
38

Toward Engineering a Secure Android Ecosystem: A Survey
of Existing Techniques

MENG XU, CHENGYU SONG, YANG JI, MING-WEI SHIH, KANGJIE LU,
CONG ZHENG, RUIAN DUAN, YEONGJIN JANG, BYOUNGYOUNG LEE,
CHENXIONG QIAN, SANGHO LEE, and TAESOO KIM, Georgia Institute of Technology

The openness and extensibility of Android have made it a popular platform for mobile devices and a strong
candidate to drive the Internet-of-Things. Unfortunately, these properties also leave Android vulnerable,
attracting attacks for profit or fun. To mitigate these threats, numerous issue-specific solutions have been
proposed. With the increasing number and complexity of security problems and solutions, we believe this is
the right moment to step back and systematically re-evaluate the Android security architecture and security
practices in the ecosystem. We organize the most recent security research on the Android platform into two
categories: the software stack and the ecosystem. For each category, we provide a comprehensive narrative
of the problem space, highlight the limitations of the proposed solutions, and identify open problems for
future research. Based on our collection of knowledge, we envision a blueprint for engineering a secure,
next-generation Android ecosystem.

CCS Concepts: � Security and privacy → Mobile platform security; Malware and its mitigation; Social
aspects of security and privacy

Additional Key Words and Phrases: Android, mobile malware, survey, ecosystem

ACM Reference Format:
Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang,
Byoungyoung Lee, Chenxiong Qian, Sangho Lee, and Taesoo Kim. 2016. Toward engineering a secure android
ecosystem: A survey of existing techniques. ACM Comput. Surv. 49, 2, Article 38 (August 2016), 47 pages.
DOI: http://dx.doi.org/10.1145/2963145

1. INTRODUCTION

Android security has been in the spotlight ever since the first Android-powered phone
debuted in October 2008. As Android grows into the most popular mobile operating sys-
tem by global market share, Android-targeted attacks continue to rise in both number
and complexity [Svajcer 2014; Zhou and Jiang 2012].

At the same time, the demand for quality Android device security is increasing.
Security sensitive applications (apps) such as online shopping, mobile banking, and

This work is supported by the National Science Foundation (grant DGE-1500084), Office of Naval Research
(grant N000141512162), Defense Advanced Research Projects Agency (contract DARPA-15-15-TC-FP-006),
and Electronics and Telecommunications Research Institute (contract MSIP/IITP[B0101-15-0644]).
Authors’ addresses: M. Xu, C. Song, Y. Ji, M. Shih, K. Lu, C. Zheng, R. Duan, Y. Jang, B. Lee, C. Qian, S.
Lee, and T. Kim, School of Computer Science, Georgia Institute of Technology, Klaus Advanced Computing
Building, 266 Ferst Dr NW, Atlanta GA, United States; emails: {meng.xu, csong84, yang.ji, mingwei.shih,
kjlu, cong, ruian, yeongjin.jang, blee, chenxiong, sangho, taesoo}@gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/08-ART38 $15.00
DOI: http://dx.doi.org/10.1145/2963145

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://dx.doi.org/10.1145/2963145
http://dx.doi.org/10.1145/2963145

38:2 M. Xu et al.

personal healthcare are gaining ever more popularity. Meanwhile, thanks to its open-
ness and extensibility, Android is reaching further than smartphones, appearing in
smart TVs, car navigation systems, and home automation systems. As a result, it is
also considered one of the most promising platforms for the growing Internet-of-Things
ecosystem. Based on these facts, one can easily predict the future security landscape of
the Android arena: more valuable and more numerous targets for attackers, spawning
more powerful and sophisticated malware.

Motivated by the urgent need to prepare a secure Android platform, we believe
that now is the right moment to step back and systematically re-evaluate the Android
security architecture and the security practices in the ecosystem. In the past few years,
many issues were identified and a multitude of defensive techniques were proposed to
solve them. However, due to the scale and complexity of the Android ecosystem, each
research work generally focuses on only one particular problem. Lacking a holistic
blueprint to guide refinement of the overall ecosystem, we are motivated to analyze,
categorize, and evaluate proposed solutions and to shed light on a way to envision the
next-generation Android ecosystem.

In this article, we survey the Android related research and development efforts pre-
sented in top conferences and journals.1 Without a loss of generality, we themed the
survey with a focus on Android malware attacks and defenses, defining malware as any
hostile or intrusive instrument attackers might leverage to achieve their goals. Note
that malware can take practically any form, such as rootkit exploiting kernel vulner-
abilities, malicious web domain abusing improper uses of Secure Sockets layer (SSL),
or simply repackaging of a popular Android app. Malware can achieve multiple goals,
including but not limited to intrusive advertising (adware) or privacy compromising
(spyware). Therefore, discussion around malware provides broad coverage on a variety
of Android security topics. Based on this insight, we organize this article based on two
key areas where the focus of offensive and defensive techniques lies on:

(1) Android software stack: where malware tries to exploit system weaknesses or
design errors to penetrate and execute intended actions. In this area, once malware
reaches a device, it could exploit vulnerabilities in Android OS to acquire root
privilege, or exploit flaws in the permission model to fool the system. It might
also abuse features such as dynamic code loading to mount the attack or use side
channels and covert channels.

(2) Android ecosystem: where malware tries to evade app review/detection, attract
downloads, or find alternative distribution channels to reach end users. In this
area, it is common to see an attacker imitate the appearance of a popular app or
even repackage it in order to trick naive users into installing his/her malicious app.
The malware might also use obfuscation techniques to hide its exploitive intent
and evade malware detection practices.

The rest of the article is organized as follows: Section 2 contains background knowl-
edge on Android platform security architecture and security practices in the current
ecosystem: the necessary pieces in understanding the rest of this article. Sections 3–7
describe the offensive and defensive techniques on the Android software stack. Sec-
tions 8–11 describe the offensive and defensive techniques on the Android ecosystem.
In Section 12, we present our views on issues that the Android platform may face in the
near future. We also discuss how to prepare Android for the Internet-of-Things (IoT)
trend and demands for increased privacy. Based on these survey results, we explain our
envisioned landscape for the next-generation Android ecosystem in Section 13, where
antimalware techniques are deployed at every core participant’s side.

1The complete list of sources of surveyed papers are presented in Section A.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:3

Fig. 1. Overview of Android software stack in terms of security. Components introduced by OEMs are
shaded, and components for which researchers have previously identified vulnerabilities are marked with †.
Section 2.1 describes the details of each layer and component with pointers to the corresponding sections.

2. UNDERSTANDING ANDROID SECURITY

This section explains our views on current Android security architecture. We first
provide a comprehensive overview of its componentwise layered design, with a focus
on security-related components; then we discuss current security practices in the
Android ecosystem. This section also serves as an entry point to find corresponding
sections of interest.

2.1. Android Platform Security Architecture

In the layered architecture of Android platform, security of components at the upper
layer are built on those at the lower layers. In contrast to the legacy notion that An-
droid security relies exclusively on the Android Open Source Project (AOSP) [Android
Developers 2016b], our proposed architecture in Figure 1 considers the larger ecosys-
tem, including Original Equipment Manufacturers (OEMs), carriers, and Google. It
also sheds light on these entities’ roles and relations in constructing a secure Android
system.

2.1.1. Android Operating System. The Linux kernel is the foundation of the whole soft-
ware stack. Android implements the application-level sandbox by leveraging Linux’s
Discretionary Access Control (DAC). By assigning a unique uid to each app, Android
isolates individual apps within a uid-based process boundary. Therefore, an app cannot
interact with other apps by default and can only access resources in its own sandbox
(e.g., own files). Similarly, each system resource (e.g., network, sound, etc.) is assigned a
unique gid: to grant an app access to a particular resource, the app’s uid is added to the
resource’s gid group. Although many Android apps are running in the Dalvik Virtual
Machine (VM), the VM does not provide additional sandboxing like the Java VM does,
so the only security boundary of an Android app is the DAC-based application sandbox.

Attacks at this layer mainly focus on breaking the DAC sandbox by exploiting partic-
ular kernel vulnerabilities, while defensive techniques focus on hardening the kernel
to either eliminate the vulnerability or reduce impact when exploits occur. Detailed
descriptions of attacks and defenses of this layer are discussed in Section 3.

2.1.2. Android Application Framework (AAF). Abstracted from the Linux DAC model, in
order to provide apps fine-grained accesses to resources (such as GPS or contacts),

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:4 M. Xu et al.

Android implements its permission model at the AAF. To gain such permissions, the
developer first declares the resources required for his app; then, the user approves the
declared permissions upon app installation. Researchers have explored many security
issues with such a permission model and have proposed various new models to solve
them as discussed in Section 4.

Besides issues in the permission model, another common attack vector for Android
app isolation schemes are the use of side channels and covert channels. These attacks
and particularly their mitigations have not been studied thoroughly in Android; thus,
such attacks will be emerging threats for new platforms like the IoT. We study their
eligibility, potential threats, and possible mitigation in Section 5.

In addition to the permission model, AAF provides a rich set of features such as
dynamic code loading and accessibility. Unfortunately, retrofitting new features into
the existing Android security model often introduces vulnerabilities. We approach them
systematically in Section 6.

2.1.3. Application Layer. Android apps, whether pre-installed or user-installed, gener-
ally adhere to a modularized design to facilitate component reuse. An app must be
divided into Activities, Services, BroadcastReceivers, and ContentProviders, which are
held together by an AndroidManifest.xml file. The majority of app components commu-
nicate through Intent, the default Intercomponent Communication (ICC) channel, and
share their data with other apps using Content Provider, which can be queried in an
SQL-like way. App developers also have the freedom to build apps in native code and
enjoy the rich services provided by the Android framework, such as cryptography and
SD Card access. If, however, developers fail to utilize these services or adhere to the
aforementioned principles either by mistake or carelessness, they leave their apps and
users open to attack. A handful of studies have been done regarding this issue, as we
describe in Section 4 and Section 6.

2.1.4. Device Fragmentation. In Figure 1, components in gray boxes reflect the impact
of the fragmentation of Android devices. These components are sometimes highly cus-
tomized by device distributors like OEMs and carriers. However, such customization
frequently introduces new security issues, as explained in Section 7.

2.2. Security Practices Across the Ecosystem

Compared to traditional desktop systems, mobile platforms like Android generally have
more diversified participants, which in turn brings new features into the ecosystem.
For example, one feature common in all the major mobile ecosystems is the app store
model, which has only recently started to emerge in desktop systems (e.g., Windows
10 and Mac OS). Such features bring both complications and opportunities to Android
platform security.

2.2.1. Core Participants. Out of the hundreds of stakeholders involved in the Android
ecosystem, we focus on four entities: users, developers, app stores, and the Open Hand-
set Alliance (Google, OEMs, and carriers), since they are the core participants of the
Android ecosystem. The interactions between these participants are essentially flows
of software/apps and revenue. We visualize these interactions in Figure 2.

When an attacker (particularly, a malware writer) is considered in the ecosystem
(also shown in Figure 2), the interaction graph suggests two goals the ecosystem should
achieve: (1) preventing malware from reaching the end user and (2) preventing profit
from flowing to the attacker.

2.2.2. Malware Defense Practices. To achieve the goals in taming malware attacks, we
have identified the following practices that can be employed by different entities in
order to collectively make the ecosystem more secure.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:5

Fig. 2. Current security practices (shaded) in Android ecosystem, and interactions among core participating
entities.

Table I. Security Practices in the Current Android Ecosystem. We Categorize Our Approaches
in Terms of the Incentives Relationship in Figure 2

Description Category Current Practices

©1
Disincentivize attackers to
publish malware to trusted
app stores

Incentive elimination (Section 11) Developer rewarding and
profit-sharing schemes

©2

Prevent malware from being
distributed from trusted app
stores

—Active malware detection
—Passive malware detection

Malicious behavior detection
(Section 8)
Repackaging detection/prevention
(Section 9)
Sociological methods (Section 10)

Bouncer for Google Play
App rating and user
comments

©3
Prevent malware from being
distributed from other
sources

Infection channel cut-off (Section 10) N.A.

©4

Prevent intended benefits
flow to attacker

—The system is hardened
to mitigate exploitation of
unknown vulnerabilities

System hardening (Sections 3–7) SEAndroid, capability
system Antimalware apps

—Malicious behavior detection: To detect the malicious behaviors of apps, Google
Play introduced Bouncer [Poeplau et al. 2014], a malware scanning service to detect
malicious in-store and prestore apps. Researchers have also explored a variety of
new techniques (Section 8) to this end.

—Repackaging detection and prevention: Taming app repackaging is crucial to
a successful and secure ecosystem, which has attracted much research in this area
(Section 9).

—Infection channel cut-off: Unlike the current open app distribution model that
allows app downloading from alternative stores, researchers have proposed to cut off
malware distribution from app stores and untrusted sources (Section 10).

—Incentive elimination: Android’s profit model involves sharing revenue between
developers and the app store (e.g., Google Play and Amazon App Store). Such a model
indirectly undermines illegal malware by suppressing malware writers’ incentives
(Section 11).

Table I shows how each practice might be adopted by the core participants described
in Figure 2.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:6 M. Xu et al.

Table II. Past Vulnerabilities in the Android Platform

Vulnerable Component
Nickname CVE or ID Release (platform) Cause of Vulnerability Linux Driver Daemon
asroot 2009-2692 08/2009 (≤2.2) Null pointer dereference socket - -
exploid 2009-1185 07/2010 (≤2.1) Incorrect input validation - - udev
RAtC 2010-EASY 10/2010 (≤2.2) Incorrect error handling - - adbd
Zimperlich 2010-EASY 12/2010 (≤2.2) Incorrect error handling - - zygote
KITNO 2011-1149 01/2011 (≤2.2) Incorrect sharing of resources - - init
psneuter 2011-1149 01/2011 (≤2.2) Incorrect sharing of resources - - init
GingerBreak 2011-1823 04/2011 (2.1-2.3.3) Incorrect input validation - - vold
Zergrush 2011-3874 10/2011 (2.2-2.3.6) Buffer overflow - - vold
levitator 2011-1350,1352 11/2011 (2.3-2.3.5) Improper bound check - PowerVR -
mempodroid 2012-0056 01/2012 (4.0-4.0.4) Improper permission check mem_write - -
bin4ry OSVDB 94059 09/2012 (4.0-4.0.4) Symlink attack - - adbd
diaggetroot 2012-4220,4221 11/2012 (2.3-4.2) Integer overflow - diagchar -
- 2013-2094 06/2013 (2.2-4.3) Integer overflow perf - -
FramaRoot 2013-6282 04/2014 (2.x-4.x) Missing checks get/put_user - -
TowelRoot 2014-3153 06/2014 (4.0-4.4) Use-after-free futex - -
GiefRoot 2014-4321,4322 12/2014 (4.0-4.4) Missing checks - camera -
PingPongRoot 2015-3636 08/2015 (≥4.3) Use-after-free net - -

3. SYSTEM PRIVILEGE ESCALATION

Preventing users or high-level apps from acquiring system privilege (i.e., root priv-
ilege) is a primary security assumption on the Android platform. If this assumption
is broken, many fundamental protection mechanisms (e.g., the Android permission
model) cannot guarantee the security they intend, since these mechanisms are built
upon this assumption.

In this section, we describe attacks and defenses related to system privilege escala-
tion on Android. Although this topic is well studied in traditional Linux-based systems,
these studies are not directly transferable to the Android domain due to the amount
of customization Android introduced to overcome various hardware restrictions in the
mobile environment, for example, limitations in memory, battery, and computing power,
as well as heterogeneity in hardware drivers. Therefore, unlike traditional Linux-based
systems, Android is unique in that high-level apps are running on top of not only Linux
Kernel but also Android customization, as illustrated in Figure 1. As such, this archi-
tectural design exposes wider attack surfaces than traditional Linux-based systems.

To clearly show where the current Android security stands against system privilege
escalation attacks, Table II illustrates various attacks against the Linux kernel,
customized drivers, or system daemon programs (Section 3.1), and further indicates
whether each attack can be stopped using state-of-the-art mitigation techniques
(Section 3.2). We also want to highlight one major behavioral difference between
Linux users and Android users: the latter, even inexperienced users, may intentionally
root their devices, making privilege escalation prevention even more complicated
(Section 3.3).

3.1. Vulnerabilities and Attack Surfaces

In general, all components of the Android OS layer can be targeted by system privilege
escalation attacks because they are running with system privileges and attackers
can gain desired system privilege by exploiting them. Specifically, the attack surfaces
include Android Linux Kernel and Android system components and can further be
classified, based on the source of vulnerabilities, as shown in the following.

3.1.1. Mainline Linux Kernel. Core operating system services of Android (e.g., scheduling,
mem_write, socket) are supported by the mainline Linux kernel. Thus, Android can
suffer from the vulnerabilities found in the mainline Linux Kernel related to these

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:7

services. For example, Mempodroid [Freeman 2012], inspired by its Linux counterpart
Mempodipper [Donenfeld 2012], exploits the same mem_write vulnerability to gain
root access in the Android kernel. TowerRoot [geohot 2014] abuses a recently found
vulnerability in the futex system call to root the various Android devices.

3.1.2. Native Daemons. Native daemons have always been an attractive target for
subverting the Android system, largely because most of them are run with system
privilege, and tend to contain legacy bugs from the low-level programming language
they are using. Many severe attacks against the native runtime have been reported:
RAtC [thesnkchrmr 2011] and Zimperlich [Sebastian 2011] acquire root privilege
with fork bombs to prevent adbd and zygote, respectively, from dropping root privi-
lege; psneuter [Choong 2012] and KITNO [AVO 2011] abuse an implementation bug
in init to change the system settings to prevent adbd from dropping its root privi-
lege; Zergrush [F-Secure 2011b] and GingerBreak [F-Secure 2011a] exploit vold; and
bin4ry [vuldb.com 2013] exploits the adbd daemon.

3.1.3. Third-Party Drivers. Android relies on hardware manufacturers to provide custom
drivers, many of which are close-sourced and are implemented with little concern for se-
curity. For example, levitator exploits bugs in the PowerVR SGX driver and diagroot
exploits bugs in the Qualcomm diagnostic driver to mount a privilege escalation attack.

3.2. Mitigation Techniques

Current mitigation techniques adopted by Android fall into two categories: (1) kernel
and native code hardening techniques that make it more difficult to compromise the
kernel, native libraries, and native runtime; and (2) SEAndroid, which confines the
capabilities of native daemons.

3.2.1. Hardening Kernel and Native Code. Kernel hardening techniques are designed to
make kernel vulnerabilities more difficult to exploit. Unfortunately, despite a large
amount of existing work, most kernel hardening techniques have not been adopted by
the Android kernel due to their ineffectiveness or performance overhead. The only doc-
umented adoptions to the Android kernel are dmesg_restrict and kptr_restrict that
prevent leaking kernel addresses. Samsung Knox provides Real-time Kernel Protection
to prevent malicious modification or injection to the kernel code [Azab et al. 2014], but
it is not available in the mainline Android kernel. Since native code (e.g., native li-
braries and native runtime of Android), is prone to memory corruption vulnerabilities,
a range of protection techniques have been employed to improve the system’s secu-
rity: for example, eliminating vulnerabilities (safe_iop, format-security), preventing
control-flow hijacking (stack cookies, NX, ASLR, etc.), and restricting system’s policies
(e.g., restricting READ_LOGS access and defaulting umask to ∅77).

3.2.2. SEAndroid. Because the Android application sandbox is built upon Linux’s DAC,
exploiting any daemon with root privilege may compromise the security of the entire
system. To mitigate such threats, SEAndroid [Smalley and Craig 2013] (enabled in the
enforce mode from Android 5.0) was introduced to provide Mandatory Access Control
(MAC). By enforcing MAC, SEAndroid is able to (1) stop critical steps of exploits, such
as disallowing the creation of the NETLINK socket by user shells or apps; and (2) prevent
abuse of root privileges (e.g., setuid) even if the daemon is compromised, that is,
minimizing the damages caused by granting only minimum privileges needed by those
daemons. FlaskDroid [Bugiel et al. 2013] further extends SEAndroid by supplying it
with an efficient and flexible policy language that is tailored to the specifics of Android
middleware semantics. In addition, EASEAndroid [Wang et al. 2014a] introduces an
SEAndroid analytic platform to automatically analyze and refine SEAndroid policy.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:8 M. Xu et al.

