Web Security ll: Cross-site and Ul
attacks

Chengyu Song

Slides modified from
Dawn Song, Raluca Ada Popa and Dan Boneh

HyperText Markup Language

HTML: a markup language to create structured documents that can embed

images, objects, create interactive forms, etc.

<html>
<body>
<div>foo Go to Google!</div>
<form>
<input type='"text" /> <input type='"radio" />
<input type='"checkbox" />
</form>
</body>
</html>

Web security: a historical perspective

Similar to Internet, web is an example of "bolt-on security”
Originally, the World Wide Web (www) was invented to allow physicists to
share their research papers

Only textual web pages + links to other pages

No security model to speak of

Web security: nowadays

The web became complex and adversarial quickly

Web pages become very complex with embedded images, JavaScript, dynamic

HTML, AJAX, CSS, frames, audio, video, sensors, VR, ... from different servers
Today, a web site is a distributed application

Web applications also become very diverse, news, shopping, videos, social

network, banking, gaming, ...

Attackers have various motivations

Desirable security goals

Integrity: malicious websites should not be able to tamper with the integrity
of my computer or my information on other web sites

Confidentiality: malicious websites should not be able to learn confidential
information from my computer or other web sites

Privacy: malicious websites should not be able to spy on me or my activities

online

How to achieve these goals?

Reference monitor (access control)
How to name/identify subject and object?
What would be the access control policy?
What about network level?
One layer at a time

TLS, DNSSEC, etc

How these properties can be violated?

» Server side: injection attacks

» Client side: cross-site attacks

Same-origin policy

The most important access control policy for web applications
Each site in the browser is isolated from all others

Multiple pages from the same site are not isolated

Same-origin policy: different sites

browser:

| .,
security [

barrier wikipedia.org

mozilla.org

Same-origin policy: same site

browser:

No security
barrier wikipedia.org

i
LB

wikipedia.org

10

What is an Origin?

» Origin = protocol + hostname + port

(http3//coolsite.com:81/tools/info.htm
/ —

protocol

hostname | |Port

How to define the origin?

* The origin of a resource is derived from the URL it was loaded from

icn
«'5m
S

WIKIPEDIA
The Free Encyclopedia

navigation

Main page

Contents
Featured content
Current events
Random article

search

(Go] [searen]

interaction

= About Wikipedia

= Community portal
= Recent changes.
= Contact Wikipedia
= Donate to Wikipedia
= Help

http://en.wikipedia.org

discussion

Wikipedia i Forever

Welcome to Wikipedia,
the free encyclopedia that anyone can edit
3,118,032 articles in English

Ovenview - Editing - Questions - Help

Today's featured article

The Lucy poems are a series of five poems composed by
the English Romantic poet William Wordsworth between
1798 and 1801. All but one were first published in the
second edition of Lyrical Ballads in 1800, a collaboration
between Wordsworth and Samuel Taylor Coleridge that
was both 's first major and a
milestone in the early English Romantic movement. In the
series, Wordsworth sought to write unaffected English verse infused with
abstract ideals of beauty, nature, love, longing and death. Although they
individually deal with a variety of themes, as a series they focus on the poet's
longing for the company of his friend Coleridge, who had stayed in England,
and on his increasing impatience with his sister Dorothy, who had travelled

Our shared knowledge. Our shared treasure. Help us protect it

Try Beta

>0~ &~

2 Log in/ create account ~

[Shou]

u Arls
= Biography
= Geography

Contents -

http://upload.wikimedia.org

In the news

= At least 113 people are killed and 160
others injured following a fire at a
nightclub in Perm, Russia.

= Hifikepunye Pohamba (pictured) is re-

elected President of Namibia and the

SWAPO Party wins a majority of seats i

the National Assembly.

A suicide attack kills at least 37 people and injures more

than 80 others during Friday prayers at a mosque in

Rawalpindi, Pakistan

= Teodoro Obiang Nguema Mbasogo is re-elected President
of Equatorial Guinea, amid allegations of electoral fraud.

¥

12

How to define the origin?

