
Chengyu Song 01/26/2022

CS255: Computer Security
Dynamic Testing

Finding Vulnerabilities

• From attackers perspective

• Vulnerabilities are the pass into the system

• 0-day vulnerabilities are especially valuable

• $5k ~ $1.5M, even higher in blackmarket

• Bug bounties

• From defender/vendors perspective

• Finding and fixing bugs before release is way cheaper than patches

Finding Vulnerabilities
How?

• Two general approach: static analysis and dynamic analysis

• Static analysis does not execute the program

• Example: compiler warnings and errors

• Sacrifice accuracy for code coverage -> no false negative

• Dynamic analysis performs the analysis while running the program

• Example: unit tests

• Sacrifice code coverage for accuracy -> no false positive

Dynamic Testing

• Unit/regression tests

• Goal: target code behave as expected

• How: (mostly) manually generated test cases

• Exploits

• Inputs that can trigger unexpected behaviors

• Fuzzing and Symbolic Execution

• Finding such inputs

Dynamic Testing
Regression vs. Fuzzing

Regression Fuzzing

Definition Run program on many normal and
known bad inputs, look for badness.

Run program on many abnormal
inputs, look for badness.

Goals Prevent normal user from
encountering errors.

Prevent attackers from discovering
exploitable errors.

Fuzzing
Three main components

• Input generator: automatically generates test inputs

• Executor: executes the target program with inputs

• Monitor: detects abnormal behaviors

Fuzzing
How to generate inputs?

• Idea 1: randomly

Fuzzing
Random inputs

• Advantages: easy to implement, do not look like normal inputs

• Disadvantages: inefficient

• Programs usually have input validation logic, random inputs are unlikely to
pass

• No indication of progress

Fuzzing
Random mutation

• Idea 2: take a well-formed input, randomly perturb (e.g., flipping bits)

• Little or no knowledge of the structure of the inputs is assumed

• Anomalies are added to existing valid inputs

• Anomalies may be completely random or follow some heuristics (e.g.
remove NUL, shift character forward)

Fuzzing
Building a PDF fuzzer

• Google for PDF files (`filetype:pdf` more than 1 billion results)

• Crawl them to build a corpus

• Using a fuzzing tool (or script)

1. Grab a file

2. Mutate the file

3. Feed it to the PDF reader

4. Look for crash

Fuzzing
Limitations of our simple PDF fuzzer

• Only as good as the initial corpus

• Corpus may contain lots of redundant or dull inputs

• Solution: corpus distillation

• Not making use of semantic information

Fuzzing
Syntax-guided input generation

• Test cases are generated from description of the format: grammar, RFC,
documentation, etc.

• Anomalies are added to each possible spot in the inputs

• Knowledge of syntax should give better results than random fuzzing

Fuzzing
Example: png specification

Fuzzing
Limitations of syntax-guided generation

• Writing specifications and corresponding generators are not easy, especially
for complex format

• Solution: learn spec through machine learning

• May be too well-formed

Fuzzing
Measuring progress

• Q: with limited computation resources, how to evaluate inputs and prioritize
good ones?

• Feedback fuzzing

Fuzzing
Genetic programming

Inspired by biological evolution and its fundamental mechanisms, Genetic
Programming software systems implement an algorithm that uses random
mutation, crossover, a fitness function, and multiple generations of evolution to
resolve a user-defined task.

— GeneticProgramming.com

http://GeneticProgramming.com

Fuzzing
Fitness function

• How to we measure the “fitness” of an input?

• Metrics

• Program states coverage

• Code coverage: line, branch, path, etc.

• Why? Rarely exercised code is more likely to have unknown bugs

Fuzzing
Line coverage

• Line/block coverage: measures how many lines of source code have been
executed

• For the code below, how many test cases (pairs of (a,b)) is needed to achieve
full (100%) line coverage?

if (a > 2) a = 2;
if (b > 2) b = 2;

Fuzzing
Branch coverage

• Branch coverage: measures how many branches in code have been taken
(conditional jumps)

• For the code below, how many test cases (pairs of (a,b)) is needed to achieve
full branch coverage?

if (a > 2) a = 2;
if (b > 2) b = 2;

Fuzzing
Path coverage

• Path coverage: measures how many execution paths have been taken

• For the code below, how many test cases (pairs of (a,b)) is needed to achieve
full path coverage?

if (a > 2) a = 2;
if (b > 2) b = 2;

• How to calculate the total number of paths?

