
Web Security II: Cross-site and UI
attacks

Chengyu Song

Slides modified from
Dawn Song, Raluca Ada Popa and Dan Boneh

1

HyperText Markup Language
HTML: a markup language to create structured documents that can embed

images, objects, create interactive forms, etc.

<html>
 <body>
 <div>foo Go to Google!</div>
 <form>

 <input type="text" /> <input type="radio" />
 <input type="checkbox" />
 </form>
 </body>
</html>

2

Web security: a historical perspective
• Similar to Internet, web is an example of "bolt-on security"

• Originally, the World Wide Web (www) was invented to allow physicists to

share their research papers

• Only textual web pages + links to other pages

• No security model to speak of

3

Web security: nowadays
• The web became complex and adversarial quickly

• Web pages become very complex with embedded images, JavaScript, dynamic

HTML, AJAX, CSS, frames, audio, video, sensors, VR, ... from different servers

• Today, a web site is a distributed application

• Web applications also become very diverse, news, shopping, videos, social

network, banking, gaming, ...

• Attackers have various motivations

4

Desirable security goals
• Integrity: malicious websites should not be able to tamper with the integrity

of my computer or my information on other web sites

• Confidentiality: malicious websites should not be able to learn confidential

information from my computer or other web sites

• Privacy: malicious websites should not be able to spy on me or my activities

online

5

How to achieve these goals?
• Reference monitor (access control)

1. How to name/identify subject and object?

2. What would be the access control policy?

• What about network level?

• One layer at a time

• TLS, DNSSEC, etc

6

How these properties can be violated?
• Server side: injection attacks

• Client side: cross-site attacks

7

Same-origin policy
• The most important access control policy for web applications

1. Each site in the browser is isolated from all others

2. Multiple pages from the same site are not isolated

8

Same-origin policy: different sites

9

Same-origin policy: same site

10

What is an Origin?
• Origin = protocol + hostname + port

11

How to define the origin?
• The origin of a resource is derived from the URL it was loaded from

12

How to define the origin?
• Special case: Javascript runs with the origin of the page that loaded it

13

Exercises

14

Exercises

15

Cross-origin communication
• Similar to IPC, different origins can communicate through a narrow API:

postMessage

• Receiving origin decides if to accept the message based on origin

16

Cross-site scripting (XSS)
• Vulnerability in web application that enables attackers to inject client-side

scripts into web pages viewed by other users

17

Three types of XSS
• Type 2: Persistent or Stored

• The attack vector is stored at the server

• Type 1: Reflected

• The attack value is 'reflected' back by the server

• Type 0: DOM Based

• The vulnerability is in the client side code

18

Type 2 XSS
• Consider a form on safebank.com that allows a user to chat with a customer

service associate.

1. User asks a question via HTTP POST message: "How do I get a loan?"

2. Server stores the question in a database.

3. Associate requests the questions page.

4. Server retrieves all questions from the DB

5. Server returns HTML embedded with the question

19

Type 2 XSS
Assuming the query page is implemented in PHP

Which will be rendered into

 <? echo "<div class=’question'>$question</div>";?>

 <div class=’question'>How do I get a loan?</div>

20

Type 2 XSS
Look at the following code fragments. Which one of these could possibly be a

comment that could be used to perform a XSS injection?

a. '; system('rm –rf /');
b. rm –rf /
c. DROP TABLE QUESTIONS;
d. <script>doEvil()</script>

21

Type 2 XSS
Look at the following code fragments. Which one of these could possibly be a

comment that could be used to perform a XSS injection?

a. '; system('rm –rf /');
b. rm –rf /
c. DROP TABLE QUESTIONS;
d. <script>doEvil()</script>

<html><body>
...
 <div class='question'><script>doEvil()</script></div>
...
</body></html>

22

Type 2 XSS

23

Type 1 XSS
• Consider safebank.com also has a transaction search interface at search.php

• search.php accepts a query and shows the results, with a helpful message at

the top.

• Example: Your query chocolate returned 81 results.

• How can you inject doEvil() ?

<? echo "Your query $_GET['query'] returned $num results.";?>

24

Type 1 XSS
• A request to search.php?query=<script>doEvil()</script> causes script

injection. Note that the query is never stored on the server, hence the term

'reflected'.

PHP: <? echo “Your query $_GET['query'] returned $num results.";?>

HTML: Your query <script>doEvil()</script> returned 0 results

25

Type 1 XSS
• Q: But this only injects code in the attacker's own page. The attacker needs to

inject code in the user's page for the attack to be effective.

26

Type 1 XSS
• Q: But this only injects code in the attacker's own page. The attacker needs to

inject code in the user's page for the attack to be effective.

