
JITScope: Protecting Web Users from
Control-Flow Hijacking Attacks

Chao Zhang∗, Mehrdad Niknami∗, Kevin Zhijie Chen∗, Chengyu Song†, Zhaofeng Chen‡, Dawn Song∗

∗University of California, Berkeley ‡Peking University †Georgia Institute of Technology
{chaoz, mniknami, kevinchn, dawnsong}@cs.berkeley.edu chenzhaofeng@pku.edu.cn csong84@gatech.edu

Abstract—Web browsers are one of the most important end-
user applications to browse, retrieve, and present Internet re-
sources. Malicious or compromised resources may endanger Web
users by hijacking web browsers to execute arbitrary malicious
code in the victims’ systems. Unfortunately, the widely-adopted
Just-In-Time compilation (JIT) optimization technique, which
compiles source code to native code at runtime, significantly
increases this risk. By exploiting JIT compiled code, attackers
can bypass all currently deployed defenses.

In this paper, we systematically investigate threats against JIT
compiled code, and the challenges of protecting JIT compiled
code. We propose a general defense solution, JITScope, to
enforce Control-Flow Integrity (CFI) on both statically compiled
and JIT compiled code. Our solution furthermore enforces the
W⊕X policy on JIT compiled code, preventing the JIT compiled
code from being overwritten by attackers. We show that our
prototype implementation of JITScope on the popular Firefox
web browser introduces a reasonably low performance overhead,
while defeating existing real-world control flow hijacking attacks.

I. INTRODUCTION

Web browsers are one of the most important end-user
applications. PC and smartphone users use browsers to browse,
retrieve and present Internet resources. However, the browser
may receive malicious resources while browsing the internet
when the remote server is compromised, or when the connec-
tion to the server is tampered with (e.g. by performing man-in-
the-middle attacks [1]). These malicious resources may launch
application-level attacks such as cross-site scripting (XSS [2])
and cross-site request forgery (CSRF [3]), or they may even
launch control-flow hijacking attacks that cause web browsers
to execute arbitrary malicious code (such as shellcode) in the
victims’ systems.

Control-flow hijacking attacks have a long history in soft-
ware security. Attackers usually break the program state
(comprising of the code and data in memory) by exploiting
vulnerabilities in target applications, then hijack the control-
flow of target applications to execute malicious code. These
types of attacks are still the dominant threats to modern
systems. The impact of these attacks is more severe for
network applications such as browsers, not only because they
deal with more untrusted input sources than traditional desktop
applications, but also because they are used to perform many
sensitive user activities, including online banking, shopping
and tax reporting.

Modern operating systems and compilers have deployed
several solutions to mitigate control-flow hijacking attacks,
including Address Space Layout Randomization (ASLR [4])
and Data Execution Prevention (DEP or W⊕X [5]). Re-
searchers have also proposed solutions that enforce Control
Flow Integrity (CFI [6–10]), to defeat control-flow hijacking
attacks. But applications such as web browsers use Just-In-
Time compilation (JIT) to compile scripts (e.g., JavaScript)
to native code at runtime and then execute them, making the
traditional boundary between code and data more vague, thus
causing most existing defenses ineffective. For example, at-
tackers can use heap-spray attacks [11] or information leakage
attacks [12] to bypass ASLR. Furthermore, they can use scripts
to write shellcode [13] to bypass W⊕X.

Moreover, the JIT optimization technique makes the defense
more challenging. First, because the JIT compiled code is
generated at runtime, it resides in memory that is both writable
and executable (and thus not protected by W⊕X). Attackers
can override any defense instrumented in the writable JIT
memory. Second, by predicating the behaviors of JIT com-
pilers and feeding them with specially crafted inputs (i.e.,
specific scripts), attackers can manipulate the layout of the
JIT memory to launch various types of attacks, such as JIT
spraying [14–17]. Furthermore, this prevents the application
of defenses such as CFI, as it is difficult to obtain the control-
flow information for the JIT compiled code.

Researchers have proposed some specific defense solu-
tions to protect the JIT compiled code. For example, the
librando [18] and INSeRT [19] solutions randomize the behav-
iors of JIT compilers to stop JIT spraying attacks. However,
they only provide a probabilistic defense. NaCl-JIT [20] and
RockJIT [21] enforce coarse-grained CFI on the JIT compiled
code with sandbox techniques. Their performance overheads,
however, are too high.

In this paper, we propose a general defense solution,
JITScope, to enforce a strong security policy with a low
performance overhead, used to protect applications (such as
web browsers) that support JIT compilation from control-flow
hijacking attacks. More specifically, we deploy a fine-grained
CFI policy on statically compiled code during compilation, and
wrap the JIT compiler to deploy a coarse-grained CFI policy
on the JIT compiled code. We also apply a W⊕X policy on
the JIT memory, to enforce the integrity of the JIT compiled

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 567

code and the CFI instrumentation.
Additionally, to ensure a lower performance overhead, we

only use CFI to protect forward edges (i.e., indirect call and
jump instructions), and utilize the shadow stack solution to
protect backward edges (i.e., return instructions). The shadow
stack also provides an accurate target match for return instruc-
tions, providing a stronger protection than CFI.

We implement a prototype of JITScope based on the
LLVM compiler infrastructure [22], and apply it on the web
browser Firefox and its latest JIT compiler IonMonkey. To
the best of our knowledge, this is the first complete defense
solution applied not only to the JIT compiler, but also to the
full application. Our results show that JITScope introduces
a reasonable performance overhead (less than 10%) lower
than all existing solutions, while demonstrating that hardening
Firefox by JITScope allows it to defeat existing real-world
attacks.

In summary, this paper makes the following contributions:
• We summarize the security risks of web browsers, espe-

cially threats against the JIT compiled code, and point
out the challenges of protecting JIT compilers.