When deploying mitigations for mobile devices, the trade-off between mitigation ef-
fectiveness and performance overhead is of particular concern. We observed that, likely
due to the unique resource constraints (e.g., battery and RAM) of the mobile environ-
ment, adoption of proposed mitigation techniques in the Android OS depends more on
the performance overhead incurred rather than soundness of the proposed techniques.

3.3. User Voluntary Rooting

Besides unintended attacks, rooting a device can also be a voluntary behavior from
users with various motivations, for example, removing OEM pre-installed apps, en-
abling tethering, or just for fun. To facilitate this demand, a variety of root providers
begin to offer root as a service (e.g., Root Genius [Team 2016]) and many convenient
one-click root methods operate by exploiting one or more vulnerabilities described
in Table II or even zero-day vulnerabilities. Such behaviors create more complications
for the Android ecosystem, such as (1) how to ensure the zero-day vulnerabilities are
not abused by malware writers [Zhang et al. 2015], (2) how to safely unroot the device
without leaving security loopholes, and (3) how to protect rooted devices, as rooting
breaks the Trust Computing Base (TCB) of many proposed solutions for addressing
higher level security issues in Section 4, as shown in Zhang et al. [2014b].

These questions are largely unaddressed, as rootkit users are assumed to take full
responsibility of the consequences. However, this assumption may not hold. According
to Ludwig [2013], 494 nonmalicious rootkits are installed per million installs from
Google Play, whose users are unlikely to have sufficient security awareness to mitigate
potential security threats introduced by rooting. Moreover, certain OEMs provide users
with customizable bootloaders to ease the burden of loading customized kernels [HTC
Corporation 2016], allowing more rooted Android devices. Both of them indicate that
protecting rooted devices is a pressing research problem. Shao et al. [2014a] proposes
a kernel hooking approach to mediate the su requests. Whenever an app issues a
privileged request, that is, a system call, it is first captured by RootGuard, which then
checks against its policy database to determine whether the request should be allowed
or denied. To the best of our knowledge, at the time of writing, this is the only work that
targets protecting rooted Android phones and we believe more research should follow.

3.4. Open Problems

We have observed the following open issues and emerging trends over these years in
Android system privilege escalation prevention.

3.4.1. Performance Optimization for Hardening Techniques. Due to the long cycle of security
updates in the Android ecosystem, exploit mitigation techniques are critical to ensure
a robust TCB. Several open source projects are available to further harden the Linux
kernel, such as grsecurity [Open Source Security, Inc. 2016]; however, porting them
to Android may face a major obstacle—performance overhead—which is particularly
sensitive for mobile devices due to their limited computation power and battery.

3.4.2. New Hardware Security Features. Besides porting existing hardening techniques to
the Android kernel, introducing new hardware features can be an alternative approach.
Given the openness of mobile device configuration and OEMs’ incentive for differenti-
ation, it is promising to search for new mobile hardware features that could boost the
security in Android OS. For example, ARM TrustZone establishes and isolates a secure
and nonsecure world with hardware support. Security-critical services can be designed
to run only in the secure world, while normal services run in the nonsecure world. As
shown in TrustZone-based Real-time Kernel Protection (TZ-RKP) [Azab et al. 2014],
the entire (TCB of the Android OS can be protected with this hardware feature.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:9

3.4.3. Control Flow Integrity Guarantee. Control Flow Integrity (CFI) [Abadi et al. 2005;
Davi et al. 2012] is a strong technique for preventing the increasingly sophisticated
control flow hijacking attacks. In essence, a CFI policy requires that program execution
must follow a predetermined Control Flow Graph (CFG), which is generally statically
determined by analyzing the program source code or binary files. Unfortunately, a
critical issue with CFI is that the statically computed CFG is usually too conservative
and allows too many targets. This fundamental issue has been exploited to bypass CFI
protections [Davi et al. 2014; Goktas et al. 2014].

A better approach is to protect the integrity of data or pointers that have an impact
on the program control flow, for example, code pointers [Kuznetsov et al. 2014]. Another
problem indicated in Table II is that many system privilege escalation attacks do not
rely on control flow hijacks at all. Instead, they use data-only attacks [Chen et al. 2005].
We expect to see more efforts toward preventing such attacks.

3.4.4. Logic Bugs. As seen in Table II, logic bugs, such as incorrect input validation,
symlink attack, and incorrect error handling, are the main vulnerabilities exploited for
rooting. However, general detections or defenses against these bugs are still missing.
To combat them, more efforts are expected to both abstract these bugs, and propose
general protections.

3.4.5. Adoption of Capability System. A capability system can effectively restrict dae-
mons’ capabilities. Specifically, it can allow daemon programs to start with requested
privileges and later drop privileges when no longer needed. A prominent example is
seccomp-bpf, a long developed mainline Linux sandboxing facility with high efficiency,
which is also widely used in practice. Some Android communities are experimenting on
porting seccomp-bpf to Android, which can be tracked in Chromium Dev Community
[2012]. In many cases, a capability system can be considered as a lightweight frame-
work for SELinux with a focus on practicality and performance. However, SELinux has
finer granularity and more mechanisms for monitoring and mediating access controls.

3.4.6. Policy-Agnostic Security Infrastructure. The industry is adopting policy-based ap-
proaches to harden Android. For example, people are tuning the SEAndroid policies to
provide better protections. In the meantime, the academic community is having second
thoughts about policy-based solutions such as SEAndroid [Backes et al. 2014; Heuser
et al. 2014]. They argue that hard-wiring a specific security model into Android not
only impairs its practicality and maintainability in a fragmented environment, but
also precludes many other security extensions. As an alternative, they propose to hook
throughout the Android OS and build security APIs on top of the hooks, which can
be further leveraged to generate various security extensions discussed in Section 3.2
and Section 4. The performance and practicality of these approaches is yet to be tested
in industry.

4. PERMISSION MODEL

On top of the application sandbox is the Android permission model, which is directly
exposed to developers and users as a mechanism for mediating apps’ accesses to system
resources. This section discusses issues in the Android permission model and proposed
solutions for mitigating these problems (Table III).

4.1. Issues

4.1.1. Incorrect Assignment. Under the current permission model, developers are re-
sponsible for claiming permissions for their apps. Since most developers are security-
unaware, they are likely to overclaim permissions in order to ensure a smooth user
experience, that is, an app runs well in all situations, and hence, ignoring the Principle

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:10 M. Xu et al.

Table III. Summary of Previous Work on Improving the Android Permission Model. ©1 –©6 Corresponds to the Six
Categories of Solutions Discussed in Section 4.2

Type Solution Description Required Modification

©1
Stowaway Extract permission-to-API map through API testing. -
PScout Extract permission-to-API map from Android source

code.
-

WHYPER Ensure description-to-permission fidelity. -
AutoCog Ensure description-to-permission fidelity. -

©2 Apex Intercept sensitive API calls and filter against
predefined policies.

App Installer, ICC Monitor

CRePE Intercept sensitive API calls and filter against
predefined policies.

ICC Monitor

AppFence Supply sensitive API calls with mock data/reject
network transmission.

Dalvik VM, Resourec
Manager

©3 Constroid Data-centric access control by policies. ContentProvier, ICC Monitor
Dr. Android Sensitive API drop-in replacement. App Repackaging
Aurasium In-app libc interposition. App Repackaging

©4

AdDroid Run advertisements as system services. System Service, Libc
AdSplit Split ad library and app into separate processes. App Repackaging
LayerCake Provide in-app privilege separation through process. View Object
Compac Provide component-level permission assignment. ICC Monitor, Kernel
FlexDroid Provide in-app privilege separation through call stack

tracing
Kernel, Dalvik VM, Libc

©5

IPC
Inspection

Permission check across the whole API access call
chain.

ICC Monitor

SORBET Permission check across the whole API access call
chain.

ICC Monitor, Kernel

XManDroid Permission check across the whole API access call
chain.

App Installer, ICC Monitor

Quire Permission check across the whole API access call
chain.

ICC Monitor, Kernel

Saint Allow developers to define policies on interface access. App Installer, ICC Monitor

©6
Aquifer Allow developers to attach policies on data shared. ICC Monitor, Kernel
Jia et al. Allow developers to attach policies on data shared. ICC Monitor, Kernel
Maxoid Allow developers to attach policies on data shared. ICC Monitor, Kernel

of Least Privilege (PoLP) [Felt et al. 2011b]. A previous work [Felt et al. 2011a] shows
that 35.8% out of 900 Android apps analyzed are overprivileged due to developers’
overclaiming. Multiple problems can arise from this incorrect assignment issue. For
example, once the app is exploited, the overclaimed permissions will be available to
attackers as well, making complex attacks easier. Overclaiming permissions without
corresponding functionalities will also result in higher risk ratings for the app when
being scrutinized by automatic detection tools such as Google Bouncer [Poeplau et al.
2014], which leads to longer review time or even app rejection.

4.1.2. Usability. Current Android permission model (prior to Android Marshmallow)
relies on users to grant permissions to apps but fails to provide enough flexibility to
users for addressing their own privacy requirements. Specifically, users have to either
grant all the requested permissions to an app or decline to install it at all. This causes
three problems: 1) Users have no choice but to grant redundant permissions in order to
use an app. For example, even if users think the INTERNET permission is not necessary
for a calculator app, they must grant this permission in order to install and use it.
2) Once the app is installed, it can abuse permissions without any restriction. For
example, an app may send an unlimited number of text messages as long as it is
granted the SEND_SMS permission. 3) There is no way to enforce runtime context-aware
policies. For example, users may want to enforce a policy that disallows all access
to personal identifiable data when the device is connected to public WiFi. Starting
from Android Marshmallow, and also found in customized versions of Android OS
like Cyanogenmod [CyanogenMod Team 2016] and Blackphone [Silent Circle 2016],

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:11

the system supports runtime permissions toggling, resembling the approach taken by
iOS platform and partially solves these problems. Users have the flexibility to grant
and revoke dangerous permissions after app installation and app developers can also
prompt users for permission at runtime, all handled by the PackageManager service.
However, for backward compatibility, apps targeting previous platforms still follow the
current permission model by default. We anticipate that it will take one or two years
before the new permission model is widely adopted by developers, as was seen in the
transition from Android 2.X to Android 4.X [OpenSignal Inc. 2015].

4.1.3. Granularity. Researchers have argued that the Android permission model is
currently too coarse-grained to ensure that an app behaves exactly the same as
expected and agreed by users. For example, the INTERNET permission allows an app
to access any domain address. This gives malicious apps an opportunity to launch
attacks, for example, a malicious app that claims to offer Google Map service may talk
to maps.google.com in the foreground, and leak location information to an attacker’s
server in the background.

Additionally, the current permission model grants permissions to all components in
an app, despite the fact that they may come from various developers. This allows one
component to abuse permissions required by another component [Paul Pearce et al.
2012]. For example, an advertisement (Ad) library may abuse the VIBRATE permis-
sion that is actually needed by the main functional component. Likewise, the main
component can also abuse the LOCATION permission required by the Ad library.

4.1.4. Transitivity. The Android component model and the intent-based ICC allow apps
to expose services (e.g., read location and send SMS) or data (e.g., pictures, recording)
to other components or apps through legal interfaces. The design is intended to pro-
mote modularization and code re-use in app development; however, it also presents a
challenge on both developers and users.

Developers should write robust and secure interfaces that only accept intents from
apps with required permissions. Failure to do so results in confused deputy attack [Felt
et al. 2011c] where the deputy app fails to check whether the calling app has the
credentials to use their permission-protected interfaces. For users, permission transi-
tivity makes it harder to foresee how an app might use permissions from other apps,
which enables collusion attack [Marforio et al. 2011] where two or more malicious apps
with distinct but limited permissions collaborate to effectively generate a joint set of
permissions.

4.1.5. Authority. The implied assumption in the current Android permission model
is that the end user is the final authority for making permission granting decisions.
However, researchers have began to challenge this assumption, that is, whether normal
users are capable of or care enough to determine which permissions are appropriate
for an app even if they are given sufficient flexibility in permission granting period.
A previous survey [Felt et al. 2012b] shows that only 3% of Internet survey and 24%
of laboratory study participants can successfully understand and grant permissions,
while as many as 42% of users are unaware of permissions at all.

4.2. Solutions

4.2.1. Permission Claim Check. To address the incorrect assignment problem, as Google
fails to provide clear mappings between permissions claiming and how claimed
permissions are actually being used, several tools are designed to fill the gap.
Stowaway [Felt et al. 2011a] utilizes the static analysis to determine the set of API
calls an app uses and then maps API calls to permissions. Permission over-claim can
be determined by comparing the permissions used with the permissions claimed in the
manifest file. Similarly, PScout [Au et al. 2012] applies static analysis to Android source

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:12 M. Xu et al.

code to construct the API call to permission mappings. The mappings can provide more
complete information than the existing Android’s permission system documentation.
In addition to finding mappings between API calls and permissions, WHYPER [Pandita
et al. 2013] and AutoCog [Qu et al. 2014], analyze the app description using natual lan-
guage processing (NLP) techniques to automatically assess description-to-permission
fidelity. These two works intend to help both users and developers better understand
why an app needs specific permissions and check for permission over-claim.

4.2.2. Privacy/Context Awareness. Privacy/context-aware permission management en-
hances usability by ensuring a smooth user experience. Such mechanisms are usu-
ally realized in the form of policy enforcement. By hooking into the ICC monitor, it
is possible to intercept sensitive API calls and make decisions based on pre-defined
policies. Apex [Nauman et al. 2010] provides a modified app installer that allows a
user to selectively grant permissions to an app as well as limit the resource usage at
the install-time. CRePE [Conti et al. 2010] introduces a context-related policy enforce-
ment system, which allows a user to define context-related policies at both install-time
and runtime. AppFence [Hornyack et al. 2011] achieves privacy control by allowing
a user to either replace private data with shadow data to prevent privacy misuse, or
reject transmission of on-device only data over the network. As the permission grant-
ing mechanism gets more complex, Felt et al. [2012a] propose a set of guidelines for
platform designers to decide the most appropriate permission-granting mechanism for
a sensitive API call.

4.2.3. Permission Decomposition. Coarse-grained permissions can be decomposed into
multiple fine-grained permissions to help enforce the PoLP. For example, INTER-
NET permission can be deconstructed into domain-based permission like INTER-
NET(google.com), which is already the practice of Chrome Apps and Extensions [Google
Inc. 2016b]. Constroid [Schreckling et al. 2012] modifies Android middleware to pro-
vide finer-grained data-centric access control policies on top of the Android permission
framework. Unlike implementations that require framework or system modification,
Aurasium [Xu et al. 2012] and Dr. Android & Mr. Hide [Jeon et al. 2012] perform
permission decomposition using app repackaging. Aurasium attaches user-level sand-
boxing and monitoring code to the repackaged app so that the finer-grained policy can
be enforced. For example, a user can define a network policy to allow or disallow the
connection to a specific IP address. Similarly, Dr. Android & Mr. Hide replaces the orig-
inal permission system with Mr. Hide, an Android service that provides finer-grained
permissions, by app repackaging. In case if an application owns the INTERNET permis-
sion, Mr. Hide introduces a new permission InternetURL(d), which only grants access
to the domain d.

4.2.4. Assignment Decomposition. Recall that in the current permission model, once an
app has a permission, all of its components and libraries share the same privilege.
This problem is particularly obvious in the case of using advertisement libraries. Since
advertisement libraries are usually developed by third parties, it may be risky to allow
a third-party library to share the same set of permissions with the app. Tools like
Brahmastra [Bhoraskar et al. 2014] have found various cases of privacy violations in
third-party libraries.

To address this problem, several works [Paul Pearce et al. 2012; Roesner and Kohno
2013; Shekhar et al. 2012] propose assigning separate permissions to the in-app ad-
vertisement component. Compac [Wang et al. 2014b] further generalizes the idea by
proposing a component-level permission assignment approach, such that each in-app
component only gets the minimum set of permissions needed for preserving the app’s
functionalities. FlexDroid [Seo et al. 2016] achieves in-app privilege separation and

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:13

empowers app developers with fine-grained access control for third-party libraries. It
relies on call stack traces collected at both Dalvik VM and native levels and is suitable
for sophisticated libraries.

4.2.5. ICC Tracing. ICC tracing aims to solve the transitivity issue. Solutions [Bugiel
et al. 2011, 2012; Dietz et al. 2012; Felt et al. 2011c] in this direction usually monitor
both sensitive API calls and ICC. By keeping track of the communication channels
between apps, an API call is blocked if any app in the call chain lacks the required
permission to access it. This is used to effectively tamper permission escalation attacks
including the confused deputy attack and the collusion attack.

Moreover, Saint [Ongtang et al. 2009] demonstrates that it is also possible to reinforce
the security check by allowing developers to define policies to protect exposed app
interfaces, for example, all conditions in the policy must be satisfied before another
app can access the interface.

4.2.6. Decentralized Information Flow Control. While ICC tracing only checks the permis-
sion before sensitive APIs are called, Aquifer [Nadkarni 2012] and Jia et al. [2013] aim
to enforce information flow integrity even after data leaves the app. Both works require
developers to tag policies on the data that flows into another app, and instrument the
system to enforce the policies. Similarly, Maxoid [Xu and Witchel 2015] modifies the
Android system to enforce information flow policies between apps, but it focuses on
secrecy and integrity for both the invoking app and the invoked app.

4.3. Open Problems

Despite the extensive research on improving the existing permission model, few solu-
tions have been adopted in practice. We believe the following open issues contribute to
the low adoption rate:

4.3.1. Granularity v.s. Intuitiveness. Although finer granularity helps to enforce the PoLP,
the permission requester and granter might be over-burdened by the higher complex-
ity. As a result, the more types of permissions are introduced, the less intuitive the
permission model becomes. User-driven access control [Roesner et al. 2012] provides
a new direction for permission model design which might fundamentally remove this
trade-off.

4.3.2. Permission Granting Authority. Another unaddressed problem in the permission
granting mechanism is whether users have the capability to make the right decisions.
To deal with this problem, one possible solution is to delegate permission granting to
the system or third-parties with expertise; while at the same time, the flexibility can be
kept for expert users to adjust permissions, much like the proposed work for a desktop
environment [Kushman and Katabi 2010].

5. SIDE CHANNELS AND COVERT CHANNELS

All operating systems are subject to side-channel attacks as well as information leakage
via covert channels, and Android is no exception. By legitimately observing the behavior
patterns of shared resources, an attacker is able to infer sensitive information (side-
channel) or use these patterns as a communication channel with another app (covert
channel), allowing him/her to bypass both the low-level application sandbox and high-
level permission model. Table IV summarizes the existing side-channel attacks and
mitigations along with their effectiveness and adoptability for Android.

5.1. Shared Hardware Resources

While sensors in smartphones enable valuable interactions, they can also be abused to
infer inputs such as passwords [Al-Haiqi et al. 2013;Aviv et al. 2013; Deshotels 2014;

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:14 M. Xu et al.

