtime. Researchers from
Google also proposed a similar approach [48]. These solu-
tions, however, need source code of all modules and require
recompiling target applications to deploy the security policy.
In addition, their runtime overhead is still high.

VTGuard [28] is another solution to protect applications
from vtable hijacking attacks, deployed in the modern Internet
Explorer browsers. This solution instruments secret cookies
in vtables and match them at runtime. It has a negligible
performance overhead and can defeat vtable reuse attacks. But
it also needs target applications’ source code. Furthermore, it
is vulnerable to information leakage attacks, vtable corruption
and vtable injection attacks.

DieHard [4] proposes a custom memory allocator to pro-
vide probabilistic memory safety at runtime. By randomizing
and replicating heap objects, it can tolerate various memory
errors (e.g., heap-based buffer overflows, use after free) with

a high probability. As a result, some of the vtable hijacking
exploits can be eliminated by this solution. The average
overhead of this solution is about 8%.

Binary Analysis. Many studies have been made to analyze
binaries. Schwarz et al. [43] discuss the disassembly problem
in detail, including two standard algorithms and a new com-
bination. Many other approaches [18, 19, 39] are proposed
to identify code and data in binaries. Some systems such as
Vulcan [11] provide a general framework for binary rewriting.
The work [9] also discusses some efforts to identify virtual
function dispatches. It also uses some similar heuristics as
VTint, but targets different problems. In addition, it is built on
top of the commercial disassembler IDA Pro [18], and relying
on the LLVM compiler framework to analyze target binaries.

IX. CONCLUSION

In this paper, we propose a novel approach VTint to de-
feat vtable hijacking attacks. It validates the vtables’ integrity
by checking the memory’s read-only property and the ID
associated with vtables. It is able to defeat all vtable corruption
and vtable injection attacks, and most vtable reuse attacks. It
is also resilient to information leakage attacks.

VTint can be applied through binary rewriting on exe-
cutables generated by modern compilers. It provides a good
modularity support and backward compatibility support. Its
runtime performance overhead is low (less than 2%). It can
defeat real world vtable hijacking attacks.
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