• We describe the primitives of a practical defense against
threats to web browsers, and we propose a general de-
fense solution JITScope to protect web browsers from
control-flow hijacking attacks.

• We implement a prototype of JITScope and apply it to
a full web browser, including its JIT compiler. Results
show that this solution is efficient and effective. The
performance overhead is less than 10%, which is lower
than existing solutions, and the hardened application can
defeat existing real-world control-flow hijacking attacks.

The remainder of this paper is organized as follows: We
discuss related work in Section II and the problem definition
in Section III. Sections IV and V describe the design and im-
plementation of JITScope. Section VI gives the evaluation
result of JITScope, and finally Section VII concludes our
discussion.

II. RELATED WORK

In this section, we talk about related work on general
control-flow hijacking attacks and defenses first, and then
discuss the related work on JIT-related attacks and defenses.

A. Control-Flow Hijacking Attacks and Defenses

Researchers have proposed many defense solutions to defeat
control-flow hijacking attacks. Operating systems and compil-
ers have deployed some of them in practice, including Stack-
Guard [23] that detects return address tampering, W⊕X [5]
that prevents memory from being both executable and writable,
and ASLR [4] that randomizes code location in memory.

Attackers can, however, bypass all these defenses. They
can exploit other control data such as function pointers to
bypass StackGuard and launch various attacks, such as vtable
hijacking attacks [24, 25]. Attackers can reuse existing code
snippets to stitch up a shellcode and bypass W⊕X, as is the
case with the return-to-libc [26] or ROP [27] attacks. Attackers

can also exploit certain vulnerabilities to read arbitrary or
specific memory and launch information leakage attacks [28],
bypassing the secret-based solutions such as ASLR and Stack-
Guard.

Researchers have proposed several new defense solutions to
defeat these advanced attacks.

1) Control-Flow Integrity: The CFI solution provides a
strong guarantee that all control flow transfers must comply
with programmers’ intentions, i.e., they must respect the
program’s compile-time Control-Flow Graph (CFG). This can
stop various types of control flow hijacking attacks, including
ROP, return-to-libc, and vtable hijacking attacks. The original
CFI solution was proposed in 2005 [6], but it has not been
adopted by the industry due to several limitations.

Recently proposed coarse-grained CFI solutions [7, 8] de-
ploy CFI directly on binary executables. As there is no type
information available in binaries, however, only a coarse-
grained CFI policy is enforced, and attackers can therefore
bypass these protections in some cases [29].

Other CFI solutions [9, 10] enforce a fine-grained CFI
policy on target applications. These solutions utilize the
information collected by compilers at compile-time or by
virtual machines. They usually provide a stronger protection
than coarse-grained CFI solutions. However, the higher per-
formance overhead also restricts their adoptions. A recent
solution [30] enforces the CFI policy on only forward-edges
(i.e., indirect call and jump instructions) on Chrome, and
obtains an acceptable performance overhead (about 4%).

The NaCl-JIT [20] solution is the first CFI solution deployed
on JIT compiled code. It uses the Software Fault Isolation
(SFI) [31] based sandbox technique to enforce that all indirect
control transfer in JIT compiled code only jump to aligned
code address. This is also a coarse-grained policy, even weaker
than the aforementioned solutions [9, 10]. Moreover, it intro-
duces a high performance overhead (about 50%) prohibiting
its adoption. The RockJIT [21] solution also combines coarse-
grained CFI and sandbox to protect JIT compiled code,
incurring a performance overhead of about 15%.

2) Memory Safety: The memory safety policy ensures that
no out-of-bounds or dangling pointers can be exploited to
get unauthorized access to memory. As a result, attackers
cannot tamper target applications’ states, or launch control-
flow hijacking attacks. Researchers proposed many memory
safety solutions [32–35]. The spatial memory safety solution
SoftBound [36] and the temporal memory safety solution
CETS [37] are two representative solutions.

These solutions usually instrument pointers with extra meta-
data when they are created, track the metadata during the
program execution, and then check the metadata when these
pointers are used to access memory. These solutions, however,
all introduce a high performance overhead, prohibiting their
adoptions. For example, the combination of SoftBound and
CETS will enforce complete memory safety at the cost of 2×
or more performance overhead.

Code Pointer Integrity (CPI [38]) proposed a lightweight
memory safety solution, protecting only sensitive pointers

2

2015 IEEE Conference on Computer Communications (INFOCOM)

568

including code pointers, capable of defeating control-flow
hijacking attacks for statically compiled code. However, it does
not provide protections for JIT compiled code.

B. JIT-related Attacks and Defenses

The widely adopted optimization technique JIT compilation
also brings security risks to users.

1) JIT Code Corruption and Injection: The JIT compiled
code memory is both executable and writable, making the
classic W⊕X defense inapplicable. Attackers can exploit some
vulnerabilities and overwrite the JIT code memory to corrupt
the JIT code or inject malicious code, and then to divert the
control flow to this corrupted or injected code.

The NaCl-JIT [20] and RockJIT [21] solutions can mitigate
this type of attacks by sandboxing all memory write operations
to eliminate unauthorized write operations. The solution [39]
enforces the JIT memory to be non-writable, and delegates all
JIT memory write operations to a trusted process that shares
the JIT memory with the browser. Our solution JITScope
can also defeat these type of attacks by wrapping the JIT
compiler and enforcing the W⊕X policy.

2) JIT Code Reuse: Attackers may manipulate the JIT code
memory layout by feeding the JIT compiler with specific
inputs (e.g., scripts), and then reuse existing JIT code to launch
attacks, e.g., JIT spraying. After the expected memory layout
is deployed, attackers may divert the control flow to a specific
address in this controlled memory, e.g., jump to the middle of
an instruction and launch the classic ROP attacks.

Software diversity solutions, e.g., librando [18], IN-
SeRT [19] and JITSafe [40, 41], randomize the behavior of JIT
compilers, and thus randomize the generated JIT code to stop
this type of attack. These solutions usually change the code
generation logic of the JIT compilers, by inserting padding
bytes, replacing instructions with equivalent ones, and etc.