Table IV. Summary of Side-Channel Attacks. Hardware based Side-Channel Includes 2 Channels:
Accelerometer and The Emerging CPU Cache Targeting the Sensitive Inputs, Crypto Key and Kernel Addresses;

Most Mitigation Methods are Effective but Barely Adoptable in Android. The Exploit on /proc File System
Represents the Software based Side-Channel

Type Channel Target Attacks Mitigation
HW Accelerometer Screen taps, PIN Sensor based Finer-grained permission

Reducing sampling frequency
HW CPU Cache Crypto key Crypto key recovery Side-channel resistant crypto algorithm

Crypto co-processor w/ AES instruction
HW CPU Cache Kernel address map Breaking kernel ASLR Normalizing page fault handling time

Isolation of user and kernel cache use
Disabling high-precision timer (e.g., rdtsc)

SW /proc file system Illegal user data retrieval UI State inference Access restriction to /proc file system
Adding indicator on sensitive screen page

Miluzzo et al. 2012; Schlegel et al. 2011; Xu et al. 2009]. Notably, the motion sen-
sor that is mounted beneath the screen, is capable of sniffing users’ interactions with
the device by analyzing micro changes in device motion and positioning. For example,
TapPrints [Miluzzo et al. 2012] can infer the location of taps on touch screens and sub-
sequently recover English characters. An attacker can use the accelerometer to track
the tilt of a mobile device, then he/she can recover PIN code of the lockscreen [Aviv et al.
2013]. Soundcomber [Schlegel et al. 2011] selectively records conversations that carry
sensitive information including credit card numbers, end then xtracts and transmits
the information to another application via either an overt or covert channel. A gen-
eral problem in the reseach of hardware-based side channels is the lack of end-to-end
practical attack cases. For example, gaining knowledge about the victims’ PIN code or
lockscreen patterns are not likely to benefit attackers if they lack physical access to
victims’ devices. An even harder problem is how to infiltrate the phone first to mount
the appropriate sniffing malware and send out the recorded information. Correspond-
ing mitigations are mainly to limit the sensor usages. For example, mitigations in Aviv
et al. [2013], Miluzzo et al. [2012], and Schlegel et al. [2011] rely on the Android’s
permission control scheme to limit the use of motion sensors and the microphone.

5.2. Shared Software Resources

Because certain software resources are shared across processes, activity signatures
such as CPU, memory, or network usage patterns can be retrieved from the accessible
/proc file system, which can be further analyzed to infer ongoing activities in other pro-
cesses. For example, Zhou et al. [2013] is able to infer the identity, health information,
and location of an Android user by monitoring network usage via /proc. Also, Chen
et al. [2014b] is able to infer changes of UI state in another app based on the varia-
tions of shared memory size in /proc, and inject a fake login page seamlessly to steal
login credentials. Applying access control on /proc filesystem could effectively mitigate
this side-channel. However, given that Android is an open mobile system designed to
facilitate resource sharing, more complete side-channel mitigations are pressing.

5.3. Covert Channel

As shown in Gasior and Yang [2012], seemingly normal operational variances can be
abused to stealthily transmit data between apps, which effectively bypasses the per-
mission model and kernel sandbox. Known covert channels take advantage of vibration,
screen brightness, volume settings and file lock statuses to transmit bits to a listening
application. Also, Marforio et al. [2012] shows a number of other cover channels in
Android, such as intent type, UNIX socket discovery, threads enumeration, automatic
intents, and free disk space. The method in Deshotels [2014] even leverages the audio
channel to transmit ultrasonic sound which can hardly be noticed by the human ear.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:15

Blocking covert channels in a highly compacted mobile device is challenging due to
the large amount of shared resources and numerous ways to encode data. Generally,
mitigation requires multiple levels of isolation of hardware and software resources and
a well-controlled sensor usage policy. Unfortunately, such methods are impractical in
mobile device designs that pursues efficiency over security.

5.4. Open Problems

5.4.1. Emerging Cache Peeping Threat. Many cache-based timing attacks originally found
in the desktop or server environment [Bangerter et al. 2011; Hund et al. 2013; Zhang
et al. 2012] have become feasible in Android as a result of the wide adoption of the
Linux scheduler and multi-core CPU in smartphones. Cache Games [Bangerter et al.
2011] observes the cache access of CPU to infer cryptographic keys during encryptions
and decryptions. Timing side-channel attack [Hund et al. 2013] inferred the privi-
leged kernel address by probing the CPU cache usage shared by kernel and user code.
Cache partitioning [Page 2005] and side-channel resistant cryptographic algorithms
(e.g., Tromer et al. [2010]) flatten the cache usage variance thus blocking these eaves-
dropping. However, due to the system performance overhead, these methods have not
been not widely adopted in desktop Linux, let alone Android.

5.4.2. Blocking Side-Channels. Most side-channels could be avoided if shared resources
were no longer used or at least used exclusively when needed. For software shared
resources, interleaving the accesses to software stack by different apps can effectively
block the side-channel. However, for hardware shared resources, such exclusion is
more expensive in mobile OS at the stake of critical downgrade of performance and
power efficiency.

5.4.3. Protecting Sensitive Data/Operation. Future workarounds may consider additional
protection methods for sensitive inputs if the side-channel cannot be blocked. For
example, Intel proposed a two-factor authentication solution that requires a transient
One-Time-Password generated from its IPT (Identity Protection Technology) [Intel
Corporation 2016] to be attached along with the user password at every login. This
scheme may prevent an attacker from completing the login even if the victim’s password
is inferred. Alternatively, a context-aware noise (e.g., a deliberate vibrating when user
taps PIN) may disturb the performance of sensors during a user’s interaction with
sensitive information.

6. FEATURE ABUSES

This section describes several Android features that have been (or could be) abused
to carry out attacks. They include 1) dynamic code generation and loading, 2) Java-
Native interface, 3) assistive technologies, 4) multi-user support, 5) embedded web
browser and 6) the new ART runtime. These features can be used as attack vectors
mostly because they were introduced after the security model was designed. They
often require workarounds of existing security models (e.g., for the sake of usability),
or intentionally compromise security assumptions to achieve their design goals.

6.1. Dynamic Code

In Android, developers are allowed to load the code for an app dynamically. Developers
can load JAR files or shared libraries (i.e., .so files) from remote sources at runtime by
using DexClassLoader and System.loadLibrary(). This feature gives developers great
flexibility in maintaining their apps. For example, apps can self-update by downloading
a new JAR file without going through the official channel: Google Play Store. A similar
problem is dynamic code generation such as the just-in-time (JIT) compilation adopted
by Dalvik VM to improve performance.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:16 M. Xu et al.

However, both features open a hole on the security model of the Android ecosystem:
verification of the code signature. Android’s default security policy is to only allow the
code to run if it is signed by a verified developer. Nonetheless, no signature check is
performed on downloaded or generated code; therefore, attackers can abuse both fea-
tures to inject malicious code into benign apps [Poeplau et al. 2014]. Abusing dynamic
code loading can also help bypass Google’s app review process [Kim 2015] because dy-
namically loaded code cannot be correctly tested at the review time (it can be changed
later), or attackers could hide their malicious code at review time and make the logic
available when the end-user actually downloads and runs the application. One way to
protect generated code cache is to ask developers to follow the best practices published
in official document that help ensure the integrity of the generated code cache. How-
ever, relying on developers’ discretion might not be enough, and a more sound approach
should be studied. Luckily, such a problem has been well studied in web browsers and
potential solutions such as Homescu et al. [2012] can be ported.

To mitigate the threat of dynamic code loading, it is possible to enforce that the sig-
nature of code being loaded must match the original app’s. However, this approach will
preclude the convenience of loading code developed by others. A workaround is to use
a system-wide whitelist for acceptable dynamic libraries and to employ multiple inde-
pendent verification services to provide and update the whitelist [Poeplau et al. 2014].

6.2. Native Code

In addition to Java code that runs on Dalvik VM or Android Runtime (ART), Android
supports execution of native code through the Java Native Interface (JNI). Developers
can implement their code as JNI for overcoming the limitations of Android Runtime,
such as memory cap and performance loss. Code implemented in JNI runs in the
application sandbox of Android system. Protections provided by the baseline Linux
system layer; such as UID/GID based access control, SELinux, etc., will still work.

However, JNI introduces several security implications into the system. First, unlike
Java, a type-safe language, JNI code is prone to vulnerabilities. Traditional attacks
on stack/heap buffer-overflow or problems with dangling pointers can be applied to
JNI code. Second, despite of plethora of application analysis tools and researches on
security mechanisms such as finer-grained access control and dynamic analysis in
Android, few support JNI due to the general assumption that JNI is not widely used
in Android apps. However, this assumption would not hold in practice; although the
portion of code is small in application, use of JNI is prevalent [Afonso et al. 2016]. For
this reason, exclusion of JNI code creates holes in applying such mechanisms, that is,
proposed security is not guaranteed on the system.

As mitigation attempts, isolating the app-specific native code from the rest of the
system is not impossible to implement. A successful example is Native Client (NaCl)
used in the Chrome Browser. Robusta has successfully isolated the native code from
Java Virtual Machine (JVM) in the traditional OSes. Continues on this direction,
NativeGuard [Sun and Tan 2014] achieves third-party native library isolation by
running native code in a separate app and [Afonso et al. 2016] further provides a way
to automatically set privileges on the isolated native libraries.

6.3. Accessibility

To support easy access of devices, Android implements various accessibility features
such as text-to-speech screen reader, voice commander (Google Now), etc. Android also
allows third-party apps to access these features through the AccessibilityService
class [Android Developers 2016a]. However, Jang et al. [2014] discovered that these
features are powerful enough to construct an input/output subsystem on the operating
systems (including Android) which could be used to completely bypass the permission

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:17

model (both at middleware and kernel layer) and the application sandbox. By abusing
these features, an application could not only intervene in user I/O, but also read app
states from UIs and take control of the app by sending inputs that are in direct violation
of the isolation.

To protect against attacks that exploit accessibility, A11y [Jang et al. 2014] suggests
three layers of protection. First, a finer-grained access control on AccessibilityService
is required. A simple solution would be to separate the privileges of the a11y library
into two sets: one for reading the content of other apps and one for interacting and
controlling other apps. For example, a screen reader will only be allowed to read the
content of other apps, but not launch other apps. Second, assistive technologies such
as Google Now voice commander should verify that the commands come from the
authorized user, possibly through voice recognition or other techniques. Finally, apps
should be aware of the source of the input (whether from a11y libraries or the real
device), and react accordingly for security-sensitive UI contents. However, as this issue
is not unique to Android and the suggested mitigations are non-trivial to implement,
additional research is required in this area.

6.4. Multi-User Support

Starting from Android 4.2, support for multiple users has been added as a new feature.
Unfortunately, researchers have found a significant number of vulnerabilities from
their systematic evaluation of multi-user support [Ratazzi et al. 2014]. The root cause
of these vulnerabilities is that this new feature is inconsistent with existing protections,
especially in accessing shared resources and system-wide configurations.

For instance, all users have full access to WiFi settings and these settings are shared
among users. Moreover, the current implementation requires three additional logins
to guarantee a complete removal of processes that belong to the current user. Until
then, these processes remain running in the background after user switch. This also
introduces new privacy and security problems.

6.5. Embedded Web Browser

WebView [Android Developers 2016c] is a feature that allows for an app to create its
own browser or to display rich web content. It also enables effortless porting of existing
web-based apps to the mobile world. Frameworks such as PhoneGap [Adobe Systems,
Inc. 2016], Apache Cordova [The Apache Software Foundation 2016] and Titanium
[Appcelerator Inc. 2016] allow developers to write mobile apps just as web apps. In
2013, 8.5% (59,354 among 691,517 apps) of apps were developed using WebView-based
framework [Viennot et al. 2014].

However, the convenience of WebView is achieved at the cost of compromising the
general security principles in web browsers, such as isolation of JavaScript (JS) run-
time, same origin policy (SOP), etc. Consequently, numerous security problems have
been discovered. WebView provides the addJavascriptInterface method as a attempt
to isolate Java and JS contexts, allowing JS to access selected Java classes and their
public methods of the parent app. However, this feature also creates holes in both the
sandbox for Android app and the browser sandbox for webapp, as demonstrated in Luo
et al. [2011]. For example, lacking SOP, malicious JS from an untrusted web site can
easily abuse this feature to attack the parent app and access sensitive resources. Since
Android 4.2, instead of exposing every public method of selected Java classes, only
public methods annotated with JavascriptInterface can be accessed from JS context.
However, this only works if developers voluntarily enforce this feature and manually
annotate their source code.

In addition to attacks through the Java-JS interface, researchers have identify dif-
ferent vulnerabilities in Android WebView feature. Fahl et al. [2012] details an SSL

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:18 M. Xu et al.

stripping attack against WebView. Missing visual cue for SSL certificate, Luo et al.
[2012] illustrated UI redressing attack. And another attack is developed based on use
of OAuth in mobile settings under WebView [Chen et al. 2014a].

Mitigation techniques generally try to bring back the missing security features.
Yu and Yamauchi [2013] proposes restricting JS access to sensitive Android APIs.
However, this does not address the potential leakage of sensitive data stored in the
app. Bifocals [Chin and Wagner 2013] proposes to expose the Java interface only to
domains in a whitelist, which is specified by developers and acknowledge by users.
Shin et al. [2013] tries to bring back the missing visual security cues. And [Roesner
and Kohno 2013] proposes a systematic way to protect embedded user interface, include
WebView.

6.6. ART

Starting with Android 5.0, Android replaced Dalvik VM with a new runtime environ-
ment called ART [Google Inc. 2016c], which uses ahead-of-time (AOT) compilation to
compile Dalvik bytecode to native code during app installation. Therefore, in ART, only
part of the app code is executed in JIT mode (e.g., dynamic loading) while the majority
runs in native mode. Developing a new compiler to translate Dalvik bytecode to ma-
chine code is a bug-prone process; Kyle et al. [2015] and Anestis [Bechtsoudis 2015]
were able to fuzz ART to find a number of bugs. Some of the bugs that happen at the
compiling phase cause the compiler to crash, while other bugs are triggered at runtime
when the generated native code is executed, among which bugs like arbitrary memory
read/write, null pointer dereference, etc., are more serious. In addition, ART also ex-
poses a new attack surface by allowing attackers to manipulate the compiled native
code. For example, the native code related to boot image provides attackers with a large
number of gadgets to perform Return Oriented Programming (ROP) attacks [Corelan
Team 2014]. Also, Paul [Sabanal 2015] successfully developed user mode rootkits by
taking advantage of ART’s mechanisms to replace framework and application code.

7. DEVICE FRAGMENTATION

Device fragmentation is a unique issue in the Android ecosystem. Software-wise, Google
has released 147 builds of Android images spanning from v1.6 to v6.0 through February
2016 [Google Inc. 2016d]. Hardware-wise, the number of Android devices released by
OEMs, for example, Samsung and HTC, has exceeded 24,093 [OpenSignal Inc. 2015].
Due to the complexity in deploying Android updates to various devices, compared with
the stock AOSP image, security guarantees for end-users tend to be less consistent or
even weakened.

7.1. Security Implications of OEM Customization

To differentiate from other OEM vendors, each OEM customizes its own Android im-
age based on the AOSP. Typical customizations include (1) hardware support (e.g.,
radio daemon for other modem chips); (2) system UI redesign (e.g., TouchWiz UI from
Samsung); and (3) custom apps installation (e.g., S-Health in Samsung Galaxy S4).

Unfortunately, these customizations often weaken existing security mechanisms at
both the app layer and the OS layer. At the app layer, OEM-customized or preloaded
apps may introduce vulnerabilities that leak users’ private information or enable per-
mission escalation attacks [Wu et al. 2013; Grace et al. 2012]. It is also possible that
an AOSP app is removed to fit a new device model by the OEM while references to the
app still remain inside the OS. Aafer et al. [2015] shows how to exploit this customiza-
tion to bypass the Android permission model. OEMs might also publish their SDKs to
build device/brand-specific apps; for example, Samsung publishes a customized KNOX
SDK that opens access to critical APIs such as TrustZone. It is unclear whether such

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:19

Table V. Exploits with symlink Attack Targeting OEM Devices. For Example, TacoRoot Exploits a World-Writable
Recovery Log File /data/data/recovery/log. Attacker Can symlink it to /data/local.prop, Reboot to

Recovery-Mode and Write a New Log to Set ro.kernel.qemu=1, which Yields the Root Privilege

Manufacturer Model Release Symlink Target Symlink Destination
HTC All before release 2011/01 /data/local.prop /data/data/recovery/log
Motorola Droid 3 2011/08 /data /data/local/12m
ASUS Transformer Prime 2012/01 /data/local.prop /data/sensors/AMI304_Config.ini
Samsung Infuse 4G 2012/01 /data /data/data/.drm/.wmdrm/sample.hds
LG Spectrum & Intuition 2012/09 /data/local.prop /data/vpnch/vpnc_starter_lock
Sony Tablet S 2012/02 /data/{system/packages.list,

local.prol}
/log/AndroidRadio.txt

Fig. 3. For system update, (1) Google first releases the base update for AOSP; (2) OEM vendors customize
Google’s update for their devices; (3) with the update from OEM vendors, carriers again test it for all
their carrier-specific devices. Cunningham [2014] summarizes system update delay, which is presented in
(b). For app update, (1) developers push the update to Google Play and OEM app stores (©1), or other app
stores (©2), and then app stores will distribute the new version to end-users and install it automatically. (2)
Alternatively, developers can perform in-app updating, but it requires user’s confirmation to download and
install updates (©3).

customized SDKs have security flaws. At the OS layer, OEM vendors often make mis-
takes in assigning proper privileges to system or device-related files, allowing attackers
to bypass the Android permission model through low-level system calls [Zhou et al.
2014a] or to launch system privilege escalation attacks via crafted symbolic link (sym-
link), as summarized in Table V.

7.2. Security Update

System and app updates play a key role in maintaining the security of Android devices.
However, the complicated and lengthy updating process exposes end-users to critical
security threats that should have be prevented by prompt update procedures.

7.2.1. System Update. Currently, the process for updating the Android system involves
three independent entities—Google, OEMs, and carriers—in delivering new patches to
end-users. For this reason, the current update procedure often takes more than three
months, as shown in Figure 3. This lengthy procedure makes users’ devices vulnerable
to known and preventable attacks. Another unexpected Pileup attack presented in Xing
et al. [2014] shows a way to exploit the vulnerabilities in the Android system update
process: a malicious app can strategically declare a set of privileges and attributes on
a low-version OS and wait until it is upgraded to escalate its privileges on the new OS.

7.2.2. App Update. To distribute new app updates, developers either push new versions
to the app stores, or build an in-app updating function (see Figure 3). When updating
an app, a common security issue for ©2 and ©3 lies in where the new download APK
file is stored. If users or developers choose to store it in external storage, such as SD
Cards, a malicious app with write permission of SD Cards can easily tamper with the

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:20 M. Xu et al.

downloaded APK file and inject malicious code into the update [Tao 2014]. Similar to
system update, app update may also suffer from delays, particularly when distributed
via third party app stores. To reduce the risks in app update, a timely update from
Google Play or OEM app stores is recommended and the updated APK file is preferably
kept in the internal storage.

7.3. New Model for Security Updates

The update procedure could be redesigned to eliminate the unnecessary attack win-
dow due to a lengthy security update. For example, one immediate action to take
is to use separate channels to deliver security updates and functional updates (i.e.,
redesign the update metaprocess). Unlike functional upgrades, security patches are
often self-contained and can be pushed directly from Google instead of passing through
OEM vendors and carriers. In practice, Google is already separating out core func-
tionalities from AOSP such as WebViews to allow them to be updated without vendor
involvement [Toombs 2014]. In terms of update mechanisms, adopting hot-patching
and dynamic/live update schemes used in server environments like ksplice [Arnold
and Kaashoek 2009] or kGraft [SUSE 2016] will help minimize the latency period of
known attacks for end-users. We acknowledge that Google could not possibly manage
or be responsible for security updates for all the thousands of device models that exist,
hence, the search for a new model that caters to the fragmentation of the Android
ecosystem remains an open problem.

8. PRIVACY LEAK AND MALWARE DETECTIONS

Privacy disclosure and malware detections are essential components to enhance secu-
rity of the Android ecosystem. In this section, we survey recent researches in these
areas, analyze their limitations, and identify remaining open problems.

8.1. Detecting Privacy Disclosure

Many researches shown in Table VI have reported the pervasiveness of privacy disclo-
sures2 in Android apps. We categorize current analysis approaches into three types:
static, dynamic, and hybrid dataflow analysis.

8.1.1. Dynamic Dataflow Analysis. Under this concept, privacy disclosure detection is
transformed into a dataflow tracing problem: finding viable traces from predefined
source APIs (the ones that read private data) to sink APIs (the ones that send private
data out). Dynamic dataflow analysis is performed while the app is being executed
on real devices or emulated environments, therefore, it is highly resistant to code
polymorphism, for example, Java reflection and code encryption (see Section 6.1).

