Trusted Computing

Chengyu Song

Slides modified from Dawn Song

OS security

- How to protect users and the system (e.g. other apps) from malicious apps
 - Access control

Trusted computing

• From another perspective: what if I want to run my code on a platform where

I don't fully trust the owner?

- Public cloud
- PC: digital right management (DRM)
- Mobile: bring-your-own-device (BYOD)
- Trusted computing: how to establish certain degrees of trust

Security concerns

- How to protect the confidentiality of my app and data?
- How to protect the integrity of my app and data?
- How to make sure it's really my app (identity)?
- How to make sure my app has really been run properly (verifiable results)?

Threat model

- What is your trusted computing base (TCB)
 - Operating system?
 - System administrators?
 - Hypervisor?
 - Hardware?

Confidentiality

- Means to protect the confidentiality?
 - System approach: isolation
 - Cryptographic approach: encryption
- *How to compute over encrypted programs and data?
 - Secure multi-party computation
 - Homomorphic encryption

Side-channel attacks

- System approaches can only block *direct* channels, but information can also leak through *indirect* channels (a.k.a. side-channels)
- Two necessary conditions
 - Difference in behaviors
 - Access pattern, timing, power consumption, electromagnetic, acoustic, etc.
 - A shared media to observe the behavior

Integrity

- Means to protect the integrity?
 - System approach: isolation
 - Cryptographic approach: MAC (message authentication code)
- How to scale?
 - Hash/<u>Merkle tree</u>

Replay attacks

- Using an old version to replace current version
- How to avoid?
 - Random nonce as challenge
 - Version

Operational mode

- In practice, we combine both system and cryptographic approaches
 - Isolation is more efficient, but has limited protection scope
 - Once the code/data leaves the protection scope, we rely on

cryptographic

How to provide trusted identity

- What is an identity?
 - A static/dynamic measurement
- How to establish trust
 - Root of trust

Root of trust

- A piece of hardware/software that is
 - Privileged enough for performing **measurement**
 - Capable of protecting itself
 - E.g., a standalone chip
 - Cryptographic provable identity
 - E.g., embedded private keys

Measurement

- A proof for the identity and integrity of system state
 - A chain of hashes
- Example: measured boot
 - Record the hash of the BIOS
 - Record the hash of the bootloader
 - Record the hash of the hypervisor/OS kernel
- How to record?
 - new_hash = hash(old_hash || new measurement)

Attestation

- A signed proof for the integrity measurement
 - Measurement results
 - A nonce to mitigate replay attack
 - Additional information from the software
 - Signed by a private key of the root of trust

Other operations

- Secure key generation and storage
- Seal: bind key to a measurement
 - E.g., only decrypt the disk image if the measurement of the OS is expected

Problems of integrity measurement

- Hidden assumption1: one must verify and trust the code
- Hidden assumption2: trust the binary
- Load-time integrity != run-time integrity
 - Why? Vulnerabilities!!

Commercial TEEs

- Intel SGX
- ARM TrustZone
- AMD SEV

SGX Applications (1)

- VC3: Trustworthy Data Analytics in the Cloud using SGX
- M2R: Enabling Stronger Privacy in MapReduce Computation
- SCONE: Secure Linux Containers with Intel SGX
- Oblix: An Efficient Oblivious Search Index
- Oblivious Multi-Party Machine Learning on Trusted Processors

SGX Applications (2)

- Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data
- Enhancing Security and Privacy of Tor's Ecosystem by using Trusted Execution
 Environments
- Secure Content-Based Routing Using Intel Software Guard Extensions
- SecureKeeper: Confidential ZooKeeper using Intel SGX

Attacks against TEE apps

- Side-channel attacks
- Exploit against vulnerabilities in TEE apps
- lago Attack
 - Bad system calls