The NaCl-JIT [20] and RockJIT [21] solutions can block
illegal control flow. Thus, even if attackers successfully deploy
the JIT code memory, they cannot divert the control flow to
this memory region. These solutions, however, incur a high
performance overhead. Our solution JITScope defeats this
type of attack by enforcing CFI with a reasonable overhead.

III. PROBLEM DEFINITION

A. Background

The workflow of modern browsers is usually very compli-
cated, due to the abundant web features to support. Figure 1
shows a simplified architecture of the Firefox browser. Other
browsers’ basic architectures are similar in general.

After parsing the HTML, CSS and multimedia input from
Internet, the Firefox Gecko engine builds a DOM (Document
Object Model) representation to model the HTML documents.
Its layout engine computes the page’s layout based on
the DOM and CSS information, and then the rendering
engine renders the web page and present it to users.

The SpiderMonkey JavaScript engine can execute the scripts
in the web page and interact with page elements through
the DOM interface. The interpreter interprets the script

Firefox Gecko Engine

N
e
t
w
o
r
k

HTML
parser

CSS
parser

Multi-
media

decoder

DOM

Layout
Engine

Rendering Engine

JavaScript Engine
��)�����(���

JIT compiler
(IonMonkey)

Garbage
Collector

Interpreter

Instruction
Generator

JIT Code
Installer

Heap

JIT
Compiled

Code

JavaScript
Objects

Inline Caching

write execute

Fig. 1: Architecture of the Firefox Gecko Engine.

statements one by one. For JavaScript functions that will be
executed multiple times, interpretation is slow. As a result,
SpiderMonkey invokes the IonMonkey JIT compiler to
compile them to native executable code, and diverts further
invocation of these JavaScript functions to the JIT compiled
code. The instruction generator is responsible for
platform-specific native instruction generation, and the JIT
code installer writes the compiled JavaScript functions
to the JIT code memory, and patch the instructions that have
absolute addresses operands.

In addition, there is a garbage collector in the
JavaScript engine, responsible for the garbage collection [42]
of JavaScript objects and code. It may also modify the JIT code
at runtime. Moreover, the JIT compiler may use optimization
techniques such as inline caching [43, 44], which mod-
ify the JIT code as well.

B. Threat Model

We assume attackers have the following capabilities: (1)
attackers can write to any writable memory, and they can
corrupt control data such as return addresses and function
pointers; (2) attackers can read arbitrary mapped memory, and
thus they can launch information leakage attacks and bypass
secret-based defenses such as ASLR; (3) attackers cannot
directly read or write to registers, and they can only achieve
this indirectly by using existing instructions that propagates
data between registers and memory.

This assumption is realistic. In real world attacks, attackers
are able to exploit vulnerabilities to obtain these capabilities,
especially for applications supporting scripting languages and
JIT compilation.

On the defense side, we assume (1) popular defenses such
as ASLR and W⊕X are deployed; (2) the theoretical threat
non-control-data attacks [45] that may lead to control-flow
hijacking are out of this paper’s scope.

C. Security Risks

In addition to traditional control-flow hijacking threats, for
web browsers, there are several new and more critical threats.

3

2015 IEEE Conference on Computer Communications (INFOCOM)

569

1) Risks Brought by Scripting Languages: Modern
browsers all support scripting languages (e.g., JavaScript).
Scripting languages make the web more dynamic, and make
user experiences better. At the same time, however, it also
brings some risks to users.

• Heap Spraying. With scripting languages, attackers are
able to allocate a lot of memory indirectly. By feeding
special scripts to browsers, attackers can spray a lot of
objects in the heap, called heap spraying [11], and make
some of them take the expected memory address. In this
way, attackers can predicate some objects’ addresses and
bypass the ASLR defense.

• Information Leakage. By writing scripts, it is much
easier for attackers to exploit vulnerabilities to read
memory, and retrieve the leaked value for further use. The
study [28] discussed many different types of information
leakage attacks.

• Shellcode Generation. Script languages provide another
way for attackers to build expected shellcode, even with-
out the help of advanced attacks such as ROP that is used
in statically compiled code, to bypass W⊕X. The study
[13] presents a way to write shellcode with scripts.

2) Risks Brought by JIT Compilation: Major web browsers
all deploy the JIT compilation optimization technique to
improve the JavaScript performance. This optimization also
introduces security risks to web users.

• JIT Code Corruption and Injection. As the JIT code
memory is both executable and writable, the classic W⊕X
defense is not applicable. Attackers can thus corrupt the
JIT compiled code, or inject code to the JIT memory [46].

• JIT Code Reuse. Attackers can also manipulate the layout
of the JIT memory by launching attacks such as JIT
spraying [14–17], and then reuse the JIT compiled code
to build the shellcode.

D. Challenges

When defending web browsers against control-flow hijack-
ing attacks, there are several challenges in practice.

1) Lack of W⊕X: Due to the requirements of inline caching,
garbage collection, and the like, the JIT compiled code is both
executable and writable, rendering W⊕X inapplicable.

Without W⊕X, attackers can bypass any deployed security
solutions. For example, if a CFI solution is deployed without
the support of W⊕X, then attackers can directly overwrite the
instrumented CFI security checks, totally disabling the CFI
enforcement.

2) Lack of CFG: Because the JIT compiled code is gen-
erated at runtime, there is no static control-flow graph (CFG)
information available. As a result, solutions such as CFI cannot
be deployed to the JIT compiled code directly.

IV. DESIGN

In this section, we discuss the design of JITScope, briefly
explaining the policies and how they are enforced on browsers.

A. Security Primitives

An effective defense should enforce the following primi-
tives.