Past projects using dynamic dataflow analysis have demonstrated precise detection
results. TaintDroid [Enck et al. 2010] is the first dynamic analysis engine for Android
apps. It performs taint tracking to precisely analyze how private data is obtained and
released at runtime. In achieving this, it pioneers an efficient and elegant way to handle
taint storage. It also defines taint propagation rules on Dalvik instructions across API
calls. As TaintDroid handles taint analysis of Dalvik instructions across API calls at
runtime, it is resistant to Java reflection and code encryption. In addition, TaintDroid
can be loaded into real devices, allowing for realtime monitoring of actual hardware
and sensors. These advantages have pushed TaintDroid to be used widely in Android
app behavior analysis. However, TaintDroid cannot support the latest Android ART

2Privacy disclosure means that private data is disclosed outside the device, which could be either legitimate
or malicious; whereas privacy leak means private data is leaked for malicious purposes, which is a subset of
privacy disclosure.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:21

Table VI. Categorization of Proposed Algorithms for Detecting Privacy Disclosure of Apps

Analysis Projects Description Bypassable?
Dynamic TaintDroid Dynamic tracking on Dalvik VM

NDroid Dynamic tracking on native code
(JNI)

Capper Tracking with Dalvik bytecode
rewriting

Taint cleanse through control
dependence or side channels

VetDroid Permission-based discovery of taint
sources and sinks

SuSi Machine learning for discovery of
taint sources and sinks

Static CHEX Intercomponent (ICC) awareness
Epicc Reduce ICC to IDE problem
FlowDroid Lifecycle awareness
Amandroid ICC & lifecycle awareness
IccTA ICC & lifecycle awareness Code encryption, Java reflection,

dynamic code loading, etc.EdgeMiner Model implicit control flow through
Android framework

DroidSafe Model Android specific features
with “stubs”

Hybrid AppIntent Event-constrained symbolic exec
SmartDroid Directional dynamic execution
Intellidroid Event-focused API reachability

analysis
Any technique in static or dynamic.

Harvester Execution on sliced app
components

runtime, deployed since Android L. Complementing TaintDroid, ARTDroid [Costam-
agna and Zheng 2016] could be extended to implement the dynamic taint analysis in
the ART runtime in the future. ARTDroid is a hooking framework on Android ART
runtime without modifications to both the Android system and the app’s code.

It is worth noting that besides the execution engine, the effectiveness of dynamic
dataflow analysis relies on two more important components: (1) data source and sink
definition, and (2) input generation and test driving. Although both components can
be complemented with manual effort, human involvement is certainly impractical for
scalability reasons. In terms of automated source/sink discovery, VetDroid [Zhang et al.
2013] leverages the predefined Android permissions for automation. To be specific, it
automatically marks the information returned by permission-backed function calls as
tainted. SuSi [Rasthofer et al. 2014] uses machine learning techniques to automat-
ically identify data source and sinks in Android APIs with a comprehensive feature
set including API method name, return value type, class name, etc. We postpone the
discussion on Android app automation tools to Section 8.4.

Several follow-up works are proposed on the dataflow analysis engine as well:
NDroid [Qian et al. 2014] provides a complementary mechanism for taint-tracking
information flows through JNI. It interfaces with TaintDroid’s tracking logic on the
Dalvik VM side and, in the native context, maintains taint storage using shadow reg-
isters and memory maps. NDroid tracks taints by hooking functions through QEMU. To
reduce the relatively high runtime overhead of TaintDroid, (32% measured by Enck
et al. [2010]), Capper [Zhang and Yin 2014] proposes to instrument the app instead
of the Android system in incorporating taint-tracking logic. It employs a byte code
rewriting approach to insert code in to the original app codebase in order to keep track
of private information and detect data leakage. Capper claims to have better runtime
performance than TaintDroid.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:22 M. Xu et al.

8.1.2. Static Dataflow Analysis. Although modern static dataflow analysis systems have
employed many techniques to improve their analysis precision on Java programs, we
cannot directly port these static analysis systems to the Android platforms, as Android
introduces many unique programming paradigms that need to be handled correspond-
ingly, including:

—Event-driven system. Android is an event-driven system. The control flow of an app
is determined by events, and there are many callbacks for system-event handling,
for example, UI interaction and location update, which pose significant challenges in
building a precise control flow graph.

—Runtime intercomponent communications. Since an app often consists of multiple
components with various entry points, complex ICCs flows, including both intracom-
ponent and intercomponent control and dataflows, should be considered. Statically
building the control flow graph among components poses a challenge to static anal-
ysis techniques.

CHEX [Lu et al. 2012] proposes a static dataflow analysis system to detect compo-
nent hijacking vulnerabilities in Android. To capture dataflows in multiple components,
CHEX first finds all app-splits (an app-split consists of all code segments reachable
from an entry point) and then permutes the identified app-splits to find intercompo-
nent dataflows. However, Android OS defines an ordering of lifecycle events for all
components in an app. For example, a component can only be stopped or paused if it
is started, and may later be resumed. CHEX does not consider such lifecycle; instead,
it enumerates all possible app-split orderings, which may introduce a severe impre-
cision. Epicc [Octeau et al. 2013] reduces the detection of ICC to an instance of the
Interprocedural Distributive Environment (IDE) problem. But it also has the same
limitation as CHEX. FlowDroid [Arzt et al. 2014] only performs intracomponent analy-
sis and IccTA [Li et al. 2015] extends FlowDroid to analyze intercomponent dataflows.
Both IccTA and Amandroid [Wei et al. 2014] focus on ICC privacy leaks and model
Android-specific features such as component lifecycle, intent, and callbacks in a pre-
cise manner. Such a fine-grained modeling significantly reduces both false positives
and false negatives. EdgeMiner [Cao et al. 2015] further improves the modeling of the
Android framework with API summaries that describe implicit control flow transitions
through the Android framework. DroidSafe [Gordon et al. 2015] represents the latest
development in Android static dataflow analysis. It integrates many Android-specific
features such as native methods, event callbacks, component lifecycles, etc., into its
AOSP model and abstracts them with simplified “stubs” that are accurate enough for
point-to and dataflow analysis. It also employs many heuristics to statically model
ICC. One drawback, however, is its dependence on manual specifications, which can be
error-prone and inflexible with system updates.

In general, static dataflow analysis techniques do not exhibit the low code coverage
problem. However, they may run the risk of high false positives, as these techniques
tend to conservatively overapproximate point-to targets or model program inputs. In
addition, they cannot resist code encryption or Java reflection [Arzt et al. 2014; Lu
et al. 2012]. Unfortunately, these features are popular in Android apps, either for
self-protection or for performance improvements.

8.1.3. Hybrid Program Analysis. Hybrid analysis is a natural direction to balance effi-
ciency, scalability, and accuracy in identifying privacy disclosure. The basic idea is to
use static analysis to narrow down the scope of code pieces to be examined at runtime,
and then perform dynamic analysis on the identified code pieces.

AppIntent [Yang et al. 2013] uses static analysis to identify relevant code sections to
execute. At runtime, AppIntent exhaustively run dynamic symbolic execution to fully

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:23

explore all behaviors. SmartDroid [Zheng et al. 2012] is similar to AppIntent, except
that it only handles UI events and ensures that the app follows a specific path at
runtime. Intellidroid [Wong and Lie 2016] generalizes the targeted execution problem
by defining methods of interest as a set of APIs and then extracts the events required to
reach these APIs. Harvester [Rasthofer et al. 2016] complements static analysis tools by
computing runtime values and feeding them to these tools to reduce uncertainties (e.g.,
to resolve reflection targets). It performs runtime value extraction by first generating
a reduced app that contains the value-of-interest and then dynamically executing and
extracting the value.

8.2. Detecting Privacy Leakage

It is noteworthy that sensitive dataflows detected by the aforementioned works are
not necessarily suspicious or malicious, as most of them are actually necessary to the
apps’ functionalities and should be allowed. Judging the legitimacy of detected privacy
disclosures usually requires domain knowledge, and thus is hard to be automated. To
the best of our knowledge, only a few papers aim at differentiating suspicious privacy
leaks from legitimate ones, and they can be categorized into two classes:

8.2.1. User Interaction Check. The intuition is that users’ interactions (e.g., users’ con-
sent on the disclosure of location information) should present before private data is
disclosed. Livshits and Jung [2013] implements a graph algorithm to place mediation
prompts to ask for users’ consent if no user interaction is found. Similarly, AppIn-
tent [Yang et al. 2013] aims to match the sequence of Graphical User Interface (GUI)
manipulations with the sequence of events that trigger the private data access and
disclosure. AppIntent considers the detected privacy disclosure legitimate only when
the user intention, for example, clicking of “send” button to send a Short Messaging
Service (SMS) message, is found in the extracted event graph.

8.2.2. Peer App Voting. User-device interaction analysis for privacy disclosure legiti-
macy may incur high false negatives, since an interaction does not always mean “in-
tention.” Another approach is to extract the “standard/common privacy disclosures”
from functionally similar peer apps, and then compare the suspicious privacy disclo-
sures with the extracted “standard set.” If the disclosure is a privacy leak, it will
generally not be included in the “standard set” since its peer apps do not have such
leaks. AAPL [Lu et al. 2015] provides a framework to automatically infer privacy disclo-
sures legitimacy based on peer voting mechanism. As the peer apps are selected based
on similar functionalities, detection of privacy leaks that are not functionally required
may have high false rates, for example, detection device ID and phone number.

According to AAPL, about 67% of detected privacy disclosures are in fact legitimate.
With an automated approach to differentiate legitimate privacy disclosures from
suspicious ones in demand, we strongly hope more researchers can contribute to this
direction in the future.

8.3. Identifying Malicious Behavior

As malicious apps pose increasing threats to the Android ecosystem, a series of ma-
licious app detection mechanisms has been proposed. Based on the detection method-
ologies, we categorize them into four types: execution-based detection, model checking,
WYSIWYX, and machine learning, as shown in Table VII.

8.3.1. Execution-Based Detection. Abnormal behavior detection using sequences of sys-
tem calls has been successfully applied on the intrusion detection domain, as the
sequence of system calls executed by the program is a good indicator between normal
and abnormal behaviors. Higher level semantics such as ICC through Binder IPC/RPC

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:24 M. Xu et al.

Table VII. Categorization of Algorithms for Identifying Malicious Behavior of Apps

Detection Projects Description Bypassable?
Execution DroidScope/CopperDroid Execute/monitor apps in an emulator Emulator detection techniques

NJAS/Boxify Sandbox interaction between apps and Sandbox escape
Android/OS

Model Pegasus Permission Event Graph based checking Code encryption and reflection
Checking AppContext Check security-sensitive behavior contexts
WYSIWYX WHYPER/AutoCog Compare permissions to app description Ambiguous/fake description

CHABADA/ACODE Compare API calls to app description
AsDroid Evaluate app behaviors based on UI texts Dynamic UI/code loading

Machine Hao et al. Check permission requests and app categories Feature manipulation
Learning DroidAPIMiner Check API calls, packages, and parameters

Drebin Check permissions, APIs, and network activity
DroidSIFT Check contextual API dependency graph
MUDFLOW Check sensitive data accesses and usage

or Dalvik VM traces are additional features that Android app analysis techniques can
leverage to improve detection accuracy.

Following this intuition, two QEMU-based solutions, DroidScope [Yan and Yin 2012]
and CopperDroid [Kimberly et al. 2015] are proposed to both capture OS-level event
sequences (system calls) and higher level semantics. However, malicious apps can use
emulator detection techniques to prevent itself from exhibiting malicious behaviors
inside an emulator [Kirat et al. 2014].

Another line of research focuses on achieving the same goal by sandboxing apps inside
a real Android device instead of whole system emulation/virtualization. NJAS [Bianchi
et al. 2015] builds an app sandbox with ptrace-based syscall interposition. It also hooks
Binder IPC calls to mediate interaction with the Android framework. Boxify [Backes
et al. 2015] leverages the isolated process feature introduced in Android 4.3 to sand-
box a target app and also completely mediates its interaction with the framework. In
addition, Boxify can launch multiple apps in the same sandbox, and hence, could po-
tentially capture collusion attacks that requires cooperation of multiple independent
apps. Both works are capable of fine-grained information recording without the need of
kernel or Android framework modification. However, sandbox-based solutions always
suffer from attacks that attempt to escape them, as shown in the Chrome sandbox
case [Fisher 2015]. Because the sandbox itself is usually highly privileged, compromis-
ing the sandbox yields more benefits to the attackers than compromising a normal app.

8.3.2. Model Checking. The general idea on model checking is to treat the Android
platform as an “event-driven” system and model the interactions of an app with the
platform. Checking these interactions will help catch some abnormal behaviors, for
example, SMS is sent without user’s consent (i.e., click the “send” button).

Pegasus [Chen et al. 2013] proposes Permission Event Graph (PEG) to model check
an app’s behaviors. PEG is an abstraction to the interactions between the Android event
system, permissions, and API calls in a given app. With such graph, the analyst can
specify policies that model the legitimate behaviors an app should exhibit. By model
checking the graph with these policies, abnormal behaviors that violate the policy will
be uncovered. A nonnegligible limitation with model checking-based detection is that
manually specified policies are hard to be precise and complete, since an app’s normal
behaviors could be diverse in different contexts.

Another approach, AppContext [Wei et al. 2015], models malicious apps according
to two contextual observations. First, malicious behaviors are usually triggered not by
UI events but by system events to evade from user attentions (activation conditions).
Second, malicious behaviors are usually triggered only when specific environmental
conditions (e.g., location and time) are satisfied to evade detection systems (guarding
conditions). AppContext extracts such conditions for security-sensitive behaviors from

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:25

apps. Although the model checking looks promising, code polymorphism can be used
to hide malicious behaviors and evade detection. For example, dynamic code loading is
widely used for enhancing app flexibility and compatibility, but the loaded code cannot
be reliably modeled statically. In terms of Java reflection, some reflection cases can
be easily modeled using constant propagation, while others need actual execution to
analyze.

8.3.3. WYSIWYX. What You See Is What You eXecute is an intuitive policy aiming to
ensure that the actual app behaviors should be consistent to users’ perceptions: a func-
tionality not stated or implied in the app description should not be allowed. Checking
WYSIWYX is usually done by text analytics with the help of recent development of
Natural Language Processing (NLP).

WHYPER [Pandita et al. 2013] and AutoCog [Qu et al. 2014] discussed in Section 4.2
extract permissions advertised in the app’s description, and compare them with permis-
sions actually requested. CHABADA [Gorla et al. 2014] and ACODE [Watanabe et al.
2015] first reduce the app descriptions into a set of keywords/topics and then measure
whether the actual APIs used in the app confirm with these topics. AsDroid [Huang
et al. 2014] first extracts and analyzes UI text to infer the criteria behaviors of the
apps, and then matches them with the actual app behaviors to uncover contradicted or
stealthy activities. However, WYSIWYX approaches are vulnerable to fake description
and dynamic UI text manipulation.

8.3.4. Machine Learning-Based Detection. To achieve effectiveness and scalability of An-
droid malware detection, machine learning-based approaches are well explored and
promising. The basic idea is to fist statically or dynamically analyze the app to gather
a predefined set of features, and then learn a detection model based on given datasets
consisting of malicious apps and benign apps. For example, Hao et al. [2012] builds
probabilistic generative models using requested permissions and app categories to rank
their risks. DroidAPIMiner [Aafer et al. 2013] considers package-level information as
well as API call sequences and parameters to distinguish malicious apps. The state-of-
the-art system, Drebin [Arp et al. 2014], not only uses the explained features, but also
considers other features such as intents, requested hardware components, and network
addresses. Its detection rate is up to 94% with a false positive rate of only 1%. Droid-
SIFT [Zhang et al. 2014c] extracts a weighted contextual API dependency graph to
represent program semantics (i.e., feature set) and further uses graph similarity met-
rics to uncover potential malware variants. MUDFLOW [Avdiienko et al. 2015] detects
malware based on the intuition that malicious apps treat sensitive data differently
from benign apps, and hence, can be captured by identifying abnormal dataflow.

However, it is noteworthy that (1) the accuracy of machine learning-based detection
is highly dependent on the quality of datasets used for training; and (2) the detection
may be easily bypassed if the attacker can figure out how the features are combined
for malware indication. Two reports on machine learning-based Android malware de-
tection [Allix et al. 2014; Roy et al. 2015] both show that the detection results are
significantly biased when fed with different malware datasets for training. Also, it is
suggested that security research should not produce approaches or techniques that are
not in line with reality, for example, the detection results of Drebin, which is derived
from a “predefined” sample of 5,560 malware may be biased from the ones derived
from other app datasets that are crawled from real app markets. So, we hope to see
in the future that machine learning-based malware detection approaches can choose
app datasets that are consistent with both reality and other competitive approaches as
training and evaluation sets, for example, the top 1,000 apps that are most commonly
installed by users.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:26 M. Xu et al.

8.4. Test Automation Tools

The effectiveness of dynamic analysis in detecting privacy disclosure or malicious be-
haviors relies significantly on test automation tools to drive the app. Therefore, a large
number of techniques has been proposed to better automate Android app testing.

AndroTest [Shauvik et al. 2015] provides a comprehensive summary and compar-
ison of existing Android testing tools. Based on exploration strategy, current test-
ing methods are categorized into three classes: random, model-based, and systematic.
Dynodroid [Aravind et al. 2013] is based on random exploration, but its exploration
technique is claimed to be more efficient than Monkey, the default testing tool that
comes with the Android SDK. MobiGuitar [Amalfitano et al. 2015] dynamically builds
a model of the app under testing by crawling it from a starting state. AppsPlayground
[Rastogi et al. 2013], A3E [Tanzirul and Iulian 2013], SwiftHand [Wontae et al. 2013],
and PUMA [Shuai et al. 2014] are all similar to MobiGuitar with different static anal-
ysis and exploration strategies.

Acteve [Saswat et al. 2012] is a concolic-testing tool that symbolically tracks events
from the point where they are generated in the Android framework up to the point
where they are handled in the app. In contrast, Evodroid [Mahmood et al. 2014] relies
on evolutionary algorithms to generate relevant inputs. Harvester [Rasthofer et al.
2016] provides new insights on automated test driving. Different from other approaches
that start path finding from program entry points and explore down to the point-
of-interest, Harvester first performs backword slicing from the point-of-interest and
extracts the minimal code required to trigger the target from a program entry point,
hence, significantly improving the efficiency of app testing.

8.5. Open Problems

8.5.1. False Alerts. All proposed algorithms for identifying privacy leakage suffer from
false positives: incorrectly reporting legitimate privacy disclosures as suspicious or
malicious leakages [Livshits and Jung 2013; Yang et al. 2013], which usually dominate
the detection results [Lu et al. 2015]. Unfortunately, humans have little patience for
false alerts. No warning will be attended after malware detectors report a few incorrect
alerts. To be effective and practical, future solutions should consider such false alerts
seriously.

8.5.2. Malicious Behavior Triggering. A fundamental problem on test automation tools is
how to guarantee that all malicious behaviors can be triggered during testing. In this
sense, merely measuring the code/path coverage might not be sufficient as malware
can easily hide malicious behaviors deep inside the program, for example, executing
malicious activities after 1 hour of app launching (time bomb) or only when no debugger
is attached (logic bomb). Another common scenario is: if the app starts with a login
screen, none of the test automation tools we surveyed will be able to process further
without valid credentials. Furthermore, if malicious behaviors or privacy leakage only
manifests after the login activity, it will never be triggered during testing. However,
obtaining login credentials inevitably involves human interaction, which compromises
scalability.