Fuzzing
Problems of code coverage metrics

mySafeCpy(char *dst, char* src) {
 if(dst && src)
 strcpy(dst, src);
}

• Can full line coverage guarantee to find the bug?

• Can full branch coverage guarantee to find the bug?

• Can full path coverage guarantee to find the bug?

• What’s wrong with path coverage?

Fuzzing
Mutation strategies

• Random mutation

• Feedback-based mutation: sub-task

• Checksum

• Magic number

• Likelihood to trigger vulnerability

Fuzzing
Monitors

• How to we know if there is bug?

• Crash?

• Manually inserted assertions?

• Error detectors

• AddressSanitizer, ThreadSanitizer, MemorySanitizer,
UndefinedBehaviorSanitizer, DataFlowSanitizer, LeakSanitizer

Fuzzing
Best available fuzzer?

• AFL++: https://aflplus.plus/

• libFuzzer: https://llvm.org/docs/LibFuzzer.html

• honggfuzz: https://github.com/google/honggfuzz

• libafl: https://github.com/AFLplusplus/LibAFL

https://aflplus.plus/
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://github.com/AFLplusplus/LibAFL

Symbolic Execution
Quiz: coverage

• What is the number of lines, branches, and paths?

Symbolic Execution
Quiz: inputs for full coverage

• How many inputs are required for full lines, branches, and paths coverage?

Symbolic Execution
Quiz: bug triggering input

• What is the expected number of inputs required to cover the highlighted line,
using random test-case generation? Assuming unsigned is 32

Symbolic Execution
Efficiency of testing

• We can evaluate the efficiency of an input generation technique using the
following formula

minimum # of inputs / expected # of inputs

• A technique is efficient if the minimum value is close to expected value

• A technique is NOT efficient if minimum << expected value

• There are many cases where minimum << expected for fuzzing

Symbolic Execution
Comparison with fuzzing

• Fuzzing: sample individual inputs from the whole input space

• Symbolic execution: sample inputs from sub input space

Symbolic Execution
Symbolic vs. explicit representation

• What would be the explicit inputs for the follow symbolic formula?

• x > -4 && x < 4 && x % 2 == 1 && y == x + 3

• x > -8 && x < 8 && x % 2 == 1 && y == x + 3

• x % 2 == 1 && y == x + 3

Symbolic Execution
Pros. and Cons. of symbolic representation

• Advantages

• Can be exponentially smaller than explicit representation of finite sets

• Can represent infinite sets (e.g., regular expressions)

• Generic algorithms (e.g., same algorithms for a certain type of formulas)

• Trade-offs

• Performing basic operations may be expensive

• Specialized algorithms are required

• Difficult to predict size of representation

Symbolic Execution
Solvers

• How to sample from a sub-input space of a symbolic representation?

• Solvers: determine if a symbolic formula is satisfiable, if so, provide an
example (i.e., satisfying assignments to symbolic variables)

• An SAT solver is a solver for propositional logic

• An SMT solver is a solver for formulas in a first-order logic

Symbolic Execution
Popular solvers

• Z3: https://github.com/Z3Prover/z3

• CVC4: https://github.com/CVC4/CVC4

• Yices2: http://yices.csl.sri.com/

• STP: https://stp.github.io/

https://github.com/Z3Prover/z3
https://github.com/CVC4/CVC4
http://yices.csl.sri.com/
https://stp.github.io/

Symbolic Execution
Execution paths as symbolic formulas

Symbolic Execution
Path predicates

• A path predicate encodes the constraints that must be satisfied for a program path
to be executed

• To construct a path predicate

• Rename variables to have unique occurrences (symbolize)

• Assignments become equalities

• Branches are themselves, or negated

• Sequence is conjunction

• Feasibility of a path == satisfiable of the path predicates

Symbolic Execution
Finding a bug

Symbolic Execution
CFG Changes

Symbolic Execution
Path to assertion violation

Symbolic Execution
Bug triggering inputs

• Is the path predicates satisfiable?

input < UINT_MAX -2 && len == input + 3 && !(len < 10) && !(len % 2
== 0) && !(len < UINT_MAX – 1)

• Yes! When input == UINT_MAX - 3

To Learn More

• CS182 and CS206

• Software Testing: From Theory to Practice: https://sttp.site/

• The Fuzzing Book: https://www.fuzzingbook.org/

https://sttp.site/
https://www.fuzzingbook.org/