• Statically compiled code cannot transfer control flow to
illegal targets. Control flow should only transfer to targets
intended at compile-time; only occasionally should it be
transferred to JIT compiled code.

• JIT compiled code cannot transfer control flow to illegal
targets. Control flow should only transfer to legitimate
JIT code entries, except in a few cases in which it can
be transfered to fixed targets in statically compiled code.

• JIT compiled code cannot be tampered with. Otherwise,
attackers can disable this defense by overwriting the code.

In this way, all control flows in statically compiled code and
JIT compiled code are restricted, especially the flow between
statically compiled code and JIT compiled code. Furthermore,
these security enforcements are protected from tampering.

In addition, a practical solution should provide better secu-
rity enforcement while incurring a low performance overhead.

B. Overview of JITScope

JITScope enforces two security policies for web
browsers. First, it enforces the W⊕X policy on JIT compiled
code. As W⊕X has already been adopted by the operating sys-
tem, the statically compiled code is already under protection.
Once the W⊕X policy is extended to the JIT compiled code,
attackers cannot corrupt or inject any code into applications.

Second, JITScope enforces the CFI policy on both stat-
ically compiled code and JIT compiled code. For statically
compiled code, we deploy a fine-grained CFI policy based
on functions’ type information. For JIT compiled code, there
is no control flow graph information or type information
available. Thus, a coarse-grained CFI policy is deployed for
JIT compiled code.

Traditional CFI solutions will check the targets of all
indirect control transfer instructions, including indirect call or
jump instructions, and the return instructions. We find that
the CFI solutions on return instructions are still slow, and
use another effective and efficient solution to protect return
instructions, i.e., shadow stack [47].

C. W⊕X for JIT Compiled Code

As shown in Figure 2, JITScope introduces three del-
egates in the JavaScript engine to enforce W⊕X on JIT
compiled code, i.e., the fwd-exec, bwd-exec and write
delegates. The first two delegates are responsible for setting
the memory permission before executing JIT code, and the last
one takes care of the write operations to JIT code memory.

All write operations to the JIT code, including the oper-
ations triggered by JIT code installation, inline caching and
garbage collection, are enforced by JITScope to dispatch
through the write delegate. This delegate enables the
writable permission of the JIT code memory, but drops the
executable permission at the same time. Once the write oper-
ation finishes, it turns off the writable permission of the JIT
code memory immediately. In general, there is only a small

4

2015 IEEE Conference on Computer Communications (INFOCOM)

570

Firefox Gecko Engine

JavaScript Engine
��)�����(���

JIT compiler
(IonMonkey)

Garbage
Collector

Interpreter

Instruction
Generator

JIT Code
Installer

Heap

JIT
Compiled

Code

JavaScript
Objects

write execute

Write
Delegate

Fwd-Exec
Delegate

CodeGen
Delegate

Bwd-Exec
Delegate

Other Gecko Modules

Fig. 2: Illusion of JITScope for the JIT compiled code.

time window that the JIT code memory is writable. Moreover,
JITScope only enables the writable permission for a single
memory page that needs to be written. As a result, it is very
difficult for attackers to overwrite the JIT code memory, even
by utilizing race condition attacks.

All function calls to JIT compiled code are enforced to
dispatch through the fwd-exec delegate. This delegate
sets the target memory to read-only and executable, before
calling the JIT code. The JIT compiled code may also call
some functions (called VM functions in Firefox) provided by
the JavaScript engine, or even by the browser. These function
calls are all dispatched through our bwd-exec delegate.
This delegate only allows legitimate VM function calls, and
also sets the target memory to read-only and executable, before
the VM functions return to the JIT compiled code.

D. CFI for Statically Compiled Code

JITScope enforces the CFI policy on statically compiled
code. It utilizes the type information from the browser’s
source code, and deploys fine-grained CFI on the statically
compiled code. In particular, before each function, JITScope
instruments an ID computed from this function’s type infor-
mation. And before each indirect call and jump instruction,
JITScope instruments a CFI security check to match the
transfer target’s ID against the expected ID computed from
the expected function’s type information.

E. CFI for JIT Compiled Code

The JIT compiled code is generated at runtime (and there is
no CFG information available) so we only enforce a coarse-
grained CFI policy on the JIT compiled code. As shown
in Figure 2, we introduce a CodeGen delegate in the
JavaScript engine to deploy the CFI policy. This delegate
first randomly selects an ID at compile-time. When the JIT
compiler is going to generate a function, the CodeGen
delegate instruments the ID before this function. When
the JIT compiler is going to generate an indirect call or
jump instruction, its instruction generator invokes

the CodeGen delegate to instrument CFI security checks
before the call or jump. The checks validate the existence of
the ID before the target function to ensure the transfer target
is a valid JIT function entry.

F. Shadow Stack for Return Instructions

JITScope only applies the CFI policy on indirect call
and jump instructions. For the return instructions, we use the
shadow stack solution to provide a better performance. At each
function entry, JITScope copies the return address of current
function frame to a shadow stack. Then at the function exit, it
matches the return address on the original stack against the one
on the shadow stack. JITScope reports a security violation
if a mismatch occurs. This solution provides a more accurate
target validation than CFI solutions, with a lower performance
overhead.

For JIT compiled code, we also utilize the CodeGen
delegate to instrument the shadow stack related operations
to runtime generated return instructions.

In addition to the basic shadow stack solution, we improve
its security and reliability in several ways. First, we put the
shadow stack in a separate memory region, indexed by a
dedicated segment register (on the x86 platform). Because no
normal instructions will access memory through the dedicated
segment register, attackers cannot tamper with the shadow
stack. Second, we build a separate shadow stack for each
thread by using thread-local storage. In this way, the shadow
stack is thread-safe.

G. Compatibility Issues

JITScope will instrument security checks to the web
browser, to validate indirect control transfer instructions’ tar-
gets at runtime. However, the web browser may indirectly call
external functions that are not defined in the browser, such
as functions provided by the operating system or libraries.
There are no IDs instrumented before these functions, and, as
a result, the CFI checks instrumented by JITScope will fail,
causing false positives.