« Special case: Javascript runs with the origin of the page that loaded it

http://en.wikipedia.org

.
W Wikipedia, the free encyy

¢ httpy//enwikipedia.org/wiki/Main_Page » O~ k-

TryBets 3 Log in/ create account -
mpin page | | discussion <

Wikipedia g Forever Our shared knowledge. Our shared treasure. Help us protect it [Show]

Welcome to Wikipedia, . Ats

WIKIPEDIA the free encyclopedia that anyone can edit. = Biography
The Free Encyclopedia

= | Nttp://upload.wikimedia.org

Overview - Ediling - Questions - Help Contents -
= Main page

T | —— - —
http://www.google-analytics.com = Jl‘

B0 3 W TIMREPUNYE FONamod [p d) is re-

[Go | [searcn | / between Wordsworth and Samuel Taylor Coleridge that elected President of Namibia and the

was both Wordsworth's first major publication and a SWAPO Party wins a majority of seats i

Interaction milestone in the early English Romantic movement. In the the National Assembly
" About sought to write unaffected English verse infused with = A suicide attack kills at least 37 people and injures more
: EZ: f changes act ideals of beauty, nature, love, longing and death. Although they than 80 others during Friday prayers at a mosque in
. Cont ivifually deal with a variety of themes, as a series they focus on the poet's Rawalpindi, Pakistan
« Donal jihg for the company of his friend Coleridge, who had stayed in England, = Teodoro Obiang Nguema Mbasogo is re-elected President
= Hain

of Equatorial Guinea, amid allegations of electoral fraud.

13

Exercises

Originating document
http://wikipedia.org/a/
http://wikipedia.org/
http://wikipedia.org/
http://wikipedia.org:81/
http://wikipedia.org:81/

Accessed document
http://wikipedia.org/b/
http://www.wikipedia.org/
https://wikipedia.org/
http://wikipedia.org:82/

http://wikipedia.org/

Exercises

Originating document
http://wikipedia.org/a/
http://wikipedia.org/
http://wikipedia.org/
http://wikipedia.org:81/

http://wikipedia.org:81/

Accessed document

http://wikipedia.org/b/
http://www.wikipedia.org/
https://wikipedia.org/
http://wikipedia.org:82/

http://wikipedia.org/

v
X
X
X
X

16

Cross-origin communication

« Similar to IPC, different origins can communicate through a narrow API:
postMessage

* Receiving origin decides if to accept the message based on origin

postMessage —

(W run thi S "“u_ ‘”“ - - Ln@

script”, E:z::’;";azis_;dmm -5100
SE—

Check origin, and request!

17

Cross-site scripting (XSS)

* Vulnerability in web application that enables attackers to inject client-side

scripts into web pages viewed by other users

Three types of XSS

Type 2: Persistent or Stored

The attack vector is stored at the server
Type 1: Reflected

The attack value is reflected’ back by the server
Type 0: DOM Based

The vulnerability is in the client side code

18

19

Type 2 XSS

Consider a form on safebank.com that allows a user to chat with a customer
service associate.
User asks a question via HTTP POST message: "How do | get a loan?”
Server stores the question in a database.
Associate requests the questions page.
Server retrieves all questions from the DB

Server returns HTML embedded with the question

Type 2 XSS

Assuming the query page is implemented in PHP

<? echo "<div class=’question'>$question</div>";?>

Which will be rendered into

<div class="question'>How do I get a loan?</div>

20

21

Type 2 XSS

Look at the following code fragments. Which one of these could possibly be a

comment that could be used to perform a XSS injection?

a. '; system('rm -rf /');
b. rm -rf /

c. DROP TABLE QUESTIONS;

d. <script>doEvil()</script>

22

Type 2 XSS

Look at the following code fragments. Which one of these could possibly be a

comment that could be used to perform a XSS injection?

a. '; system('rm -rf /');

b. rm -rf /

c. DROP TABLE QUESTIONS;

d. <script>doEvil()</script>
<html><body>

<div class='question'><script>doEvil()</script></div>

</body></html>

25

Type 2 XSS

PHP CODE: <? echo '"<div class='question'>$question</div>";?>

HTML Code: <div class="question'><script>doEvil()</script></div>

Associ

ate <:

5. Server return
HTML embedded
with malicious

question Server

Dawn Song

24

Type 1 XSS

Consider safebank.com also has a transaction search interface at search.php

search.php accepts a query and shows the results, with a helpful message at

the top.

<? echo "Your query $_GET['query'] returned $num results.";?>

Example: Your query chocolate returned 81 results.

How can you inject doEvil() ?

25

Type 1 XSS

A request to search.php?query=<script>doEvil()</script> causes script
injection. Note that the query is never stored on the server, hence the term

reflected.

PHP: <? echo “Your query $ GET['query'] returned $num results."';?>

HTML: Your query <script>doEvil()</script> returned 0 results

26

Type 1 XSS

Q: But this only injects code in the attacker's own page. The attacker needs to

inject code in the user’s page for the attack to be effective.