Harvester [Rasthofer et al. 2016] sheds light on this problem based on the assumption
that the path that leads to a predefined set of potential malicious behaviors (e.g.,
send SMS or make phone calls) generally has no data dependence on the antianalysis
techniques used. Therefore, through precise program slicing, the aforementioned time
bomb and logic bomb can be sliced out, preserving only code sections that trigger the
target behavior.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:27

8.5.3. Analyzing Native Code. A majority of proposed algorithms do not assume the use
of native code in Android apps, which is hardly true in the current Android ecosystem.
Although NDroid [Qian et al. 2014] proposes a new taint-tracking algorithm that can
identify dataflows in the presence of native code, it still suffers from high false negative
and incurs nonnegligible runtime overheads. Native code must also be considered in
developing new detection and analysis algorithms due to its wide presence in real-world
apps.

8.5.4. Strong Adversary. Due to the diverse features of Android malware, no detection
technique can be a panacea, and many of them can be bypassed if attackers corre-
spondingly adjust their offensive techniques. (1) Many antitaint analysis techniques
have been developed in order to cleanse taints during dynamic tracing, as reported
in Sarwar et al. [2013]. (2) Static data analysis cannot resist intentional code obfusca-
tion techniques, such as using code encryption, dynamic code loading, Java reflection,
and JNI. (3) WYSIWYX is an intuitive policy but is hard to enforce as extracting the
criteria behaviors is nontrivial. (4) Model checking-based algorithms usually require
manual specifications of policies, which are neither precise nor complete. (5) Even
though using machine learning seems an attractive direction, we still need a system-
atic way of collecting training and evaluation data to avoid biases [Allix et al. 2014].

8.5.5. Place of Detection. Given the plethora of privacy violation and malware detection
tools, it is a natural question on where these tools should be deployed. On-device detec-
tion, restricted by CPU power, memory, and battery, might suffer from low precision,
while cloud-based detection might suffer from high communication overhead and late
response. Devising a hybrid approach will be beneficial to the Android community.

9. APP REPACKAGING

App repackaging is prevalent among Android malware; according to Zhou and Jiang
[2012], 86% of malware samples are repackaged versions of benign apps.

The pervasiveness of app repackaging among malware can be explained in three
ways: (1) A repackaged app can boost its infection rate leveraging the victim app’s pop-
ularity. (2) It can also achieve stealthiness by preserving original app functionalities.
(3) It is technically easy to repackage an Android app (unless it is heavily obfuscated,
which few developers can do or will do). All these properties help malware writers
meet their motivations directly (e.g., stealing credit card numbers) or indirectly (e.g.,
bumping ad’s click counts).

Recent years have witnessed many solutions to tame this problem, and in general,
these solutions can be classified into two categories: repackaging detection and repack-
aging prevention.

9.1. Repackaging Detection

All repackaging detection algorithms surveyed in this article follow a general proce-
dure: (1) features of the target app, such as logics and UI, are extracted and deter-
ministically transformed into a special representation format, a.k.a., birthmarks, and
(2) a subsequent comparison between two app birthmarks determines the similarity
between two apps. Table VIII summarizes existing works. As shown in Table VIII, we
perform a subjective comparison on their performance using two criteria: transforma-
tion resilience and scalability.

Transformation resilience measures how an algorithm might be defeated if an at-
tacker uses one of the following common evasion techniques: ©1 point-of-interest minor
modifications, ©2 control flow changes, ©3 data dependency changes, and ©4 heavy ob-
fuscation (encryption).

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:28 M. Xu et al.

Table VIII. Repackage Detection Techniques. In the Resilience Column, ©1 –©4 Denotes Obfuscation Techniques
Discussed in Section 9. In the Scalability Column, S Denotes DEX Bytecode Size; C Denotes Program

Complexity, in Number of Methods [Crussell et al. 2012, 2013a; Desnos and Gueguen 2012; Hanna et al. 2012],
or Number of Activities and Intents [Zhang et al. 2014a]; P Denotes Parameter of the Detection Technique

Solution App representation Similarity comparison Resilience
DroidMOSS Hash of opcodes block Edit distance Low, ©1
DNADroid Data dependence graph Subgraph isomorphism Medium, ©1 –©3
AnDarwin Data dependence graph Subgraph isomorphism Medium, ©1 –©3
Androguard Regex string of CFG Normalized compression distance Low, ©1 ©2
PiggyApp Regex string of CFG Normalized compression distance Low, ©1 ©2
Centroid Centroid of CFG Method centroid distance Low, ©1 ©2
DroidSim Component-based CFG Jaccard coefficient Low, ©1 ©2
Juxtapp Feature hashing Jaccard similarity metric Low, ©1 ©2
ViewDroid View-event graph Subgraph isomorphism Strong, ©1 –©4
ResDroid View-event graph and statistics Hierarchical Clustering Strong, ©1 –©4

The general observation is that sequence-based approaches are less resilient to code
obfuscation techniques as code streams do not contain any higher level semantic knowl-
edge, and hence are more likely to be defeated with control flow changes such as method
restructuring, statement re-ordering, or dead code insertion. Program Dependency
Graph (PDG) based approaches generally have better resilience, but they can still
be defeated by data dependency changes, for example, massive aliasing of variables.
User-interaction-based approach leverages the user-interaction/event-driven nature of
Android apps and is more resilient to code-level obfuscations.

DroidMOSS [Zhou et al. 2012] applies fuzzy hashing to each app’s opcodes to gen-
erate the birthmark. For each sequence of opcodes, it partitions them into smaller
chunks and aggregates the hash of each chunk to get the final hash. It then measures
the similarities of two apps using a custom formula with both hash values as input.
Similarly, Androguard [Desnos and Gueguen 2012] uses several standard similarity
metrics to hash app functions and basic blocks for comparison. Juxtapp [Hanna et al.
2012] characterizes apps through k-grams of opcodes and feature hashing and clusters
corresponding bitvectors to identify app repackaging. PiggyApp [Zhou et al. 2013b]
is designed to detect piggybacked apps, a special kind of repackaged app with code
injected into victim apps. It first deconstructs an app into modules according to their
dependency relationship and then constructs a fingerprint for the primary module by
collecting various features, such as requested permissions and Android API calls.

Desnos [2012] uses Normalized Compression Distance (NCD) to compare app
similarity according to method signatures, including external API usages, exceptions,
and CFG. Potharaju et al. [2012] proposes an approach to detect plagiarized apps
baesd on symbol tables and method-level AST fingerprints. This approach can handle
obfuscation techniques that mangle symbol tables or insert random methods with
no functionality. DroidSim [Sun et al. 2014] utilizes Component-Based Control Flow
Graph (CB-CFG) to quantify the similarity between apps. DNADroid [Crussell
et al. 2012] constructs a PDG for each method and performs subgraph isomorphism
comparison on PDGs after filtering out unnecessary methods. To speed up DNADroid
and AnDarwin Crussell et al. [2013a] splits PDGs into connected components (i.e.,
semantic blocks), each of which will be represented by a semantic vector containing
the number of specific types. After that, it employs a Locality Sensitive Hashing (LSH)
algorithm to identify code clones that have similar semantic vectors. Crussell et al.
[2013b] proposes a novel approach that uses the centroid of control dependency graph
to measure similarity between methods in order to detect cross-market app clones.

Besides the aforementioned works that analyze program logic, Zhang et al. proposes
ViewDroid [Zhang et al. 2014a] that first constructs a feature view graph and then

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:29

applies subgraph isomorphism to measure similarity between two apps. ResDroid
[Shao et al. 2014b] follows a similar approach, it extracts information about UI el-
ements with minor granularity differences. Besides, Shao et al. [2014b] leverages the
fact that attackers often use code loading for app repackaging—simply packing byte-
code into JNI at deliver time and recovering bytecode at runtime—and presents a tool
to dump the memory at runtime. The analysis is done on the runtime bytecode, which
solves the problem of heavy obfuscation to some extent.

We also observed evolution of repackage detection techniques, from simply porting
traditional approaches for desktop application repackaging detection (such as Droid-
MOSS) to leveraging Android-specific features such as events and user interactions
(such as ViewDroid).

9.2. Repackaging Prevention

Besides detection, solutions have been proposed to tame app repackaging in a more
fundamental way.

9.2.1. Embedding Watermark Into the App Executable. AppInk [Zhou et al. 2013a] presents
a toolkit that can (1) embed a runtime watermark in the app by instrumenting its
source code and (2) generate a complementary verification app that can automatically
extract and verify the embedded watermark. Developers publish the watermarked app
to app stores and the verification app is requested on demand to prove the originality.

9.2.2. Ensuring App Authenticity Verification without Relying on CA. AppIntegrity [Vidas and
Christin 2013] modifies the current app signing and verification procedures to achieve
a simple authentication protocol. Instead of embedding the verification key in the app
package, it suggests app developers place the verification key behind the DNS that is
within his/her control and use the package name as a hint to direct users to his/her DNS.
However, this approach is prone to man-in-the-middle attacks and lacks practicality as
not every app developer has Domain Name System (DNS) service or prefers to name
their app packages in this way.

9.2.3. Making Repackaging Technically Hard. For example, DIVILAR [Zhou et al. 2014b]
obfuscates Dalvik bytecode with a randomized virtual instruction set, and translates
its obfuscated code with a customized interpreter at runtime. Such an approach sig-
nificantly increases the bar for reverse engineers, but considering limited resources in
mobile, this approach may result in a high performance penalty.

9.3. Open Problems

9.3.1. Repackaging Detection Algorithms Prone to Code Obfuscation. For repackaging detec-
tion, all the algorithms we surveyed rely on static analysis, thus are prone to obfus-
cation techniques such as code encryption and dynamic code loading (see Section 6
and Section 8). More critically, all surveyed algorithms perform analysis only on DEX
bytecode, limiting its effectiveness in practice where 16% apps have native code em-
beded [Qian et al. 2014]. One option to solve these problems is to leverage dynamic
features such as UI changes, event sequences, or other runtime invariants. The intu-
ition is that, since fake apps usually want to preserve or mimic the appearance and the
user experience of the original apps, dynamic features may be more resilient.

9.3.2. Repackaging Prevention Algorithms Lack Deployability. For repackaging protection,
none of the techniques proposed are readily deployable due to high performance penalty
incurred or drastic changes made to the app publish/download process. Therefore, the
quest for efficient repackaging prevention techniques is still open for research.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:30 M. Xu et al.

9.3.3. Malicious Behavior Extraction. Since most malware is repackaging benign apps, an
intuition would be to extract out the added component to improve malware analysis
accuracy or efficiency. For example, it would be beneficial to separate the privacy inva-
sive functionalities in a benign app from the malicious behaviors of the malicious part.
However, such a goal could be difficult due to potentially unlimited ways a malware
might use to repackage a benign app. Hence, automated malicious behavior extraction
remains an open problem in both app repackaging and malware detection areas.

10. INFECTION CHANNELS CUT-OFF

This section describes how Android malware finds their ways into users’ devices from
an ecosystem perspective and compares research proposals to cut off these infection
channels.

Due to the openness of the Android app distribution environment, malware can be
distributed from either trusted app stores like Google Play or other sources such as
web forums or alternative app stores. We survey the existing and potential mechanisms
that could prevent malware distribution through both channels.

10.1. Trusted App Stores

Many trusted app stores already utilize some vetting mechanisms to minimize malware
distribution. For example, Google Play uses Bouncer [Poeplau et al. 2014] to prevent
malicious apps from getting into the store. Another mechanism is app rating and
reviews. Although app rating is not generally viewed as a security mechanism, app
rating/reviewing can be an effective way for users to alert the app store and other users.

10.2. Untrusted Sources

Various techniques can entice users to download an app from untrusted sources: search
engine optimization [Gu 2014], in-app promotion [Apvrille 2014], phishing [Naraine
2012], and drive-by attacks [Lookout, Inc. 2012a]. Malware can also be silently installed
through adb if a user connects his/her device to a compromised computer [Kassner
2014]. To defeat this threat, stock Nexus devices provide an option to prevent installing
apps from untrusted sources. Users can also install antivirus apps to protect them
against known malware.

10.3. Open Problems

10.3.1. Inefficiencies in User Feedback. Although user feedback like app review/rating
might be an effective sociological mechanism to minimize malware distribution from
an app store, it is plagued by two factors:

—App reputation is subject to rating optimization services where app developers pay
the service providers to help boost their apps’ reputation rating by false downloads
or false comments, as shown by AppWatcher [Xie and Zhu 2015].

—User feedback cannot be used to discover zero-day malware as feedback is only
effective with a large sample size, that is, number of users downloading the malware.
The malware may have already achieved its popularity goal at this stage.

Therefore, how to leverage user feedback and other nontechnical solutions in infection
channel cut-off is a promising research problem, which might require interdisciplinary
efforts from humanity, physiology, etc.

10.3.2. Collective App Vetting. For trusted app stores, one possible way to enhance the
vetting process is to invite independent parties, especially security-oriented parties
such as antivirus vendors, to jointly analyze and endorse/rate apps. In this case, users
can get more assurance from security experts about the apps they download.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:31

Table IX. Summary of Popular Monetization Schemes by Malware

Monetization Scheme Description Financial Benefit
Toll fraud Premium rate number billing via SMS or call Direct
Click fraud Imitating user’s clicks in pay-per-click ads Direct
Pay-per-installation Payment per app installation (e.g., up to $1 USD) Direct
Ad profit hijacking Replacing developer’s ID to reroute ad income Direct
Ad network hijacking Replacing the underlying ad provider Direct
Adware Harvesting ad views Direct
Mining Mine virtual currency on user’s devices Direct
IMEI/IMSI stealing Stealing device identity (e.g., imitate or unblock) Indirect
Spyware Stealing personal information (e.g., contacts) Indirect
Man-in-the-mobile Stealing random tokens (e.g., mTAN for Bank app) Indirect
Ranking poisoning Requesting fake search queries to boost rank Indirect

10.3.3. Cloud-Based Malware Scanning. Without strong DRM (Digital Rights Manage-
ment) protection, it is impossible to prevent malware infection through untrusted
sources. However, given DRM is against the open nature of the Android ecosystem,
the best way to prevent malware infection through untrusted sources is probably to
warn users [Willis 2013] of potential threats by allowing the system to submit the
downloaded app to cloud services for repackage check [Lindorfer et al. 2014], reputa-
tion check [Rajab et al. 2013], etc.

11. INCENTIVE ELIMINATION

Incentive elimination is an underresearched area that lacks direction and quantitative
studies. It also requires creative approaches to counter malware writers’ incentives.
This section describes our perspectives on potential research opportunities to reduce
the incentives for malware creation.

11.1. Understanding Attacker’s Monetization Schemes

Attackers create Android malware for various reasons, but the primary incentive is
financial return. Such an incentive exists because the current Android landscape pro-
vides many malicious monetization opportunities that have emerged into a business
considered as malware-as-a-service. Table IX summarizes some of the monetization
schemes identified in recently discovered Android malware samples based on industry
reports [Chien 2011; Lookout, Inc. 2012b]3

We believe that as long as these schemes exist, it is highly likely that new (and
potentially more sophisticated) malware will be created to meet attackers’ monetary
incentives. From this perspective, a complete elimination of monetization schemes is
the best cure for malware issues in the Android ecosystem.

However, elimination of those incentives usually requires multiple parties’ collective
effort, not only just the core participants of the Android ecosystem. For example, in
order to prevent search engine poisoning or click fraud, search engine or ad providers
need to employ techniques that make it difficult to generate legitimate search or click
requests automatically, which by itself is another hot research topic [Lu et al. 2011]. As
another example, to stop man-in-the-mobile attacks, instead of using SMS, financial
institutions should require users to use a stand-alone hardware-based token generator
in a two factor authentication scheme. Fortunately, such incentive elimination efforts
also align with their own interests.

Meanwhile, we do not deny the fact that many incentives are hard to be eliminated, at
least for now, such as virtual currency mining and invasive advertisements. Therefore,

3Kumar and Kaur [2015] provides some examples on how to monetize stolen IMEI numbers, which might
not be obvious based on the Symantec and Lookout report.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:32 M. Xu et al.

although it is worthwhile for society to make an effort in eliminating these incentives,
it may not solve all malware issues.

11.2. Creating Legitimate Monetization Channels

While blocking illegal monetization channels is important, we believe creating legiti-
mate channels is equally important. This is a general solution the Android ecosystem
can offer to eliminate or at least reduce most of the incentives mentioned in Section 11.1.

The argument is that, in general, monetary gains from mobile malware become
significant only if there is a large infection rate, which implies that the app itself is
popular enough to attract a large number of downloads. If the ecosystem has legitimate
schemes to reward developers who can create apps with such popularity, they will have
no incentive to create malware to achieve the same goal.

Currently, the app store model of Android provides legitimate ways to reward de-
velopers who can create popular apps: profit sharing through (in-)app purchases. For
developers of free apps, in-app advertisement is a common way to get compensation.
However, in-app advertisement might impair user experience especially when develop-
ers opt for high-commission advertisement libraries, which in turn, usually use more
invasive (or even malicious) ways in order to display advertisements. We believe more
creative and diversified awarding schemes need to be designed to compensate develop-
ers of free apps.

12. ANDROID SECURITY OUTLOOK

Android is reaching further than smartphones. Emerging trends such as Internet-of-
Things and digital identity are making Android security a more serious concern, as
wide adoption of the Android platform gives attackers more incentives, and system
compromisation leads to more serious damages. This section discusses new practices
and attack surfaces, with the goal of soliciting more research in these areas.

12.1. IoT

12.1.1. Home Automation. IoT enables the connections of virtually any personal de-
vices or appliance such as refrigerator, TV, light switches, doorlock, etc. Backed by the
Thread work group [Rockman 2014] (initiated by Google, Samsung, and ARM), Android
has been selected as the potential standard operating system for IoT, particularly for
home automation [Vance 2013]. And Google has opened its own IoT platform Brillo
with an Android-based embedded OS [Google Inc. 2016a]. However, Android must
be heavily customized to drive IoT especially in terms of security. For instance, the
home automation protocol requires authentications between devices. Further, Android
lacks a fine-grained access control mechanism for individual apps to manage exter-
nal IoT devices. For example, an app having a Bluetooth permission can access arbi-
trary Bluetooth-enabled IoT devices without any per-device permission checks [Naveed
et al. 2014]. Thus, fine-grained access control mechanisms for external devices (e.g.,
Dabinder [Naveed et al. 2014] and SEACAT [Demetriou et al. 2015]) are necessary to
protect IoT devices from malicious apps.

12.1.2. Cyber Physical System (CPS). Android is not limited to personal uses but also
reaches further to CPS, by replacing traditional embedded systems. A previous
work [Lei et al. 2013] shows a sensor-based voice message theft attack on mobile
CPS. As Android is widely used in mobile CPS ranging from a handheld device for fire
fighters, to a main controller of unmanned vehicle, to a remote controller of military
arsenal, its security has became more serious than ever.

12.1.3. Digital Identity. The presence of mobile devices is one popular way to authen-
ticate its owner; for example, Google Authenticator is a popular app used for the

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:33

two-factor authentication of user login [Estourgie and Poll 2013]. Moreover, with Near-
Field Communication (NFC), smart cards, and digital payment systems all stored on
the device, Android plays an important role as digital identity, and accordingly, it
requires thorough and provable protection schemes in the future.

12.2. Potential Massive Attacks

12.2.1. USB. In public places like airports, cafes, and libraries, users may plug their
mobile devices into USB plugs. However, due to the multipurposes nature of USB ports
(i.e., charging the battery, media exchange, and debugging), connecting the device to
unknown USB ports exposes the device to the risk of arbitrary app installation by
exploiting vendor-specific customization [Pereir et al. 2014].

12.2.2. NFC and Bluetooth. NFC and other similar proximity-based communication
channels such as Bluetooth LE have been deployed to various Android devices. Gaining
popularity in using NFC for Google Wallet or Android Beam, or pairing Bluetooth to
various peripherals, a large number of blackbox fuzzing tools have been built in order to
identify potential vulnerabilities [Miller 2012; Soto 2005]. Considering its communica-
tion proximity of 3–10cm, these attacks can be launched when the attacker approaches
the device. Although it is a common practice that the majority of the NFC interactions
only happens when the device screen is on and unlocked, attackers can easily find the
attack windows such as during commuting time or near a store checkout counter.