In order to make the web browser hardened by JITScope
compatible with the operating system and libraries, we also
introduce a wrapper library for these target functions. In this
wrapper library, for each target function, there is a wrapper
function that will eventually invoke the original target function.
JITScope will instrument an ID before this wrapper function
based on its type information. In this way, the CFI checks in
the browser can work seamlessly, even if the transfer targets
are external functions.

V. IMPLEMENTATION

Figure 3 shows the basic workflow of JITScope. Briefly,
it instruments the JavaScript engine with the CodeGen
delegate that is responsible for instrumenting CFI en-
forcements to the JIT compiled code, as well as three other
delegates for enforcing W⊕X to the JIT memory. It also
provides a wrapper library to wrap all external functions
indirectly called by the web browser. Finally, the source code

5

2015 IEEE Conference on Computer Communications (INFOCOM)

571

DocumentBrowser's
Source
Code

CodeGen, W^X
Delegates

Instrumentation

System
LibrariesSystem

Libraries

Library
Wrapping

Wrapper
Library

DocumentBrowser's
Source
Code Clang/LLVM

Static-CFI
Shadow

Stack

executable

Fig. 3: Implementation of JITScope.

of the browser is compiled by the Clang compiler [22], and
then linked with the wrapper library. The CFI enforcement for
statically compiled code, and the shadow stack solution are all
implemented as analysis passes in the LLVM framework. The
output of the compiler is the final executable browser.

We implement the prototype of JITScope on the popular
Firefox web browser. In this section, we discuss the details of
the implementation.

A. Modification to the JavaScript Engine

JITScope modifies the source code of the SpiderMonkey
JavaScript engine to enforce the W⊕X policy, CFI policy,
and shadow stack policy on JIT compiled code. As dis-
cussed earlier, JITScope introduces four delegates to the
JavaScript engine, i.e., the fwd-exec, bwd-exec, write
and CodeGen delegates.

1) Enforce W⊕X policy: In SpiderMonkey, all transi-
tions from the statically compiled code to the JIT com-
piled code are made through the API jit::IonCannon
and jit::EnterBaselineMethod. So, our fwd-exec
delegate is built upon these two APIs. It drops the writable
permission of the target JIT code memory before entering
target JIT code, by using the API provided by the operating
system, e.g., mprotect.

The transition from the JIT compiled code to the statically
compiled code is made through VM functions. For each
statically compiled VM function, the JIT compiler generates
a wrapper function in the JIT code memory. At runtime,
the JIT code can only call these VM wrapper functions,
and these VM wrapper functions directly call the associated
statically compiled VM functions. As a result, we deploy
the bwd-exec delegate in the VM functions to drop the
writable permission before returning to the JIT compiled code.

For the write delegate, we identify all write op-
erations to the JIT compiled code in SpiderMonkey. And
wrap all these write operations with the write delegate.
This delegate drops the executable permission and enables
the writable permission. After the write operation finishes, it
immediately turns the JIT memory back to executable only.

2) Enforce CFI policy: In SpiderMonkey’s JIT compiler
IonMonkey, there is an instruction generator responsible
for generating platform-specific native code. Our CodeGen
delegate is built upon this instruction generator, to en-
force the coarse-grained CFI and the shadow stack so-
lution on JIT compiled code. Once the JIT compiler is

going to generate a JIT function, i.e., when the proce-
dure JSC::ExecutableAllocator::alloc() is in-
voked, this delegate instruments the predefined ID before
this function. Once the compiler is going to generate an
indirect call or jump instruction, i.e., when the procedure
JSC::X86Assembler::call() is invoked, the delegate
instruments a check to validate the existence of the ID before
the target function.

3) Enforce shadow stack policy: In addition to the CFI
policy, the CodeGen delegate also instruments the JIT
compiled code to support the shadow stack. In particular,
it adds a special function call at the beginning of the JIT
compiled function, to push the current return address to the
thread’s shadow stack. It also adds another function call at the
end of this JIT compiled function, to match the return address
between the original stack and the shadow stack and pop the
shadow stack.

B. Analysis Pass based on LLVM

We use several LLVM analysis passes to enforce the security
policies on statically compiled code.

First, we use an analysis pass to enforce a fine-grained
CFI on statically compiled code. This pass analyzes each
function in the Intermediate Representation (IR) level, and
then iterate over all the instructions. For each indirect call or
jump instruction, it instruments the CFI security check before
this instruction. More specifically, it computes the expected ID
based on the target function’s type information, and then adds
a check instruction to match this expected ID against the ID
from target function. This security check validates the transfer
target at runtime. We also modify LLVM’s CodeGen backend
to instrument an ID before each generated function based on
its type information.

Another analysis pass then deploys the shadow stack so-
lution to protect the return instructions in statically compiled
code. This pass also analyzes each IR-level function. It adds a
function call at the beginning and the end of each function, to
push and pop return addresses to the shadow stack, and match
the return addresses to detect security violations.

C. Library Wrapping

For external functions indirectly called in browsers, wrapper
functions are introduced to eliminate compatibility issues.

For each candidate function (e.g., foo), we generate a
wrapper function (e.g., __wrap_foo). This wrapper function
jumps to the original function directly. All these wrapper
functions are put into one source file, and are then compiled
by Clang with our analysis pass. As a result, the expected
ID is instrumented before each wrapper function. Finally,
when compiling the browser with Clang, we utilize the "–
wrap" option of the GNU linker ld, to automatically replace
references to any target external function (e.g. foo) with
its wrapper function (e.g., __wrap_foo). This eliminates all
compatibility issues.