27

Type 1 XSS

Q: But this only injects code in the attacker's own page. The attacker needs to
inject code in the user’s page for the attack to be effective.
A: How about send to the victim an email with a malicious link?

safebank.com/search.php?query=<script>doEvil()</script>

User

28

Your query

<script>doEvil()</script>
returned 0 results

4. HTML with injected attack
code

Vulnerable
Server

Dawn Song

29

Type 0 XSS

Traditional XSS vulnerabilities occur in the server side code, and the fix
involves improving sanitization at the server side

Web 2.0 applications include significant processing logic, at the client side,
written in JavaScript

Similar to the server, this code can also be vulnerable

30

Type 0 XSS

Suppose safebank.com uses client side code to display a friendly welcome to
the user. For example, the following code shows "Hello Joe" if the URL is:

http://safebank.com/welcome.php?name=Joe

Hello

<script>

var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL. length));
</script>

31

Type 0 XSS

Hello

<script>

var pos=document.URL.indexOf("name=")+5;

document .write(document.URL.substring(pos,document.URL. Length));
</script>

For the same example, which one of the following URIs will cause untrusted

script execution?

a. http://attacker.com
b. http://safebank.com/welcome.php?name=doEvil()
c. http://safebank.com/welcome.php?name=<script>doEvil()</script>

Injection defenses

Input validation

Whitelists untrusted inputs
Input escaping

Escape untrusted input so it will not be treated as a command
Use less powerful API

Use an API that only does what you want

Prefer this over all other options

32

33

Input validation

Check whether input value follows a whitelisted pattern. For example, if
accepting a phone number from the user, JavaScript code to validate the

input to prevent server-side XSS:

function validatePhoneNumber(p){
var phoneNumberPattern = /A\(?2(\d{33)\)?[- J?2(\d{3})[- 1?2(\d{4})$/;
return phoneNumberPattern.test(p);

b

This ensures that the phone number doesn't contain a XSS attack vector or a

SQL Injection attack. This only works for inputs that are easily restricted.

34

Parameter tampering

» Q:Is the JavaScript check in the previous function on the client sufficient to

prevent XSS attacks?

35

Parameter tampering

Q: Is the JavaScript check in the previous function on the client sufficient to

prevent XSS attacks?

A: No. Attackers can handcraft the request, bypassing the JavaScript check.

36

Input escaping or sanitization

 Sanitize untrusted data before outputting it to HTML. Consider the HTML
entities functions, which escapes ‘special’ characters. For example, <
becomes <

» Qur previous attack input

<script src="http://attacker.com/evil.js"></script>

becomes

&Lt ;script src="http://attacker.com/evil.js"></script

37

Use a less powerful API

The current HTML API is too powerful, it allows arbitrary scripts to execute at
any point in HTML

Content Security Policy allows you to disable all inline scripting and restrict
external script loads

Disabling inline scripts, and restricting script loads to 'self’ (own domain)
makes XSS a lot harder

See CSP specification for more details

https://www.w3.org/TR/CSP/

38

Use a less powerful API

To protect against DOM based XSS (Type 0), use a less powerful JavaScript
API

If you only want to insert untrusted text, consider using the innerText API
in JavaScript. This API ensures that the argument is only used as text.
Similarly, instead of using innerHTML to insert untrusted HTML code, use
createElement to create individual HTML tags and use innerText on

each.

39

Cross-Site Request Forgery (CSRF)

Consider a social networking site, GraceBook, that allows users to 'share’
happenings from around the web.

Users can click the "Share with GraceBook" button which publishes content

to GraceBook.
When users press the share button,a POST request to
http://www.gracebook.com/share.php is made and gracebook.com makes

the necessary updates on the server.

40

Running example

<html><body>
<div>
Update your status:

<form action="http://www.gracebook.com/share.php" method="post"> <ing
<input type="submit" value="Share'"></input>

</form>

</div>

</body></html>

Running example

Client Browser

41

Update your status:

Feeling good! Share

status:
“Feeling
Good!”

Displays to user

share.php

text=Feeling Good!

On “Share” click

Session Cookie

Web Server

share.php
update user’s
status with the
text “Feeling
good!”

www.gracebook.com

Dawn Song

Network request

The HTTP POST Request looks like this:

POST /share.php HTTP/1.1

Host: www.gracebook.com

User-Agent: Mozilla/5.0

Accept: */*

Content-Type: application/x-www-form-urlencoded;
charset=UTF-8

Referer:

https://www.gracebook.com/form.php
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fh8

text=Feeling good!