12.2.3. WiFi. Mobile data usually does not come in unlimited volume or at high speed,
therefore smartphone users tend to connect their phones to public WiFi without much
care. When connected to an insecure Access Point (AP), DNS or Man-In-The-Middle
attacks become more critical security issues compared to when connected in a typi-
cal desktop or server environment [Chaskar 2009], as mobile devices generally lack
software/hardware components to defend such attacks. For example, with rogue WiFi,
an attack that typically happens on desktop environment has found its way to mobile
devices [Silver et al. 2014].

12.2.4. Baseband. Mobile devices are generally subject to exploits against the base-
band chip, which is in charge of processing data transmitted between terminal and
cellular base stations. One popular baseband processor from Qualcomm runs the cus-
tom RT kernel, REX, but without any standard protection schemes like ASLR and
DEP [Delugre 2011; Weinmann 2012]. Omission of security schemes enables an at-
tacker to unlock phones. Moreover, the whole software stack could be exposed if the
device connects to a rogue base station [Weinmann 2012]. The mitigation to this exploit
demands a mutual authentication scheme between the device and station.

12.2.5. Silent Drive-By Installation. Recent reports have shown possibilities of silent mal-
ware installation without any user interaction on the part of the victim by exploiting
vulnerabilities on older versions of Android. Stagefright [Drake 2015] exploits An-
droid’s libStageFright component that processes downloaded videos without users’
consent. The rendered MMS image from the SMS app enables a worm to penetrate
silently. Fortunately, SEAndroid policies on recent Android versions have mitigated
this attack. However, a more dangerous case have been revealed where a ransomware
is silently installed by simply visiting an attacker controlled website [Constantin 2016].
Specifically, the JavaScript code on the website first exploits a vulnerability in libxslt
and then drops the payload: TowelRoot kernel exploit. After the device is compromised,
a ransomware is silently downloaded and installed. No user interaction is involved
throughout the whole process.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:34 M. Xu et al.

12.3. Privacy

12.3.1. Ad Library. Advertisement is key to the Android market, especially in the profit
model. Section 4 points out finer-grained granularity assignment should be employed to
separate ad library and app. But private data access for ad library is still a problem. The
new Android ecosystem should respect the privacy of mobile users, unlike in the current
Android model where each app keeps personal information and does not give any
control (or opt-out option) to device owners. One solution is to provide a central storage
as a “personal vault” and regulate apps’ accesses to the vault via well-specified APIs.

12.3.2. Persistent Monitoring. Ranging from fitness monitoring bands to health care ac-
cessories, Android becomes a central place to record personal, privacy-sensitive infor-
mation. In particular, the always-on nature of these devices raises a question of having
persistent threats of leaking the collected data [Naveed et al. 2014]. As Android-based
devices become deeply insinuated to human’s life, a naive bug can lead to serious
privacy violation.

12.3.3. BYOD. As enterprises use Android for their business or in workplaces, employ-
ees are usually required to carry multiple devices to isolate business activities from
personal uses. However, carrying multiple devices is inconvenient and Bring Your Own
Device (BYOD) gains popularity as employees can use a single device but protect busi-
ness logic from personal uses purely by software [Andrus et al. 2011; Morrow 2012]. As
24% employees use mobiles to access or store business data, new security mechanisms
that protect business data and also isolate user’s personal activity need a fair amount
of research in order to provide provable and strong guarantees (perhaps, via new
hardware) of their protections in a single software stack. Currently, KNOX [Samsung
Electronics 2014] and Android for Work [Google Inc. 2016e] are the leading industry
solutions that enable BYOD.

13. TOWARD NEXT-GENERATION ANDROID ECOSYSTEM

Based on our systematization of knowledge in improving the security of the Android
ecosystem, we carefully envision the landscape of the next-generation Android ecosys-
tem, as well as how existing and future Android security researches can fit into the
landscape, as shown in Figure 4.

13.1. New Features

We believe that at the core of the next-generation Android ecosystem should be
collaboration and openness. To be specific, the new ecosystem should have three
distinctive features: (1) leveraging collaborative efforts, (2) promoting the openness
of security-related data, and (3) providing egalitarian roles to participating entities.
With these features, the proposed ecosystem can solicit more independent and diverse
parties in the Android ecosystem, such as Antivirus (AV) vendors that can provide
scalable malware scanning and research institutes that can test and evaluate the
latest developments of detection and mitigation techniques with real-world samples.
We illustrate this collaboration and openness effort with a few examples.

13.1.1. Service APIs. Unlike the current ecosystem that largely depends on Google’s
initiative and effort on security enhancement, our new model proposes a collaborative
means to solicit more participants to the Android ecosystem security. Through the
open access to the Service APIs infrastructure, various entities, including AV vendors
and research institutes, can now contribute to the security evaluation of uploaded
apps. Following the principle of open source security, which states more bugs can be
caught by more eyes, we believe this openness in our new ecosystem can enhance

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:35

Fig. 4. Our proposal of the next-generation Android ecosystem. The new model considers security in ev-
ery aspect of interactions between participating entities, by promoting openness, collaborative efforts, and
egalitarian roles of participants. Also, it embodies the proposed research projects—hardening Android OS,
developer’s security tools, and algorithms—in the app store.

the overall security to an unprecedented level. The Service APIs can either be
developed and maintained by Google or the Open Handset Alliance, as an official
initiative or by independent third parties following a community-driven model and
interface with related parties in the ecosystem, as demonstrated by the success of
VirusTotal [VirusTotal Team 2012].

13.1.2. Open Ranking. Furthermore, the security scores evaluated by independent par-
ticipants will be accumulated as an Open Ranking, which is shared across the ecosys-
tem and will ultimately be consumed by end-users. This cumulative security ranking
will open up new opportunities in improving the closed reputation system in the cur-
rent Android app market. For example, we cannot only consolidate scores from multiple
independent parties, but also consider the time domain or history of each app.

13.1.3. Security Test Suite. Since the new ecosystem promotes the egalitarian roles of
participants, each player, including carriers, developers, or even AV vendors, can initi-
ate new security updates streamlining to end users without reliance on other parties,
hence, bypassing the lengthy update procedure (as shown in Figure 3) and dramati-
cally shrinking avoidable vulnerability windows of known attacks. However, to enable
this ideal update scenario, patch effectiveness and compatibility must be thoroughly
tested before being released to end users. A new patch should neither break the func-
tionalities required by law (e.g., calling emergency numbers without the presence of
SIM card) nor compromise existing security mechanisms (e.g., violating the invariants
defined by SEAndroid policies). To address this problem and enable a faster update
procedure, the new ecosystem should provide Security Test Suite, which is similar to
Compatibility Test Suite in AOSP in its form with a focus on testing the effectiveness
and compatibility of each security update against as many device models as possible,
even if the update is not developed by Google, OEM, or carriers. After a security patch
is certified by the Security Test Suite, it can be delivered directly to end users from any
entity (e.g., AV vendors, security researchers, etc.) instead of soley relying on Google
and OEM to distribute the patch.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:36 M. Xu et al.

13.2. Overall Protection

Our new Android ecosystem also embodies the state-of-the-art research projects, as
shown in Figure 4, particularly in hardening the devices security (S.1–S.5), in detecting
malicious apps at app store (A.1–A.3), and in assisting developers with security tools
(D.1–D.3).

13.2.1. System Hardening on User’s Device. On-device hardening techniques should con-
sider (1) potential security holes due to device fragmentation; (2) increasing demands
on private vault, a conceptual private store to regulate accesses to personal informa-
tion (e.g., health and fitness info); (3) new separation/isolation mechanism for personal
and enterprise uses; (4) countermeasures against feature abuse; and (5) side/covert-
channel.

13.2.2. Detecting Malware in the App Store. To support Service APIs and Open Rank-
ing, the ecosystem requires groundbreaking algorithms to tackle current problems,
including (1) repackaging detection, (2) malware detection, and (3) app rating. Our
new ecosystem is flexible enough to embody prospective algorithms and experimental
research proposals, as a field test.

13.2.3. Security Tools for Developers. In the current Android ecosystem, mistakes by app
developers often directly impair the security of end-users (e.g., leaking private infor-
mation). Considering the lack of security tools for app developers, our new ecosystem
incorporates various techniques to assist developers in avoiding trivial, but security-
critical mistakes on the course of app development: for example, enforcing PoLP and
checking component hijacking vulnerabilities. Repackage prevention service is also
provided to ensure app developers can harvest full credits for their original work.

14. CONCLUSION

In this article, we give a comprehensive narrative of the research landscape of Android
security, with an analysis of security issues and solutions in the Android software
stack and the Android ecosystem. We identify a number of intensively researched
methodologies taking real effects such as kernel hardening (Section 3), dynamic or
static program analysis (Section 8), and app repackaging detection (Section 9).

However, more fundamental problems are revealed from our evaluation of existing
solutions: redesigning the permission model (Section 4), re-engineering system and
app update procedures (Section 7), devising new algorithms to analyze user intention
for malware detection (Section 8), preventing app repackaging attacks (Section 9), and
eliminating attackers’ monetization schemes (Section 11). In the meantime, emerging
security threats such as the baseband attack and new practices like BYOD deserve
more research attention (Section 12). We believe that solutions to these issues are
indispensable and pressing for a secure ecosystem in the future.

Based on our findings, we propose a holistic approach at the level of the ecosystem,
composed of three distinct parts: (1) building the Service API infrastructure to encour-
age diverse participants to the Android ecosystem security playground; (2) sharing
and consolidating security-related data through an Open Ranking mechanism; and
(3) promoting egalitarian roles among participants by sharing the Security Test Suite
and flattening the update flow. We also present guidelines for validating how exist-
ing and future solutions fit into Android ecosystem security. We believe this work will
open up new opportunities to facilitate state-of-the-art security research into Android,
enhancing its security for the advent and growth of the IoT.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:37

APPENDIX

A. PAPER SOURCES

Table X. A List of Major Sources of the Surveyed Papers

Abbr. Full Name #
Oakland IEEE Symposium on Security and Privacy 7
CCS ACM Conference on Computer and Communications Security 22
Security USENIX Security Symposium 19
NDSS Network and Distributed System Security Symposium 20
ACSAC Computer Security Applications Conference 7
ASIACCS ACM Symposium on Information, Computer and Communication Security 4
CODASPY ACM Conference on Date and Application Security and Privacy 6
DIMVA Conference on Detection of Intrusions and Malware and Vulnerability Assessment 2
DSN International Conference on Dependable Systems and Networks 1
WOOT USENIX Workshop on Offensive Technologies 2
ISC Information Security Conference 1
SOUPS ACM Symposium on Usable Privacy and Security 2
HOTSEC SENIX Conference on Hot Topics in Security 1
SPSM ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices 3
WISEC ACM Conference on Security and Privacy in Wireless and Mobile Networks 4
MOST Mobile Security Technologies 1
ESORICS European Symposium on Research in Computer Security 4
BLACKHAT Black Hat Conventions 3
OSDI Symposium on Operating Systems Design and Implementation 3
SOSP ACM Symposium on Operating Systems Principles 1
EUROSYS European Conference on Computer Systems 2
MOBISYS ACM International Conference on Mobile Computing Systems 2
ICSE International Conference on Software Engineering 5
FSE ACM SIGSOFT Symposium on the Foundations of Software Engineering 3
ASE IEEE/ACM International Conference on Automated Software Engineering 1
WODA International Workshop on Dynamic Analysis 1
PLDI ACM SIGPLAN Conference on Programming Language Design and Implementation 1
OOPSLA ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications 2
ESSOS International Symposium on Engineering Secure Software and Systems 1
IFIPSEC International Conference on Systems Security and Privacy Protection 1
FPS International Symposium on Foundations and Practice of Security 1
CMS International Conference on Communications and Multimedia Security 1
WISA International Workshop on Information Security Applications 1
IMPS Innovations in Mobile Privacy and Security 1
ESSOS International Symposium on Engineering Secure Software and Systems 1
ACISP Australasian Conference on Information Security and Privacy 1
WEBAPPS USENIX Conference on Web Application Development 1
SIGMETRICS ACM International Conference on Measurement and Modeling of Computer Systems 1
VEE ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments 1
EUC IEEE International Conference on Embedded and Ubiquitous Computing 1
ICEEI International Conference on Electrical Engineering and Informatics 1
HICSS Hawaii International Conference on System Science 1
SAC ACM Symposium on Applied Computing 2
Others Technical Reports, Workshop Presentations, Online Documents, etc. 69
Total 215

REFERENCES

Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner: Mining API-level features for robust
malware detection in android. In Proceedings of the 9th International Conference on Security and Privacy
in Communication Networks (SecureComm). Springer, Sydney, NSW, Australia, 163–182.

Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou, Wen-
liang Du, and Michael Grace. 2015. Hare hunting in the wild android: A study on the threat of hanging
attribute references. In Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS). ACM Press, Denver, Colorado, 1248–1259.

Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-flow integrity. In Proceedings
of the 12th ACM Conference on Computer and Communications Security (CCS). ACM, 340–353.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

38:38 M. Xu et al.

Adobe Systems, Inc. 2016. PhoneGap. (Feb. 2016). http://phonegap.com.
Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Douṕe, Mario Polino, Paulo de Geus, Christopher

Kruegel, and Giovanni Vigna. 2016. Going native: Using a large-scale analysis of android apps to create
a practical native-code sandboxing policy. In Proceedings of the 2016 Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, San Diego, CA, 51:1–51:15.

Ahmed Al-Haiqi, Mahamod Ismail, and Rosdiadee Nordin. 2013. On the best sensor for keystrokes inference
attack on android. Procedia Technology 8 (2013), 947–953.

Kevin Allix, Tegawendé François D. Assise Bissyande, Jacques Klein, and Yves Le Traon. 2014. Machine
Learning-Based Malware Detection for Android Applications: History Matters! Technical Report. Uni-
versity of Luxembourg.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M. Memon. 2015.
MobiGUITAR: Automated model-based testing of mobile apps. IEEE Software 32, 5 (Sept. 2015), 53–59.

Android Developers. 2016a. Android—AccessibilityService. (Feb. 2016). http://developer.android.com/
reference/android/accessibilityservice/AccessibilityService.html.

Android Developers. 2016b. Android Security Overview. (Feb. 2016). https://source.android.com/security.
Android Developers. 2016c. WebView. (Feb. 2016). http://developer.android.com/reference/android/webkit/

WebView.html.
Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh. 2011. Cells: A virtual

mobile smartphone architecture. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP). ACM, 173–187.

Appcelerator Inc. 2016. Appcelerator Titanium SDK. (Feb. 2016). http://www.appcelerator.com/titanium/
titanium-sdk.

Axelle Apvrille. 2014. New Drive-By Download Android Malware. (Oct. 2014). http://blog.fortinet.com/xbrk
post/new-drive-by-download-Android-malware.

Machiry Aravind, Tahiliani Rohan, and Mayur Naik. 2013. Dynodroid: An input generation system for
android apps. In Proceedings of the 18th European Software Engineering Conference (ESEC)/21st ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE). ACM, 224–234.

Jeff Arnold and M. Frans Kaashoek. 2009. Ksplice: Automatic rebootless kernel updates. In Proceedings of
the 4th European Conference on Computer Systems (EuroSys). ACM, 187–198.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. 2014. Drebin: Efficient
and explainable detection of android malware in your pocket. In Proceedings of the 19th Annual Network
and Distributed System Security Symposium (NDSS). The Internet Society, San Diego, CA, 49:1–49:12.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of the 2014 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM, 259–269.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout: Analyzing the android per-
mission specification. In Proceedings of the 19th ACM Conference on Computer and Communications
Security (CCS). ACM Press, Raleigh, NC, 217–228.

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer,
and Eric Bodden. 2015. Mining apps for abnormal usage of sensitive data. In Proceedings of the 37th
International Conference on Software Engineering (ICSE). IEEE Computer Society, Austin, TX, 426–436.

Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. 2013. Practicality of accelerometer side
channels on smartphones. In Proceedings of the 29th Annual Computer Security Applications Conference
(ACSAC). ACM, 41–50.

AVO. 2011. KillingInTheNameOf ashmem. (Jan. 2011). http://androidvulnerabilities.org/vulnerabilities/
KillingInTheNameOf%5Fpsneuter%5Fashmem.

Ahmed Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad Ganesh, Jia Ma, and Wenbo
Shen. 2014. Hypervision across worlds: Real-time kernel protection from the ARM TrustZone secure
world. In Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS).
ACM Press, Scottsdale, Arizona, 90–102.

Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. Android security frame-
work: Extensible multi-layered access control on android. In Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC’14). ACM, 46–55.

Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von Styp-Rekowsky. 2015.
Boxify: Full-fledged app sandboxing for stock android. In Proceedings of the 24th USENIX Security
Symposium (Security). USENIX Association, 691–706.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://phonegap.com
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://source.android.com/security
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
http://www.appcelerator.com/titanium/titanium-sdk
http://www.appcelerator.com/titanium/titanium-sdk
http://blog.fortinet.com/post/new-drive-by-download-Android-malware
http://blog.fortinet.com/post/new-drive-by-download-Android-malware
http://androidvulnerabilities.org/vulnerabilities/KillingInTheNameOfpercnt;5Fpsneuterpercnt;5Fashmem
http://androidvulnerabilities.org/vulnerabilities/KillingInTheNameOfpercnt;5Fpsneuterpercnt;5Fashmem

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:39

Endre Bangerter, David Gullasch, and Stephan Krenn. 2011. Cache games: Bringing access-based cache
attacks on AES to practice. In Proceedings of the 32nd IEEE Symposium on Security and Privacy
(Oakland). IEEE Computer Society, 490–505.

Anestis Bechtsoudis. 2015. Fuzzing Objects d’ART—Digging Into the New Android L Runtime Internals.
(2015). https://census-labs.com/media/Fuzzing%5FObjects%5Fd%5FART%5Fhitbsecconf2015ams%
5FWP.pdf.

Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen, Jaeyeon Jung, Suman Nath,
Rui Wang, and David Wetherall. 2014. Brahmastra: Driving apps to test the security of third-party
components. In Proceedings of the 23rd USENIX Security Symposium (Security). USENIX Association,
San Diego, CA, 1021–1036.

Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna. 2015. NJAS: Sandboxing
unmodified applications in non-rooted devices running stock android. In Proceedings of the 5th Annual
ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM). ACM, 27–38.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza Sadeghi. 2011. XmAn-
droid: A New ANdroid Evolution to Mitigate Privilege Escalation Attacks. Technical Report TR-2011-04.
Technische Universität Darmstadt.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and Bhargava
Shastry. 2012. Towards taming privilege-escalation attacks on android. In Proceedings of the 19th Annual
Network and Distributed System Security Symposium (NDSS). The Internet Society, San Diego, CA,
19:1–19:18.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In Proceedings of the 22th USENIX Security
Symposium (Security). USENIX Association, Washington, DC, 131–146.

Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni Vigna,
and Yan Chen. 2015. EdgeMiner: Automatically detecting implicit control flow transitions through
the android framework. In Proceedings of the 2015 Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, San Diego, CA, 8:1–8:15.

Gopinath K. N. Hemant Chaskar. 2009. All You Wanted to Know About WiFi Rogue Access Points. (2009).
http://www.rogueap.com/rogue-ap-docs/RogueAP-FAQ.pdf.

Eric Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick Tague. 2014a. OAuth demys-
tified for mobile application developers. In Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS). ACM Press, Scottsdale, Arizona, 892–903.

Kevin Zhijie Chen, Noah Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara, Tom Magrino, Edward
XueJun Wu, Martin Rinard, and Dawn Song. 2013. Contextual policy enforcement in android applica-
tions with permission event graphs. In Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, San Diego, CA, 28:1–28:19.

Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014b. Peeking into your app without actually seeing it:
UI state inference and novel android attacks. In Proceedings of the 23rd USENIX Security Symposium
(Security). USENIX Association, San Diego, CA, 1037–1052.

Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. 2005. Non-control-data attacks
are realistic threats. In Proceedings of the 14th USENIX Security Symposium (Security). USENIX
Association, 12–26.