• A: How about send to the victim an email with a malicious link?

safebank.com/search.php?query=<script>doEvil()</script>

27

Type 1 XSS

28

Type 0 XSS
• Traditional XSS vulnerabilities occur in the server side code, and the fix

involves improving sanitization at the server side

• Web 2.0 applications include significant processing logic, at the client side,

written in JavaScript

• Similar to the server, this code can also be vulnerable

29

Type 0 XSS
• Suppose safebank.com uses client side code to display a friendly welcome to

the user. For example, the following code shows "Hello Joe" if the URL is:

http://safebank.com/welcome.php?name=Joe

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</script>

30

Type 0 XSS

For the same example, which one of the following URIs will cause untrusted

script execution?

a. http://attacker.com
b. http://safebank.com/welcome.php?name=doEvil()
c. http://safebank.com/welcome.php?name=<script>doEvil()</script>

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</script>

31

Injection defenses
• Input validation

• Whitelists untrusted inputs

• Input escaping

• Escape untrusted input so it will not be treated as a command

• Use less powerful API

• Use an API that only does what you want

• Prefer this over all other options

32

Input validation
• Check whether input value follows a whitelisted pattern. For example, if

accepting a phone number from the user, JavaScript code to validate the

input to prevent server-side XSS:

• This ensures that the phone number doesn't contain a XSS attack vector or a

SQL Injection attack. This only works for inputs that are easily restricted.

function validatePhoneNumber(p){
var phoneNumberPattern = /^\(?(\d{3})\)?[-]?(\d{3})[-]?(\d{4})$/;
return phoneNumberPattern.test(p);
}

33

Parameter tampering
• Q: Is the JavaScript check in the previous function on the client sufficient to

prevent XSS attacks?

34

Parameter tampering
• Q: Is the JavaScript check in the previous function on the client sufficient to

prevent XSS attacks?

• A: No. Attackers can handcraft the request, bypassing the JavaScript check.

35

Input escaping or sanitization
• Sanitize untrusted data before outputting it to HTML. Consider the HTML

entities functions, which escapes 'special' characters. For example, <

becomes <

• Our previous attack input

becomes

<script src="http://attacker.com/evil.js"></script>

<script src="http://attacker.com/evil.js"></script

36

Use a less powerful API
• The current HTML API is too powerful, it allows arbitrary scripts to execute at

any point in HTML

• Content Security Policy allows you to disable all inline scripting and restrict

external script loads

• Disabling inline scripts, and restricting script loads to 'self' (own domain)

makes XSS a lot harder

• See CSP specification for more details

37

https://www.w3.org/TR/CSP/

Use a less powerful API
• To protect against DOM based XSS (Type 0), use a less powerful JavaScript

API

• If you only want to insert untrusted text, consider using the innerText API

in JavaScript. This API ensures that the argument is only used as text.

• Similarly, instead of using innerHTML to insert untrusted HTML code, use

createElement to create individual HTML tags and use innerText on

each.

38

Cross-Site Request Forgery (CSRF)
• Consider a social networking site, GraceBook, that allows users to 'share'

happenings from around the web.

• Users can click the "Share with GraceBook" button which publishes content

to GraceBook.

• When users press the share button, a POST request to

http://www.gracebook.com/share.php is made and gracebook.com makes

the necessary updates on the server.

39

Running example
<html><body>
<div>
Update your status:

<form action="http://www.gracebook.com/share.php" method="post"> <inp
<input type="submit" value="Share"></input>
</form>
</div>
</body></html>

40

Running example

41

Network request
• The HTTP POST Request looks like this:

42

CSRF attack
• The attacker, on attacker.com , creates a page containing the following

HTML:

<form action="http://www.gracebook.com/share.php" method="post"
 id="f">
<input type="hidden" name="text" value="SPAM COMMENT"></input>
<script>document.getElementById('f').submit();</script>

43

CSRF attack
• What will happen when the user visits the page?

a) The spam comment will be posted to user’s share feed on
 gracebook.com
b) The spam comment will be posted to user’s share feed
 if the user is currently logged in on gracebook.com
c) The spam comment will not be posted to user’s share feed on
 gracebook.com

44

CSRF attack
• JavaScript code can automatically submit the form in the background to post

spam to the user's GraceBook feed.

• Similarly, a GET based CSRF is also possible.

• Making GET requests is actually easier: just an img tag suffice

 <img src="http://www.gracebook.com/share.php?text=SPAM%20COMMENT" /

45

CSRF defense
• Origin header

• Introduction of a new header, similar to Referer .

• Unlike Referer , only shows scheme, host, and port (no path data or

query string)

• Nonce-based

• Use a nonce to ensure that only form.php can get to share.php

46

Origin header
• Instead of sending whole referring URL, which might leak private

information, only send the referring scheme, host, and port.

47

Nonce based protection
• Recall the expected flow of the application:

1. The message to be shared is first shown to the user on form.php (the

GET request)

2. When user assents, a POST request to share.php makes the actual

post

• The server creates a nonce, includes it in a hidden field in form.php and

checks it in share.php .

48

Nonce based protection

49

UI attacks
• Use visual tricks to lure users to perform unintended bad operations

• Address bar attack

• Exploitation where the URL displayed in the address bar is not the one

you visited

• Clickjacking attacks

• Exploitation where a user's mouse click is used in a way that was not

intended by the user

50

Safe to type your password?

51

Safe to type your password?

52

Safe to type your password?

53

Status bar

54

Cursorjacking

55

Cursorjacking

56

Cursorjacking

57