42

CSRF attack

» The attacker,on attacker.com, creates a page containing the following

HTML:

<form action="http://www.gracebook.com/share.php" method="post"
id="£f">

<input type="hidden" name="text" value="SPAM COMMENT'"></input>

<script>document.getElementById('£f"').submit();</script>

43

CSRF attack

What will happen when the user visits the page?

a)

b)

c)

The spam comment will be posted to user’s share feed on
gracebook.com

The spam comment will be posted to user’s share feed

if the user is currently logged in on gracebook.com

The spam comment will not be posted to user’s share feed on
gracebook.com

44

45

CSRF attack

JavaScript code can automatically submit the form in the background to post
spam to the user’s GraceBook feed.
Similarly,a GET based CSRF is also possible.

Making GET requests is actually easier: just an img tag suffice

<img src="http://www.gracebook.com/share.php?text=SPAM%20COMMENT" /

CSRF defense

Origin header
Introduction of a new header, similar to Referer.
Unlike Referer,only shows scheme, host, and port (no path data or
query string)

Nonce-based

Use a nonce to ensure that only form.php can getto share.php

46

Origin header

 Instead of sending whole referring URL, which might leak private

information, only send the referring scheme, host, and port.

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0 or query data
Accept: */*
Content-Type: application/x-www-fo
charset=UTF-8

Origin: http://www.gracebook.com/

Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

No path string

text=hi

47

48

Nonce based protection

Recall the expected flow of the application:
The message to be shared is first shown to the user on form.php (the
GET request)
When user assents,a POST request to share.php makes the actual

post

The server creates a nonce, includes it in a hidden field in form.php and

checks it in share.php.

Nonce based protection

The form with nonce

<form action="share.php" method="post">
<input type="hidden" name="csrfnonce" value="av834favcb623">
<input type="textarea" name="text" value="Feeling good!'">

49

POST /share.php HTTP/1.1

Host: www.gracebook.com

User-Agent: Mozilla/5.0

Accept: */*

Content-Type: application/x-www-form-urlencoded;
charset=UTF-8

Origin: http://www.gracebook.com/

Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

Text=Feeling good!&csrfnonce=av834favch623

Server code compares nonce

50

Ul attacks

Use visual tricks to lure users to perform unintended bad operations
Address bar attack
Exploitation where the URL displayed in the address bar is not the one
you visited
Clickjacking attacks
Exploitation where a user's mouse click is used in a way that was not

intended by the user

Safe to type your password?

Accounts
Bill Pay
Mail

Transfers

banking content

[@ Bank of the West | - Moxzilla Firefox = | B
Eile Edit View History Bookmark pols Help
e .. - :
- Q"2 Bank of the Safe ttps://www.safebank.c % | [[Gl+] Googte A
' login
password

m

https://www.safebank.c i

51

Safe to type your password?

‘) Bank of the West Phishing Page - Mozilla Firefox E@M
Eile Edit View History Bookmarks Tools Help
> | [[Cl-| Googe 2|

= c ' htt‘://at‘tacker.com}ogin

Gives me vou paS5wOrds!

User name:

52

Safe to type your password?

thewvest. cormy

thewest.com,/

l

Status bar

This week: Musical ‘
| robots in Brooklyn, PESPSSEEES
AVl LERA .ﬁ'% new uses for old PC E7TE

[hittp: { fwww nytimes, com/2008/04/24 technology24cell html?ref<technology

* Trivially spoofable

<a href="http://www.paypal.com/”
onclick="this.href = ‘http://www.evil.com/’;">
PayPal

54

Cursorjacking

 Can customize cursor!

CSS example:

#mycursor {

cursor: none;

width: 97px;

height: 137px;

background: url ("images/custom-cursor.jpg")

}
« Javascript can keep updating cursor, can display shifted cursor

Fake cursor, but more Real cursor
visible

55

Cursorjacking

I]ﬁ Like

Download .exe

U

U

Fake, but more visible

real

Cursorjacking

&

skip-this ad »
You will be redirected to the requested page in 60 . e T e

\ Fake cursor

Adobe Flash Player Settings

NON-PROFIT ADVERTISEMENT

Camera and Microphone Access @

www.webperflab.com is requesting access
to your camera and microphone. If you
click Allow, you may be recorded.

Real cursor

57