Eric Chien. 2011. Motivations of Recent Android Malware. Technical Report. Symantec Corporation.
Erika Chin and David Wagner. 2013. Bifocals: Analyzing webview vulnerabilities in android applications. In

Proceedings of the 14th International Workshop on Information Security Applications (WISA). Springer,
138–159.

Allen Choong. 2012. Rooting Android Manually. (March 2012). https://allencch.wordpress.com/2012/03/14/
rooting-android-manually/.

Chromium Dev Community. 2012. Issue 166704: Security: Use a seccomp-bpf Sandbox on Android. (Dec.
2012). https://code.google.com/p/chromium/issues/detail?id=166704.

Lucian Constantin. 2016. Malvertising Attack Silently Infects Old Android Devices with Ransomware.
(2016). http://www.itworld.com/article/3060191/malvertising-attack-silently-infects-old-android-devices-
with-ransomware.html.

Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. 2010. CRePE: Context-related policy enforcement
for android. In Proceedings of the 13th Information Security Conference (ISC). Springer, 331–345.

Corelan Team. 2014. State of the ART: Exploring the New Android KitKat Runtime. (2014). https://www.
corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-
runtime/.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

https://census-labs.com/media/Fuzzingpercnt;5FObjectspercnt;5Fdpercnt;5FARTpercnt;5Fhitbsecconf2015amspercnt;5FWP.pdf
https://census-labs.com/media/Fuzzingpercnt;5FObjectspercnt;5Fdpercnt;5FARTpercnt;5Fhitbsecconf2015amspercnt;5FWP.pdf
http://www.rogueap.com/rogue-ap-docs/RogueAP-FAQ.pdf
https://allencch.wordpress.com/2012/03/14/rooting-android-manually/
https://allencch.wordpress.com/2012/03/14/rooting-android-manually/
https://code.google.com/p/chromium/issues/detail?id$=$166704
http://www.itworld.com/article/3060191/malvertising-attack-silently-infects-old-android-devices-with-ransomware.html
http://www.itworld.com/article/3060191/malvertising-attack-silently-infects-old-android-devices-with-ransomware.html
https://www.corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/
https://www.corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/
https://www.corelan.be/index.php/2014/05/29/hitb2014ams-day-1-state-of-the-art-exploring-the-new-android-kitkat-runtime/

38:40 M. Xu et al.

Valerio Costamagna and Cong Zheng. 2016. ARTDroid: A virtual-method hooking framework on android
ART runtime. In Proceedings of the 2016 Innovations in Mobile Privacy and Security (IMPS). Springer,
24–32.

Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones: Detecting cloned applications on
android markets. In Proceedings of the 17th European Symposium on Research in Computer Security
(ESORICS). Springer, 37–54.

Jonathan Crussell, Clint Gibler, and Hao Chen. 2013a. AnDarwin: Scalable detection of semantically similar
android applications. In Proceedings of the 18th European Symposium on Research in Computer Security
(ESORICS). Springer, Egham, UK, 182–199.

Jonathan Crussell, Clint Gibler, and Hao Chen. 2013b. Scalable semantics-based detection of similar an-
droid applications. In Proceedings of the 18th European Symposium on Research in Computer Security
(ESORICS). Springer, Egham, UK, 182–199.

Andrew Cunningham. 2014. Android’s Update Woes. (Aug. 2014). http://arstechnica.com/gadgets/2014/08/to-
solve-androids-update-woes-google-should-look-to-the-pc/.

CyanogenMod Team. 2016. Cyanogenmod. (Feb. 2016). http://www.cyanogenmod.org.
Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf Hund, Stefan

Nürnberger, and Ahmad-Reza Sadeghi. 2012. MoCFI: A framework to mitigate control-flow attacks on
smartphones. In Proceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS). The Internet Society, San Diego, CA, 18:1–18:17.

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection. In Proceedings of the 23rd USENIX
Conference on Security Symposium. USENIX Association, 401–416.

Guillaume Delugre. 2011. Reverse Engineering a Qualcomm Baseband. (2011). http://events.ccc.de/congress/
2011/Fahrplan/attachments/2022%5F11-ccc-qcombbdbg.pdf.

Soteris Demetriou, Xiaoyong Zhou, Muhammad Naveed, Yeonjoon Lee, Kan Yuan, XiaoFeng Wang, and Carl
A. Gunter. 2015. What’s in your dongle and bank account? Mandatory and discretionary protection of
android external resources. In Proceedings of the 2015 Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, San Diego, CA, 7:1–7:15.

Luke Deshotels. 2014. Inaudible sound as a covert channel in mobile devices. In Proceedings of the 2014
USENIX Workshop on Offensive Technologies (WOOT). USENIX Association, 16:1–16:9.

Anthony Desnos. 2012. Android: Static analysis using similarity distance. In Proceedings of the 45th Hawaii
International Conference on System Science (HICSS). IEEE Computer Society, 5394–5403.

Anthony Desnos and Geoffroy Gueguen. 2012. New “Open Source” Step in Android Application Analysis.
(Nov. 2012). https://androguard.googlecode.com/files/pacsec2012.pdf.

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. QUIRE: Lightweight prove-
nance for smart phone operating systems. In Proceedings of the 20th USENIX Conference on Security
(SEC’11) USENIX Association, 23:1–23:16.

Jason A. Donenfeld. 2012. Linux Local Privilege Escalation via SUID /proc/pid/mem Write. (Jan. 2012).
https://git.zx2c4.com/CVE-2012-0056/about/.

Joshua Drake. 2015. Stagefright: Scary Code in the Heart of Android. (Aug. 2015).
William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol

N. Sheth. 2010. TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, Vancouver, Canada, 393–407.

Raoul Estourgie and Erik Poll. 2013. Analysis of Android Authenticators. B.S. thesis. Radboud Universiteit
Nijmegen.

F-Secure. 2011a. Exploit Description Exploit:Android/GingerBreak. (April 2011). https://www.f-secure.
com/v-descs/exploit%5Fandroid%5Fgingerbreak.shtml.

F-Secure. 2011b. Exploit Description Exploit:Android/Zergrush. (Oct. 2011). https://www.f-secure.com/v-
descs/exploit%5Fandroid%5Fzergrush.shtml.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith.
2012. Why eve and mallory love android: An analysis of android SSL (in)security. In Proceedings of
the 19th ACM Conference on Computer and Communications Security (CCS). ACM Press, Raleigh, NC,
50–61.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. 2011a. Android permission
demystified. In Proceedings of the 18th ACM Conference on Computer and Communications Security
(CCS). ACM Press, Chicago, Illinois, 627–638.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://arstechnica.com/gadgets/2014/08/to-solve-androids-update-woes-google-should-look-to-the-pc/
http://arstechnica.com/gadgets/2014/08/to-solve-androids-update-woes-google-should-look-to-the-pc/
http://www.cyanogenmod.org
http://events.ccc.de/congress/2011/Fahrplan/attachments/2022percnt;5F11-ccc-qcombbdbg.pdf
http://events.ccc.de/congress/2011/Fahrplan/attachments/2022percnt;5F11-ccc-qcombbdbg.pdf
https://androguard.googlecode.com/files/pacsec2012.pdf
https://git.zx2c4.com/CVE-2012-0056/about/
https://www.f-secure.com/v-descs/exploitpercnt;5Fandroidpercnt;5Fgingerbreak.shtml
https://www.f-secure.com/v-descs/exploitpercnt;5Fandroidpercnt;5Fgingerbreak.shtml
https://www.f-secure.com/v-descs/exploitpercnt;5Fandroidpercnt;5Fzergrush.shtml
https://www.f-secure.com/v-descs/exploitpercnt;5Fandroidpercnt;5Fzergrush.shtml

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:41

Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, David Wagner, and others.
2012a. How to ask for permission. In Proceedings of the 7th USENIX Conference on Hot Topics in
Security (HotSec). USENIX Association, 7:1–7:6.

Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011b. The effectiveness of application per-
missions. In Proceedings of the 2nd USENIX Conference on Web Application Development (WebApps).
USENIX Association, 7:1–7:12.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. 2012b.
Android permissions: User attention, comprehension, and behavior. In Proceedings of the 8th ACM
Symposium on Usable Privacy and Security (SOUPS). ACM, 3:1–3:12.

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and Erika Chin. 2011c. Permission
re-delegation: Attacks and defenses. In Proceedings of the 20th USENIX Security Symposium (Security).
USENIX Association, 22:1–22:16.

Dennis Fisher. 2015. Google Fixes Sandbox Escape in Chrome. (May 2015). https://threatpost.com/
google-fixes-sandbox-escape-in-chrome/112899/.

Jay Freeman. 2012. mempodroid Details. (Aug. 2012). https://github.com/saurik/mempodroid.
Wade Gasior and Li Yang. 2012. Exploring covert channel in android platform. In 2012 International Con-

ference on Cyber Security (CyberSecurity). IEEE Computer Society, 173–177.
geohot. 2014. towelroot by geohot. (June 2014). https://towelroot.com/.
Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis. 2014. Out of control: Over-

coming control-flow integrity. In Proceedings of the 35th IEEE Symposium on Security and Privacy
(Oakland). IEEE Computer Society, San Jose, CA, 575–589.

Google Inc. 2016c. ART and Dalvik. (Feb. 2016). https://source.android.com/devices/tech/dalvik.
Google Inc. 2016a. Brillo. (Feb. 2016). https://developers.google.com/brillo.
Google Inc. 2016b. Chrome Extension—Declare Permissions. (Feb. 2016). https://developer.chrome.com/

extensions/declare%5Fpermissions.
Google Inc. 2016d. Codenames, Tags, and Build Numbers. (Feb. 2016). https://source.android.com/source/

build-numbers.html.
Google Inc. 2016e. Put Android to work. (Feb. 2016). https://www.android.com/work.
Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and Martin Rinard. 2015.

Information-flow analysis of android applications in DroidSafe. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium (NDSS). The Internet Society, San Diego, CA,
6:1–6:16.

Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014. Checking app behavior against
app descriptions. In Proceedings of the 36th International Conference on Software Engineering (ICSE).
ACM Press, Hyderabad, India, 1025–1035.

Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic detection of capability leaks in
stock android smartphones. In Proceedings of the 19th Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, San Diego, CA, 20:1–20:15.

Lion Gu. 2014. The Mobile Cybercriminal Underground Market in China. Technical Report. Trend Micro.
Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song. 2012. Juxtapp: A scalable

system for detecting code reuse among android applications. In Proceedings of the 9th Conference on
Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA). Springer, 62–61.

Peng Hao, Gates Chris, Sarma Bhaskar, Li Ninghui, Qi Yuan, Rahul Potharaju, Nita-Rotaru Chrisina, and
Molloy Ian. 2012. Using probabilistic generative models for ranking risks of android apps. In Proceedings
of the 19th ACM Conference on Computer and Communications Security (CCS). ACM Press, Raleigh,
NC, 241–252.

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. 2014. ASM: A programmable
interface for extending android security. In Proceedings of the 23rd USENIX Security Symposium
(Security). USENIX Association, San Diego, CA, 1005–1019.

Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2012. Librando: Transparent code
randomization for just-in-time compilers. In Proceedings of the 19th ACM Conference on Computer and
Communications Security (CCS). ACM Press, Raleigh, NC, 993–1004.

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall. 2011. These aren’t
the droids you’re looking for: Retrofitting android to protect data from imperious applications. In Pro-
ceedings of the 18th ACM Conference on Computer and Communications Security (CCS). ACM Press,
Chicago, Illinois, 639–652.

HTC Corporation. 2016. HTCDev Unlock Bootloader. (Feb. 2016). http://www.htcdev.com/bootloader.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

https://threatpost.com/google-fixes-sandbox-escape-in-chrome/112899/
https://threatpost.com/google-fixes-sandbox-escape-in-chrome/112899/
https://github.com/saurik/mempodroid
https://towelroot.com/
https://source.android.com/devices/tech/dalvik
https://developers.google.com/brillo
https://developer.chrome.com/extensions/declarepercnt;5Fpermissions
https://developer.chrome.com/extensions/declarepercnt;5Fpermissions
https://source.android.com/source/build-numbers.html
https://source.android.com/source/build-numbers.html
https://www.android.com/work
http://www.htcdev.com/bootloader

38:42 M. Xu et al.

Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. AsDroid: Detecting stealthy
behaviors in android applications by user interface and program behavior contradiction. In Proceedings
of the 36th International Conference on Software Engineering (ICSE). ACM Press, Hyderabad, India,
1036–1046.

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side channel attacks against kernel
space ASLR. In Proceedings of the 34th IEEE Symposium on Security and Privacy (Oakland). IEEE
Computer Society, 191–205.

Intel Corporation. 2016. Intel Identity Protection Technology. (Feb. 2016). http://ipt.intel.com.
Yeongjin Jang, Chengyu Song, Simon P. Chung, Tielei Wang, and Wenke Lee. 2014. A11y attacks: Exploit-

ing accessibility in operating systems. In Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS). ACM Press, Scottsdale, Arizona, 103–115.

Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster,
and Todd Millstein. 2012. Dr. Android and Mr. Hide: Fine-grained permissions in android applications.
In Proceedings of the 2nd Annual ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM). ACM Press, Raleigh, NC, 3–14.

Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide Fukushima, Shinsaku
Kiyomoto, and Yutaka Miyake. 2013. Run-time enforcement of information-flow properties on android. In
Proceedings of the 18th European Symposium on Research in Computer Security (ESORICS). Springer,
Egham, UK, 775–792.

Michael Kassner. 2014. Droidpak: A Sneak Attack on Android Devices via PC Malware. (Feb. 2014). http://
www.techrepublic.com/blog/it-security/droidpak-a-sneak-attack-on-android-devices-via-pc-malware/.

Eunice Kim. 2015. Creating Better User Experiences on Google Play. (March 2015). http://android-
developers.blogspot.com/2015/03/creating-better-user-experiences-on.html.

Tam Kimberly, J. Khan Salahuddin, Fattori Aristide, and Cavallaro Lorenzo. 2015. CopperDroid: Automatic
reconstruction of android malware behaviors. In Proceedings of the 2015 Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, San Diego, CA, 9:1–9:15.

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. BareCloud: Bare-metal analysis-based
evasive malware detection. In Proceedings of the 23rd USENIX Security Symposium (Security). USENIX
Association, San Diego, CA, 287–301.

Krishan Kumar and Prabhpreet Kaur. 2015. Vulnerability detection of international mobile equipment
identity number of smartphone and automated reporting of changed IMEI number. International Journal
of Computer Science and Mobile Computing 4 (May 2015), 527–533.

Nate Kushman and Dina Katabi. 2010. Enabling configuration-independent automation by non-expert users.
In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, Vancouver, Canada, 223–236.

Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn Song. 2014.
Code pointer integrity. In Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association, 147–163.

Stephen Kyle, Hugh Leather, Björn Franke, Dave Butcher, and Stuart Monteith. 2015. Application of domain-
aware binary fuzzing to aid android virtual machine testing. In Proceedings of the 2015 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE). ACM, 121–132.

Lingguang Lei, Yuewu Wang, Jian Zhou, Daren Zha, and Zhongwen Zhang. 2013. A threat to mobile cyber-
physical systems: Sensor-based privacy theft attacks on android smartphones. In Proceedings of the
12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE Computer Society, 126–133.

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. 2015. IccTA: Detecting inter-component
privacy leaks in android apps. In Proceedings of the 37th International Conference on Software Engi-
neering (ICSE). IEEE Computer Society, Austin, TX, 280–291.

Martina Lindorfer, Stamatis Volanis, Alessandro Sisto Matthias Neugschwandtner, Elias Athanasopoulos,
Federico Maggi, Christian Platzer, Stefano Zanero, and Sotiris Ioannidis. 2014. AndRadar: Fast discovery
of android applications in alternative markets. In Proceedings of the 11th Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA). Springer, 51–71.

Benjamin Livshits and Jaeyeon Jung. 2013. Automatic mediation of privacy-sensitive resource access in
smartphone applications. In Proceedings of the 22th USENIX Security Symposium (Security). USENIX
Association, Washington, DC, 113–130.

Lookout, Inc. 2012a. Security Alert: Hacked Websites Serve Suspicious Android Apps (NotCompatible).
(May 2012). https://blog.lookout.com/blog/2012/05/02/security-alert-hacked-websites-serve-suspicious-
Android-apps-noncompatible.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://ipt.intel.com
http://www.techrepublic.com/blog/it-security/droidpak-a-sneak-attack-on-android-devices-via-pc-malware/
http://www.techrepublic.com/blog/it-security/droidpak-a-sneak-attack-on-android-devices-via-pc-malware/
http://android-developers.blogspot.com/2015/03/creating-better-user-experiences-on.html
http://android-developers.blogspot.com/2015/03/creating-better-user-experiences-on.html
https://blog.lookout.com/blog/2012/05/02/security-alert-hacked-websites-serve-suspicious-Android-apps-noncompatible
https://blog.lookout.com/blog/2012/05/02/security-alert-hacked-websites-serve-suspicious-Android-apps-noncompatible

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:43

Lookout, Inc. 2012b. State of Mobile Security 2012. Technical Report. Lookout, Inc.
Kangjie Lu, Zhichun Li, Vasileios Kemerlis, Zhenyu Wu, Long Lu, Cong Zheng, Zhiyun Qian, Wenke Lee, and

Guofei Jiang. 2015. Checking more and alerting less: Detecting privacy leakages via enhanced data-flow
analysis and peer voting. In Proceedings of the 2015 Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, San Diego, CA, 19:1–19:15.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX: Statically vetting android
apps for component hijacking vulnerabilities. In Proceedings of the 19th ACM Conference on Computer
and Communications Security (CCS). ACM Press, Raleigh, NC, 229–240.

Long Lu, Roberto Perdisci, and Wenke Lee. 2011. SURF: Detecting and measuring search poisoning. In
Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS). ACM Press,
Chicago, Illinois, 467–476.

Adrian Ludwig. 2013. Android: Practical Security from the Ground Up. (Oct. 2013). https://docs.
google.com/presentation/d/1YDYUrD22Xq12nKkhBfwoJBfw2Q-OReMr0BrDfHyfyPw.

Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks on WebView in the android
system. In Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC). ACM,
343–352.

Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2012. Touchjacking attacks on web in
android, iOS, and windows phone. In Proceedings of the 5th International Symposium on Foundations
and Practice of Security (FPS). Springer, 227–243.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented evolutionary testing of
android apps. In Proceedings of the 22nd ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE). ACM, 599–609.

Claudio Marforio, Aurélien Francillon, Srdjan Capkun. 2011. Application Collusion Attack on the Permission-
Based Security Model and Its Implications for Modern Smartphone Systems. Technical Report. ETH
Zurich.

Claudio Marforio, Hubert Ritzdorf, A. Francillon, and Srdjan Capkun. 2012. Analysis of the communication
between colluding applications on modern smartphones. In Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC). ACM, 51–60.

Charlie Miller. 2012. Exploring the NFC attack surface. (Aug. 2012).
Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy Choudhury. 2012. TapPrints:

Your finger taps have fingerprints. In Proceedings of the 10th ACM International Conference on Mobile
Computing Systems (MobiSys). ACM, 323–336.

Bill Morrow. 2012. BYOD security challenges: Control and protect your most sensitive data. Network Security
2012, 12 (Dec. 2012), 5–8.

Adwait Pravin Nadkarni. 2012. Workflow Based Information Flow Control (IFC) in Modern Operating
Systems. (2012).

Ryan Naraine. 2012. Android Drive-by Download Attack via Phishing SMS. (Feb. 2012). http://www.
zdnet.com/blog/security/Android-drive-by-download-attack-via-phishing-sms/10422.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. 2010. Apex: Extending android permission model
and enforcement with user-defined runtime constraints. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security (ASIACCS). ACM, 328–332.

Muhammad Naveed, Xiaoyong Zhou, Soteris Demetriou, XiaoFeng Wang, and Carl A. Gunter. 2014. Inside
job: Understanding and mitigating the threat of external device mis-bonding on android. In Proceedings
of the 19th Annual Network and Distributed System Security Symposium (NDSS). The Internet Society,
San Diego, CA, 15:1–15:14.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le
Traon. 2013. Effective inter-component communication mapping in android with epicc: An essential step
towards holistic security analysis. In Proceedings of the 22th USENIX Security Symposium (Security).
USENIX Association, Washington, DC, 543–558.

Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. 2009. Semantically rich
application-centric security in android. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC). IEEE Computer Society, 340–349.

Open Source Security, Inc. 2016. grsecurity features. (Feb. 2016). https://grsecurity.net/features.php.
OpenSignal Inc. 2015. Android Fragmentation Report. (Aug. 2015). http://opensignal.com/reports/2015/

08/android-fragmentation.
Dan Page. 2005. Partitioned Cache Architecture as a Side-Channel Defence Mechanism. (2005). http://

eprint.iacr.org/2005/280.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

https://docs.google.com/presentation/d/1YDYUrD22Xq12nKkhBfwoJBfw2Q-OReMr0BrDfHyfyPw
https://docs.google.com/presentation/d/1YDYUrD22Xq12nKkhBfwoJBfw2Q-OReMr0BrDfHyfyPw
http://www.zdnet.com/blog/security/Android-drive-by-download-attack-via-phishing-sms/10422
http://www.zdnet.com/blog/security/Android-drive-by-download-attack-via-phishing-sms/10422
https://grsecurity.net/features.php
http://opensignal.com/reports/2015/08/android-fragmentation
http://opensignal.com/reports/2015/08/android-fragmentation
http://eprint.iacr.org/2005/280
http://eprint.iacr.org/2005/280

38:44 M. Xu et al.

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHYPER: Towards automat-
ing risk assessment of mobile applications. In Proceedings of the 22th USENIX Security Symposium
(Security). USENIX Association, Washington, DC, 527–542.

Adrienne Porter Felt Paul Pearce, Gabriel Nunez, and David Wagner. 2012. AdDroid: Privilege separation
for applications and advertisers in android. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (ASIACCS). ACM, 71–72.

Andre Pereir, Manuel Eduardo Correia, and Pedro Branda. 2014. USB connection vulnerabilities on android
smartphones: Default and vendors’ customizations. In Proceedings of the 15th International Conference
on Communications and Multimedia Security (CMS). Springer, 19–32.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna. 2014.
Execute this! Analyzing unsafe and malicious dynamic code loading in android applications. In Proceed-
ings of the 19th Annual Network and Distributed System Security Symposium (NDSS). The Internet
Society, San Diego, CA, 46:1–46:16.

Rahul Potharaju, Andrew Newell, Cristina Nita-Rotaru, and Xiangyu Zhang. 2012. Plagiarizing smart-
phone applications: Attack strategies and defense techniques. In Proceedings of the 2012 International
Symposium on Engineering Secure Software and Systems (ESSoS). Springer, 106–120.

Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin T. S. Chan. 2014. On tracking information flows through
JNI in android applications. In Proceedings of the 44th International Conference on Dependable Systems
and Networks (DSN). IEEE Computer Society, 180–191.

Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen. 2014. AutoCog:
Measuring the description-to-permission fidelity in android applications. In Proceedings of the 21st
ACM Conference on Computer and Communications Security (CCS). ACM Press, Scottsdale, Arizona,
1354–1365.

Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis, and Niels Provos. 2013. CAMP:
Content-agnostic malware protection. In Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, San Diego, CA, 24:1–24:17.

Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A machine-learning approach for classifying and
categorizing android sources and sinks. In Proceedings of the 19th Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, San Diego, CA, 42:1–42:15.

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting runtime values in
android applications that feature anti-analysis techniques. In Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS). The Internet Society, San Diego, CA, 55:1–55:15.

Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: Automatic security analysis of smart-
phone applications. In Proceedings of the ACM Conference on Data and Applications Security and Privacy
(CODASPY). ACM Press, San Antonio, 209–220.

Paul Ratazzi, Yousra Aafer, Amit Ahlawat, Hao Hao, Yifei Wang, and Wenliang Du. 2014. A systematic
security evaluation of android’s multi-user framework. In Proceedings of the Mobile Security Technologies
(MoST). IEEE Computer Society, 9:1–9:10.

Simon Rockman. 2014. Google Nest, ARM, Samsung Pull Out Thread to Strangle ZigBee. (July 2014).
http://www.theregister.co.uk/2014/07/15/google%5Fnest%5Fthread%5Fprotocol/.

Franziska Roesner and Tadayoshi Kohno. 2013. Securing embedded user interfaces: Android and beyond.
In Proceedings of the 22th USENIX Security Symposium (Security). USENIX Association, Washington,
DC, 97–112.

Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, Helen J. Wang, and Crispin
Cowan. 2012. User-driven access control: Rethinking permission granting in modern operating systems.
In Proceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland). IEEE Computer Society,
San Francisco, CA, 224–238.

Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon, Doina Caragea, and Xinming Ou. Experimental
study with real-world data for android app security analysis using machine learning. ACM, 81–90.

Paul Sabanal. 2015. Hiding Behind ART. (Aug. 2015).
Samsung Electronics. 2014. White Paper: An Overview of Samsung KNOX 2.0. (March 2014). http://www.

samsung.com/ca/business-images/resource/white-paper/2014/03/Samsung%5FKNOX%5Ftech%5Fwhite
paper%5FFinal%5F140220-0.pdf.

Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali Kaafar. 2013. On the Effectiveness of Dynamic
Taint Analysis for Protecting Against Private Information Leaks on Android-based Devices. Technical
Report. NICTA.

Anand Saswat, Naik Mayur, Jean Harrold Mary, and Yang Hongseok. 2012. Automated concolic testing of
smartphone apps. In Proceedings of the 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE). ACM, 59:1–59:15.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://www.theregister.co.uk/2014/07/15/google%5Fnest%5Fthread%5Fprotocol/
http://www.samsung.com/ca/business-images/resource/white-paper/2014/03/Samsungpercnt;5FKNOXpercnt;5Ftechpercnt;5Fwhitepaperpercnt;5FFinalpercnt;5F140220-0.pdf
http://www.samsung.com/ca/business-images/resource/white-paper/2014/03/Samsungpercnt;5FKNOXpercnt;5Ftechpercnt;5Fwhitepaperpercnt;5FFinalpercnt;5F140220-0.pdf
http://www.samsung.com/ca/business-images/resource/white-paper/2014/03/Samsungpercnt;5FKNOXpercnt;5Ftechpercnt;5Fwhitepaperpercnt;5FFinalpercnt;5F140220-0.pdf

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:45

Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapadia, and XiaoFeng Wang. 2011.
Soundcomber: A stealthy and context-aware sound trojan for smartphones. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS). The Internet Society, 1:1–1:17.

Daniel Schreckling, Joachim Posegga, and Daniel Hausknecht. 2012. Constroid: Data-centric access control
for android. In Proceedings of the 27th ACM Symposium on Applied Computing (SAC). ACM, 1478–1485.

Sebastian. 2011. Zimperlich Sources. (Feb. 2011). http://c-skills.blogspot.com/2011/02/zimperlich-sources.
html.

Jaeback Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and Insik Shin. 2016. FlexDroid: Enforcing in-app
privilege separation in android. In Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, San Diego, CA, 53:1–53:15.

Yuru Shao, Xiapu Luo, and Chenxiong Qian. 2014a. RootGuard: Protecting rooted android phones. Computer
47 (June 2014), 32–40.

Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. 2014b. Towards a scalable resource-
driven approach for detecting repackaged android applications. In Proceedings of the 30th Annual Com-
puter Security Applications Conference (ACSAC). ACM, 56–65.

Roy Choudhary Shauvik, Gorla Alessandra, and Alessandro (Alex) Orso. 2015. Automated test input gener-
ation for android: Are we there yet? In Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE Computer Society, 429–440.

Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit: Separating smartphone advertising from ap-
plications. In Proceedings of the 21st USENIX Conference on Security Symposium (Security’12) USENIX
Association, 553–567.

Dongwan Shin, Huiping Yao, and Une Rosi. 2013. Supporting visual security cues for webview-based android
apps. In Proceedings of the 28th ACM Symposium on Applied Computing (SAC). ACM, 1867–1876.

Hao Shuai, Liu Bin, Nath Suman, G. J. Halfond William, and Ramesh Govindan. 2014. PUMA: Programmable
UI-automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th ACM Inter-
national Conference on Mobile Computing Systems (MobiSys). ACM, 204–217.

Silent Circle. 2016. Blackphone 2 and Silent OS. (Feb. 2016). https://www.silentcircle.com.
David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. 2014. Password managers: Attacks

and defenses. In Proceedings of the 23rd USENIX Security Symposium (Security). USENIX Association,
San Diego, CA, 449–464.

Stephen Smalley and Robert Craig. 2013. Security enhanced (SE) android: Bringing flexible MAC to android.
In Proceedings of the 19th Annual Network and Distributed System Security Symposium (NDSS). The
Internet Society, San Diego, CA, 9:1–9:18.

Carlos A. Soto. 2005. A Menu of Bluetooth Attacks. (July 2005). http://gcn.com/articles/2005/07/20/a-menu-
of-bluetooth-attacks.aspx.

Mengtao Sun and Gang Tan. 2014. NativeGuard: Protecting android applications from third-party native
libraries. In Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec). ACM Press, Oxford, UK, 165–176.

Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. 2014. Detecting code reuse in android applica-
tions using component-based control flow graph. In Proceedings of the 29th International Conference on
Systems Security and Privacy Protection (IFIPSEC). Springer, 142–155.

SUSE. 2016. Live Kernel Patching with kGraft. (Feb. 2016). https://www.suse.com/promo/kgraft.html.
Vanja Svajcer. 2014. Sophos Mobile Security Threat Report 2014. Technical Report. Sophos, Ltd.
Azim Tanzirul and Neamtiu Iulian. 2013. Targeted and depth-first exploration for systematic testing of

android apps. In Proceedings of the 24th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). ACM Press, Indianapolis, IN, 641–660.

Chengkai Tao. 2014. Android App Update Flaw Affects China-Based Users. Technical Report. Trendmicro.
Root Genius Team. 2016. Root Genius. (Feb. 2016). http://www.shuame.com/en/root.
The Apache Software Foundation. 2016. Apache Cordova. (Feb. 2016). http://cordova.apache.org.
thesnkchrmr. 2011. RageAgainstTheCage. (March 2011). https://thesnkchrmr.wordpress.com/2011/03/24/

rageagainstthecage/.
Cody Toombs. 2014. [Lollipop Feature Spotlight] WebView Is Now Unbundled From Android And Free

To Auto-Update From Google Play. (Oct. 2014). http://www.androidpolice.com/2014/10/19/lollipop-
feature-spotlight-webview-now-unbundled-android-free-auto-update-google-play.

Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on AES, and countermeasures.
Journal of Cryptology 23, 1 (2010), 37–71.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
https://www.silentcircle.com
http://gcn.com/articles/2005/07/20/a-menu-of-bluetooth-attacks.aspx
http://gcn.com/articles/2005/07/20/a-menu-of-bluetooth-attacks.aspx
https://www.suse.com/promo/kgraft.html
http://www.shuame.com/en/root
http://cordova.apache.org
https://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage/
https://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage/
http://www.androidpolice.com/2014/10/19/lollipop-feature-spotlight-webview-now-unbundled-android-free-auto-update-google-play
http://www.androidpolice.com/2014/10/19/lollipop-feature-spotlight-webview-now-unbundled-android-free-auto-update-google-play

38:46 M. Xu et al.

Ashee Vance. 2013. Behind the’Internet of Things’ Is Android and It’s Everywhere. (2013). http://www.
businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-Android-and-its-everywhere.

Timothy Vidas and Nicolas Christin. 2013. Sweetening android lemon markets: Measuring and combating
malware in application marketplaces. In Proceedings of the ACM Conference on Data and Applications
Security and Privacy (CODASPY). ACM Press, San Antonio, TX, 197–208.

Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of google play. In Proceed-
ings of the 2014 ACM International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS). ACM, 221–233.

VirusTotal Team. 2012. VirusTotal. (Sept. 2012). https://www.virustotal.com/en/documentation/.
vuldb.com. 2013. Google Android 4.0 debug mode /data/local.prop privilege escalation. (June 2013).

https://vuldb.com/?id.9059.
Ruowen Wang, William Enck, Douglas Reeves, Xinwen Zhang, Peng Ning, Dingbang Xu, Wu Zhou, and

Ahmed M. Azab. 2014a. EASEAndroid: Automatic policy analysis and refinement for security enhanced
android via large-scale semi-supervised learning. In Proceedings of the 23rd USENIX Security Sympo-
sium (Security). USENIX Association, San Diego, CA, 351–366.

Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du. 2014b. Compac: Enforce
component-level access control in android. In Proceedings of the ACM Conference on Data and Applica-
tions Security and Privacy (CODASPY). ACM Press, San Antonio, TX, 25–36.

Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori. 2015. Understanding the incon-
sistencies between text descriptions and the use of privacy-sensitive resources of mobile apps. In Pro-
ceedings of the 11th ACM Symposium on Usable Privacy and Security (SOUPS). USENIX Association,
241–255.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps. In Proceedings of the 21st
ACM Conference on Computer and Communications Security (CCS). ACM Press, Scottsdale, Arizona,
1329–1341.

Yang Wei, Xiao Xusheng, Andow Benjamin, Li Sihan, Xie Tao, and Enck William. 2015. AppContext: Differen-
tiating malicious and benign mobile app behaviors using context. In Proceedings of the 37th International
Conference on Software Engineering (ICSE). IEEE Computer Society, Austin, TX, 303–313.

Ralf-Philipp Weinmann. 2012. Baseband attacks: Remote exploitation of memory corruptions in cellular pro-
tocol stacks. In Proceedings of the 2012 USENIX Workshop on Offensive Technologies (WOOT). USENIX
Association, 12–21.

Nathan Willis. 2013. Tizen Content Scanning and App Obfuscation. (June 2013). http://lwn.net/
Articles/553676.

Michelle Y. Wong and David Lie. 2016. IntelliDroid: A targeted input generator for the dynamic analy-
sis of android malware In Proceedings of the 2016 Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, San Diego, CA, 54:1–54:15.

Choi Wontae, Necula George, and Sen Koushik. 2013. Guided GUI testing of android apps with minimal
restart and approximate learning. In Proceedings of the 24th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM Press, Indianapolis, IN, 623–640.

Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The impact of vendor customiza-
tions on android security. In Proceedings of the 20th ACM Conference on Computer and Communications
Security (CCS). ACM Press, Berlin, Germany, 623–634.

Zhen Xie and Sencun Zhu. 2015. AppWatcher: Unveiling the underground market of trading mobile app
reviews. In Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec). ACM, 10:1–10:11.

Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. 2014. Upgrading your android, elevat-
ing my malware: Privilege escalation through mobile OS updating. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (Oakland). IEEE Computer Society, San Jose, CA, 393–408.

Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan, and Jin Teng. 2009. Stealthy video capturer: A new
video-based spyware in 3G smartphones. In Proceedings of the 2nd ACM Conference on Wireless Network
Security (WiSec’09). ACM, 69–78.

Rubin Xu, Hassen Saı̈di, and Ross Anderson. 2012. Aurasium: Practical policy enforcement for android
applications. In Proceedings of the 21st USENIX Security Symposium (Security). USENIX Association,
Bellevue, WA, 539–552.

Yuanzhong Xu and Emmett Witchel. 2015. Maxoid: Transparently confining mobile applications with custom
views of state. In Proceedings of the 10th European Conference on Computer Systems (EuroSys). ACM,
26:1–26:16.

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-Android-and-its-everywhere
http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-Android-and-its-everywhere
https://www.virustotal.com/en/documentation/
https://vuldb.com/?id.9059
http://lwn.net/Articles/553676
http://lwn.net/Articles/553676

Toward Engineering a Secure Android Ecosystem: A Survey of Existing Techniques 38:47

Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly reconstructing the OS and dalvik semantic
views for dynamic android malware analysis. In Proceedings of the 21st USENIX Security Symposium
(Security). USENIX Association, Bellevue, WA, 569–584.

Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang. 2013. AppIntent: Analyzing
sensitive data transmission in android for privacy leakage detection. In Proceedings of the 20th ACM
Conference on Computer and Communications Security (CCS). ACM Press, Berlin, Germany, 1043–1054.

Jing Yu and Toshihiro Yamauchi. 2013. Access control to prevent attacks exploiting vulnerabilities of webview
in android OS. In Proceedings of the 11th IEEE International Conference on Embedded and Ubiquitous
Computing. IEEE Computer Society, 1628–1633.

Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014a. ViewDroid: Towards
obfuscation-resilient mobile application repackaging detection. In Proceedings of the ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec). ACM Press, Oxford, UK, 25–36.

Hang Zhang, Dongdong She, and Zhiyun Qian. 2015. Android root and its providers: A double-edged sword.
In Proceedings of the 22nd ACM Conference on Computer and Communications Security (CCS). ACM
Press, Denver, Colorado, 1093–1104.

Mu Zhang and Heng Yin. 2014. Efficient, context-aware privacy leakage confinement for android applications
without firmware modding. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security (ASIACCS). ACM Press, 259–270.

Yingqian Zhang, Michael K. Reiter, Ari Juels, and Thomas Ristenpart. 2012. Cross-VM side channels and
their use to extract private keys. In Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security (CCS). ACM Press, Raleigh, NC, 305–316.

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X. Sean Wang, and Binyu Zang.
2013. Vetting undesirable behaviors in android apps with permission use analysis. In Proceedings of the
20th ACM Conference on Computer and Communications Security (CCS). ACM Press, Berlin, Germany,
611–622.

Zhongwen Zhang, Yuewu Wang, Jiwu Jing, Qiongxiao Wang, and Lingguang Lei. 2014b. Once root always
a threat: Analyzing the security threats of android permission system. In Proceedings of the 19th Aus-
tralasian Conference on Information Security and Privacy (ACISP). Springer, 354–369.

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014c. Semantics-aware android malware classification
using weighted contextual API dependency graphs. In Proceedings of the 21st ACM Conference on
Computer and Communications Security (CCS). ACM Press, Scottsdale, Arizona, 1105–1116.

Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and Wei Zou. 2012. Smart-
Droid: An automatic system for revealing UI-based trigger conditions in android applications. In Pro-
ceedings of the 2nd Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM). The Internet Society, Raleigh, NC, 93–104.

Wu Zhou, Zhi Wang, Yajin Zhou, and Xuxian Jiang. 2014b. DIVILAR: Diversifying intermediate language for
anti-repackaging on android platform. In Proceedings of the ACM Conference on Data and Applications
Security and Privacy (CODASPY). ACM Press, San Antonio, TX, 199–210.

Wu Zhou, Xinwen Zhang, and Xuxian Jiang. 2013a. AppInk: Watermarking android apps for repackaging
deterrence. In Proceedings of the 8th ACM Symposium on Information, Computer and Communications
Security (ASIACCS). ACM Press, Hangzhou, China, 1–12.

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013b. Fast, scalable detection of pig-
gybacked mobile applications. In Proceedings of the ACM Conference on Data and Applications Security
and Privacy (CODASPY). ACM Press, San Antonio, TX, 185–196.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged smartphone applications
in third-party android marketplaces. In Proceedings of the ACM Conference on Data and Applications
Security and Privacy (CODASPY). ACM, 317–326.

Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, Carl
A. Gunter, and Klara Nahrstedt. 2013. Identity, location, disease and more: Inferring your secrets from
android public resources. In Proceedings of the 20th ACM Conference on Computer and Communications
Security (CCS). ACM Press, Berlin, Germany, 1017–1028.

Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng Wang. 2014a. The peril of
fragmentation: Security hazards in android device driver customizations. In Proceedings of the 35th
IEEE Symposium on Security and Privacy (Oakland). IEEE Computer Society, San Jose, CA, 409–423.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization and evolution. In Pro-
ceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland). IEEE Computer Society, San
Francisco, CA, 95–109.

Received April 2015; revised May 2016; accepted June 2016

ACM Computing Surveys, Vol. 49, No. 2, Article 38, Publication date: August 2016.