It is important to note that there is a special library function
dlsym. This function resolves the address of a target function

6

2015 IEEE Conference on Computer Communications (INFOCOM)

572

0	

1	

2	

3	

4	

5	

6	

Pe
ac
eK
ee
pe
r	

Rig
htw

are
	

Oc
tan
e	

Lit
eB
rit
e	

Su
nS
pid
er	

Kra
ke
n	

Av
rg.
	

Pe
rf
or
m
an

ce
	 O
ve
rh
ea
d	
(%

)	

staBc-‐CFI	

staBc-‐shadow	

Fig. 4: Performance overhead of Firefox when JITScope only
protects statically compiled code.

0	

1	

2	

3	

4	

5	

6	

7	

Pe
ac
eK
ee
pe
r	

Rig
htw

are
	

Oc
tan
e	

Lit
eB
rit
e	

Su
nS
pid
er	

Kra
ke
n	

Av
rg.
	

Pe
rf
or
m
an

ce
	 O
ve
rh
ea
d	
(%

)	

JIT-‐CFI	

JIT-‐shadow	

W^X	

Fig. 5: Performance overhead of Firefox when JITScope
only protects JIT compiled code.

at runtime, and return this address to the caller function.
If the browser indirectly calls this function to resolve an
external function, and then indirectly invokes the target ex-
ternal function, it still causes a compatibility issue. To deal
with this special case, we provide a special wrapper function
for the dlsym, i.e., __wrap_dlsym. This wrapper func-
tion __wrap_dlsym resolves the target function’s address
at runtime, creates a temporary code snippet for the target
function, and instruments the code snippet with its expected
ID. The wrapper function __wrap_dlsym then returns a
pointer to this temporary code snippent as the return value
to the browser.

VI. EVALUATION

JITScope is built on LLVM 3.4, has about 800 lines of
C++ code for the analysis passes and another 300 lines of
Python scripts to wrap external libraries, and only modifies
about 200 lines of source code of Firefox. We evaluate its
performance and security on a system with x86-64 Ubuntu
12.04, an Intel Core i7-2600 CPU at 3.4GHz, and 8GB of
physical memory.

A. Performance Evaluation

We test the JITScope-hardened Firefox’s performance
on six popular browser benchmarks, including Google’s Oc-
tane [48], Mozilla’s Kraken [49], Apple’s Sunspider [50], Mi-
crosoft’s LiteBrite [51], RightWare [52] and PeaceKeeper [53].
These benchmarks measure different aspects of a browser,
from the speed of JavaScript handling, HTML rendering and
HTML5 support, to the JIT compiler’s latency.

1) Evaluate JITScope on Statically Compiled Code:
Figure 4 shows the performance overhead of Firefox, when
JITScope only protects the statically compiled code. More
specifically, JITScope applies the CFI policy and the shadow
stack policy on the statically compiled code separately. In other
words, the two LLVM analysis passes for CFI and shadow
stack are deployed, and others are not.

As this figure shows, when the CFI policy is separately
deployed on statically compiled code (i.e., static-CFI in the
figure), the average performance overhead is about 3.04%.
The minimum performance overhead is about 1.42% (i.e., the

Kraken benchmark), whereas the maximum overhead is about
5.21% (i.e., the LiteBrite benchmark).

If the shadow stack policy is separately deployed on stat-
ically compiled code (i.e., static-shadow in the figure), the
average performance overhead is about 0.95%. The minimum
is about 0.58% (i.e., the SunSpider benchmark), whereas the
maximum is about 1.29% (i.e., the LiteBrite benchmark).

2) Evaluate JITScope on JIT Compiled Code: Fig-
ure 5 shows the performance overhead of Firefox, when
JITScope only protects the JIT compiled code. More specif-
ically, JITScope applies the CFI policy (with the CodeGen
delegate) and the shadow stack policy (with the CodeGen
delegate) on the JIT compiled code separately, and extends
the W⊕X policy to the JIT compiled code (with the delegates
fwd-exec, bwd-exec and write).

As Figure 5 shows, when the CFI policy is separately
deployed on JIT compiled code (i.e., JIT-CFI in the figure),
the average performance overhead is about 0.54%, and the
minimum and maximum overheads are 0.24% and 0.64%
respectively.

If the shadow stack policy is separately deployed on JIT
compiled code (i.e., JIT-shadow in the figure), the average
performance overhead is about 0.43%, and the minimum and
maximum overheads are 0.24% and 0.62% respectively.

If the W⊕X policy is separately deployed on JIT compiled
code (i.e., W^X in the figure), the average performance
overhead is about 4.26%, and the minimum and maximum
overheads are 1.60% and 6.53% respectively.

3) Evaluate JITScope on All Code: Figure 6 shows the
overall performance overhead of the JITScope-hardened
Firefox. In particular, if all security checks (i.e., CFI and
shadow stack) are deployed on statically compiled code, the
average performance overhead is about 4.02%. If all security
checks (i.e., CFI, shadow stack and W⊕X) are deployed on
JIT compiled code, the average overhead is about 5.28%.

If JITScope deploys all security policies (on both the
statically- and JIT-compiled code of Firefox), the average
performance overhead is about 9.51%, the minimum overall
overhead is about 4.75% (i.e., Kraken), whereas the maximum
overall overhead is about 11.93% (i.e., Octane).

7

2015 IEEE Conference on Computer Communications (INFOCOM)

573

0	

2	

4	

6	

8	

10	

12	

14	

Pe
ac
eK
ee
pe
r	

Rig
htw

are
	

Oc
tan
e	

Lit
eB
rit
e	

Su
nS
pid
er	

Kra
ke
n	

Av
rg.
	

Pe
rf
or
m
an

ce
	 O
ve
rh
ea
d	
(%

)	

staAc-‐all	

JIT-‐all	

all	

Fig. 6: Performance overhead of Firefox when JITScope
protects all code.

