
Static Analysis

Chengyu Song

Slides modified from
David Wagner and Dawn Song

1

Finding vulnerabilities
• Dynamic analysis

• Fuzzing

• Symbolic execution

• Clang static analyzer (https://clang-

analyzer.llvm.org/available_checks.html)

• Static analysis

2

https://clang-analyzer.llvm.org/available_checks.html

Bottlenecks of dynamic analysis

3

Static analysis

4

Static analysis
• Static analysis perform the analysis without running the program

• A syntactic analysis uses the code text but does not interpret statements

• A semantic analysis interprets statements and updates facts based on

statements in the code

5

Syntactic example: optional arguments
• The system call open() has optional arguments

• Typical mistake:

• Result: file has random permissions

• To detect this problem: Look for oflag == O_CREAT without mode argument

 int open(const char *path, int oflag, ...);

 fd = open("file", O_CREAT);

6

Syntactic example: name confusion

7

Syntactic analysis

8

Error pattern types

9

Pattern representation and detection

10

Semantic analysis
• Interpret statements and updates facts

• How to abstract data

• How to handle control

11

Example

12

Abstracting data

13

Sign analysis (1)

14

Sign analysis (2)

15

Sign analysis (3)

16

Sign analysis (4)

17

Sign analysis (5)

18

Sign analysis (6)

19

Sign analysis (7)

20

Sign analysis (8)

21

Sign analysis (9)

22

Sign analysis (10)

23

Sign analysis (11)

24

Static analysis vs. symbolic execution
• Data was not precisely represented

• Some variables were ignored

• Control flow paths were joined

• It is not clear if there is an error

• It is not clear which path leads to the error

25

Architecture of static analysis
The behavior of a program can be approximated by separately approximating

variable values, statements and control flow.

26

Lattices in static analysis

27

Lattices in static analysis (cont.)

28

Transforms in static analysis

29

Information flow analysis
• How information propagates in software

• Taint analysis (2 states lattice, tainted, not-tainted)

• Source: where tainted data is introduced

• Sink: where tainted data should not be used

• Cleanser/sanitizer: where tainted -> not tainted

30

Taint analysis: application
• Privacy leak in Android apps

• Use of untrusted data

• Format string from Internet

• Memory from user space

• Command/SQL injection attacks (more in web session)

• Uninitialized data

31

Take away
• Static analysis

• No execution of the program

• Analyzes all the code

• Use abstraction (loss of precision) to scale (coverage)

• Has false positives (may be a bug)

32

Soundness and completeness
• Soundness: if the program contains an error, the analysis will report an error.

• "Sound for reporting correctness"

• Completeness: if the analysis reports an error, the program will contain an

error.

• "Complete for reporting correctness"

Note: these terms have different meaning in other contexts

33

Soundness and completeness (cont.)

34

Program verification
• Properties: true for every possible execution

• Safety: nothing bad happens (e.g., buffer overflow)

• Liveness: something good eventually happens

• Program verification in security

• How to prove safety properties

35

How to reason about safety
• Approach: build up confidence on a function-by-function/module-by-module

basis

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold for function to operate correctly

• Postconditions: what holds after function completes

• These basically describe a contract for using the module

• Most basic contract? Argument number and types

36

Functions in verification
• Mathematical function : f(x) -> y

• Individual statement can be considered as a function

• Preconditions: what must hold for correctness of the statement

• Postcondition: what holds after execution of the statement

• Stmt #1’s postcondition should logically imply Stmt #2’s precondition

• Invariants : conditions that always hold at a given point in a function

37

Memory safety
• Memory access/dereference as a function

• What is the precondition for the correctness of this function?

 byte deref(byte *p) {
 return *p;
 }

38

Memory safety (cont.)
• What is the precondition for the correctness of this function?

 /* p != NULL &&
 p does not point to freed object &&
 p does not point to unintialized memory &&
 p is with the upper and lower bounds */
 byte deref(byte *p) {
 return *p;
 }

39

Verification (1)
• Proving precondition -> postcondition

• Given preconditions and postconditions

• Specifying what obligations caller has (precondition) and what callers

are entitled to rely upon (postcondition)

• Verify: no matter how function is called

• If precondition is met at function's entrance

• then postcondition is guaranteed to hold upon function's return

40

Verification (2)
• Basic idea:

• Write down a precondition and postcondition for every line of code

• Use logical reasoning

41

Verification (3)
• Requirement

• Each statement's postcondition must match (imply) precondition of any

following statement

• At every point between statements, write down invariants that must be

true at that point

• Invariant is postcondition for preceding statement, and

precondition for next one

42

Example
• How to proof the following function won't have buffer overflow?

 int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
 }

43

Example

44

Example

45

Example

46

Example

47

Example

48

Example

49

Example

50

Example

51

Example

52

Example

53

Example

54

Example

55

Example

56

Example

57

Example

58

Example

59

Example

60

Example

61

Example

62

Example

63

Example

64

Example

65

Summary
• Software security: vulnerabilities

• Exploits: the most popular way of getting attacked, including malware

• Memory vulnerabilities: root causes, how to exploit, defense

mechanisms

• How to find vulnerabilities: fuzzing, symbolic execution, static analysis,

verification

• Other vulnerabilities?

• In future sessions

66