4) Performance Analysis: The performance overhead of
the JITScope-hardened Firefox is brought by the security
checks instrumented before indirect control transfer instruc-
tions (i.e., instrumented by the CFI and shadow stack policy
for both statically and JIT compiled code), and by the runtime
memory page permission switching (i.e., instrumented by the
W⊕X policy for the JIT compiled code).

As shown in Figure 4, 5 and 6, the W⊕X policy introduces
most of the performance overhead. For example, for the
PeaceKeeper benchmark, the W⊕X policy introduces about
6.5% overhead, while the overall performance overhead is
about 9.78%. This high performance overhead is due to the
frequent memory page permission changes. JITScope uses
the system API mprotect to turn on or turn off the writable
and executable permission of the target memory. This API
traps to the kernel at runtime, and invalidates the translation
lookaside buffer (TLB). As a result, there are many context
switches between user space and the kernel space, as well as
many heavy TLB installations, introducing a lot of overhead.

Another interesting result is that, the hardened Firefox has
the smallest performance overhead on the Kraken bench-
mark developed by Mozilla, perhaps because Mozilla has
implemented some optimizations in Firefox for this specific
benchmark.

B. Protection Effectiveness Analysis

JITScope enforces a fine-grained CFI on statically com-
piled code, and extends the CFI to JIT compiled code, prevents
indirect call and jump instructions from jumping to targets of
illegal types. Moreover, it deploys the shadow stack on both
statically and JIT compiled code, providing an accurate return
targets match at runtime. It blocks return instructions from
jumping to any illegal target, even if the target has a correct
type and is allowed by the traditional CFI.

The measurement AIR (Average Indirect target Reduction
ratio [8]) reflects how many invalid control transfers can be
blocked by a defense solution. For JITScope, the AIR ratio
is about 99.98%.

We also evaluated the JITScope-hardened Firefox against
real world exploits. As there is no public available exploits
for the latest Firefox in Linux, we thus simulate an attack

scenario. First, we introduce two JS_Native APIs into the
Firefox’s source code. These two APIs can be directly invoked
by user’s JavaScript functions, to read and write arbitrary
memory address, simulating the arbitrary memory read and
write vulnerabilities that can be exploited by attackers. Then,
we launch the exploit described in [54] to attack JITScope-
hardened Firefox. This exploit launches a heap spray first
to manipulate the memory layout, and then overwrites the
virtual table pointer of objects in the sprayed memory. Finally,
when the objects’ virtual function is invoked, the control
flow is hijacked. The experiment shows that, the JITScope-
hardened Firefox successfully blocks this attack at runtime.
JITScope uses mprotect to switch the property of JIT

code memory, is thus subject to race condition attacks. For
example, attackers may overwrite the JIT code memory in
another thread while this memory is set to writable. However,
this risk is very low because the attack time window is very
small. JITScope turns off the writable property immediately
after the legitimate write operation finishes.

VII. CONCLUSION

Just-In-Time compilation is now widely adopted by modern
applications, especially web browsers. Traditional control-
flow integrity solutions provide no protection against the JIT
compiled code. We propose a general solution JITScope
to prevent the JIT compiled code from being exploited.
JITScope enforces a general CFI policy on both statically
compiled code and JIT compiled code, and also enforces the
W⊕X policy on JIT compiled code. It therefore provides a
strong protection for JIT code, and can defeat most control-
flow hijacking attacks. Experiments show that this solution has
a reasonable performance overhead, and can be deployed in
practice to defend against real-world exploits.

ACKNOWLEDGMENT

This research was supported in part by the Natural Science
Foundation award CCF-0424422, DARPA award HR0011-
12-2-005, and FORCES (Foundations Of Resilient CybEr-
Physical Systems), which receives support from the National
Science Foundation (NSF award numbers CNS-1238959,
CNS-1238962, CNS-1239054, CNS-1239166).

REFERENCES

[1] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in tunnelled
authentication protocols,” in Security Protocols. Springer, 2005, pp.
28–41.

[2] K. Spett, “Cross-site scripting,” SPI Labs, pp. 1–20, 2005.
[3] R. Auger, “The cross-site request forgery (csrf/xsrf) faq,” CGISecurity.

com. Apr, vol. 17, 2008.
[4] PaX Team, “PaX address space layout randomization (ASLR),” http:

//pax.grsecurity.net/docs/aslr.txt, 2003.
[5] S. Andersen and V. Abella, “Data Execution Prevention: Changes

to Functionality in Microsoft Windows XP Service Pack 2, Part 3:
Memory Protection Technologies,” http://technet.microsoft.com/en-us/
library/bb457155.aspx, 2004.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity,” in ACM Conference on Computer and Communications Security
(CCS), 2005.

[7] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization

8

2015 IEEE Conference on Computer Communications (INFOCOM)

574

for binary executables,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 559–573.

[8] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
USENIX Security, 2013, pp. 337–352.

[9] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in IEEE Symposium on
Security and Privacy, 2010.

[10] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2014, p. 58.

[11] M. Daniel, J. Honoroff, and C. Miller, “Engineering heap overflow ex-
ploits with JavaScript,” in Workshop on Offensive Technologies (WOOT),
2008.

[12] P. Vreugdenhil, “Pwn2own 2010 windows 7 inter-
net explorer 8 exploit,” http://vreugdenhilresearch.nl/
Pwn2Own-2010-Windows7-InternetExplorer8.pdf, 2010.

[13] Y. Yu, “Rops are for the 99%,” in The 14th Annual CanSecWest
Conference, 2014.

[14] D. Blazakis, “Interpreter exploitation.” in WOOT, 2010.
[15] D. Blazakis, “Interpreter exploitation: Pointer inference and jit spraying,”

BlackHat DC, 2010.
[16] W. Lian, H. Shacham, and S. Savage, “Too LeJIT to Quit: Extending

JIT Spraying to ARM,” in the Network and Distributed System Security
Symposium (NDSS), 2015.

[17] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis, “The Devil is in the Constants: Bypassing Defenses in
Browser JIT Engines,” in the Network and Distributed System Security
Symposium (NDSS), 2015.

[18] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “librando: Trans-
parent code randomization for just-in-time compilers,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 993–1004.

[19] T. Wei, T. Wang, L. Duan, and J. Luo, “Insert: Protect dynamic code
generation against spraying,” in Information Science and Technology
(ICIST), 2011 International Conference on. IEEE, 2011, pp. 323–328.

[20] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. L. Schuff,
D. Sehr, C. L. Biffle, and B. Yee, “Language-independent sandboxing
of just-in-time compilation and self-modifying code,” ACM SIGPLAN
Notices, vol. 46, no. 6, pp. 355–366, 2011.

[21] B. Niu and G. Tan, “Rockjit: Securing just-in-time compilation using
modular control-flow integrity,” in Proceedings of the 21st ACM Con-
ference on Computer and Communications Security. ACM, 2014.

[22] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[23] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attack,” in USENIX Security
Symposium, 1998.

[24] D. Jang, Z. Tatlock, and S. Lerner, “SAFEDISPATCH: Securing C++
Virtual Calls from Memory Corruption Attacks,” in 20th Annual Network
and Distributed System Security Symposium, 2014.

[25] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “VTint:
Protecting Virtual Function Tables’ Integrity,” in the Network and
Distributed System Security Symposium (NDSS), 2015.

[26] H. Shacham, M. Page, B. Pfaff, E.-j. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” Proceedings of
the 11th ACM conference on Computer and communications security
(CCS’04), p. 298, 2004.

[27] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in ACM Conference on
Computer and Communications Security (CCS), 2007.

[28] F. J. Serna, “The info leak era on software exploitation,” in Blackhat
USA, 2012.

[29] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in IEEE S&P, 2014.

[30] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, Aug. 2014,
pp. 941–955. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/tice

[31] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient software-

based fault isolation,” in Symposium on Operating Systems Principles
(SOSP), 1994.

[32] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision.” in USENIX Annual Technical Conference,
General Track, 2005, pp. 17–30.

[33] D. Dhurjati and V. Adve, “Backwards-compatible array bounds checking
for c with very low overhead,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 162–171.

[34] H. Patil and C. Fischer, “Low-cost, concurrent checking of pointer and
array accesses in c programs,” Softw., Pract. Exper., vol. 27, no. 1, pp.
87–110, 1997.

[35] W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and backwards-
compatible transformation to ensure memory safety of c programs,” in
ACM SIGSOFT Software Engineering Notes, vol. 29, no. 6. ACM,
2004, pp. 117–126.

[36] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
highly compatible and complete spatial memory safety for C,” in Con-
ference of Programming Language Design and Implementation (PLDI),
2009.

[37] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “CETS:
compiler enforced temporal safety for C,” in International Symposium
on Memory Management (ISMM), 2010.

[38] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” OSDI’14, 2014, 00000. [On-
line]. Available: https://www.usenix.org/system/files/conference/osdi14/
osdi14-paper-kuznetsov.pdf?utm_source=dlvr.it&utm_medium=tumblr

[39] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski, “Exploiting and
protecting dynamic code generation,” in the Network and Distributed
System Security Symposium (NDSS), 2015.

[40] P. Chen, R. Wu, and B. Mao, “Jitsafe: a framework against just-in-time
spraying attacks,” IET Information Security, vol. 7, no. 4, pp. 283–292,
2013.

[41] P. Chen, Y. Fang, B. Mao, and L. Xie, “Jitdefender: A defense against
jit spraying attacks,” in Future Challenges in Security and Privacy for
Academia and Industry. Springer, 2011, pp. 142–153.

[42] H.-J. Boehm and M. Weiser, “Garbage collection in an uncooperative
environment,” Software: Practice and Experience, vol. 18, no. 9, pp.
807–820, 1988.

[43] L. P. Deutsch and A. M. Schiffman, “Efficient implementation of
the smalltalk-80 system,” in Proceedings of the 11th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM,
1984, pp. 297–302.

[44] U. Hölzle, C. Chambers, and D. Ungar, “Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches,” in
ECOOP’91 European Conference on Object-Oriented Programming.
Springer, 1991, pp. 21–38.

[45] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data
attacks are realistic threats,” in USENIX Security Symposium, 2005.

[46] Pinkie Pie, “Mobile Pwn2Own Autumn 2013 - Chrome on
Android - Exploit Writeup,” https://docs.google.com/document/d/
1tHElG04AJR5OR2Ex-m_Jsmc8S5fAbRB3s4RmTG_PFnw/edit, 2013.

[47] Vendicator, “A "stack smashing" technique protection tool for Linux,”
http://www.angelfire.com/sk/stackshield/, 2000.

[48] Google, “Octane JavaScript benchmark suite,” https://developers.google.
com/octane/, 2014.

[49] Mozilla, “Kraken 1.1 javascript benchmark suite,” http:
//krakenbenchmark.mozilla.org/, 2014.

[50] Apple, “Sunspider 1.0.2 javascript benchmark suite,” https://www.
webkit.org/perf/sunspider/sunspider.html, 2014.

[51] Microsoft IE, “LiteBrite: HTML, CSS and JavaScript Performance
Benchmark,” http://ie.microsoft.com/testdrive/Performance/LiteBrite/,
2014.

[52] RightWare, “Browsermark 2.1 benchmark,” http://browsermark.
rightware.com/, 2014.

[53] FutureMark, “Peacekeeper: HTML5 browser speed test,” http://
peacekeeper.futuremark.com/, 2014.

[54] P. Argyroudis and C. Karamitas, “Exploiting the jemalloc memory
allocator: Owning firefoxÂ¡Â¯s heap patroklos,” in BlackHat USA, 2012.

9

2015 IEEE Conference on Computer Communications (INFOCOM)

575

