Static Analysis

Chengyu Song

Slides modified from
David Wagner and Dawn Song

Finding vulnerabilities

* Dynamic analysis
» Fuzzing

« Symbolic execution

» Clang static analyzer (https://clang-

analyzer.llvm.org/available_checks.html)

» Static analysis

https://clang-analyzer.llvm.org/available_checks.html

Traffic
Roads

Terrain

Information Overload

“Data”

Bottlenecks of dynamic analysis

\")
(H Ternes @ ©
Hépital z
"3 Marmottan S
® =
% 3 '%@ Hotel Le Royal
2 A > € Monceau
3 Z SRS -
S 0 L& Raffles Paris
o (&)
@ Argentine

o
w
H 53' 4
cl = ©
inique & =
Chirurgicale § @
Victor Hugo ~ D
&7 g\

T

Route Explosion

“Control”

Static analysis

Loss of information allows for more
efficient computation of some answers

Static analysis algorithms operate directly
on abstract representations

For example, we can analyze all possible
road-routes without even sitting in a car

Albany m _ Rd
pesar North
Chavez Park .. Berkeley
&
Berkeley Bcr'kgkjy
Yacht Harbor Marina
South
Berkeley
(3) {
FS\\\)# Ave
goth 5!
Golden Gate
3 D
Marina Park
\ Temescal
Emeryville
Piednr
Aaia Aven
Clawson | 580

5%

Static analysis

Static analysis perform the analysis without running the program
A syntactic analysis uses the code text but does not interpret statements
A semantic analysis interprets statements and updates facts based on

statements in the code

Syntactic example: optional arguments

The system call open() has optional arguments

int open(const char *path, int oflag, ...);
Typical mistake:
fd = open("file", O_CREAT);

Result: file has random permissions

To detect this problem: Look for oflag == 0_CREAT without mode argument

Syntactic example: name confusion

/S *
* javax.security.auth.kerberos.KerberosTicket, 1.5b42
*/

if (flags != null) {
if (flags.length >= NUM_FLAGS)
this.flags = (boolean[]) flags.clone();
else {
this.flags = new boolean[NUM FLAGS];
// Fill in whatever we have
for (int i = 0; i < flags.length; i++)
this.flags[i] = flags[i];
}
} else
this.flags = new boolean[NUM FLAGS];

if |(flags[RENEWABLE TICKET FLAG])] {
== Null)

source: Squashing Bugs with Static Analysis, William Pugh, 2006

* flags is a parameter,
this.flags is afield

* Problem: check does not
prevent null dereference

* Result: Potential Null
Pointer Dereference

* Detection: find similar
names on code paths where
security-relevant conditions
are checked

Syntactic analysis

Specify Error
Patterns

Parse Program

N

Detect Patterns

|

Prune False
Alarms

Error patterns: Heuristically observed
common error patterns in practice

Parsing: generates data structure
used for error detection

Detection: match pattern against
program representation

Pruning: Used to eliminate common
false alarms

Error pattern types

Error Type Examples
Typos =vs ==, &xVs. X, missing/extra semi-colons
APl Usage chroot, multiple locking, etc.
Copy-Paste variable names/increments not updated
|dentifier confusion global and local variables, fields and parameters

Pattern representation and detection

10

Control Flow Graphs

Representation Types of Algorithms
String Subsequence mining, edit distance, matching
Parse Tree Pattern matching,

Automata algorithms, sub-graph isomorphism

Semantic analysis

 Interpret statements and updates facts
» How to abstract data

» How to handle control

11

Example

if (y ==
| alse tru%

Entry

v

x = 0;

v

0)

if (y == 0)
|false true false

Exit

truerif (x < 0)

Err

12

How can we automatically check if
the error location is reachable in this
program?

An analysis must reason about
e control flow

* branches
* aloop
* data

* increment, decrement
* comparisons with O

Abstracting data

@ Only track relevant properties of x

X = 0; X can have any value

if (y == 0)
false tru%

X =x - 1; X =x+ 1;

N = (x<o1

if (y == 0)
“;false trug false

Exit true* if (x < 0)

no value is feasible

Err

Sign analysis (1)

Entryl

(e)
x = 0;

if (y == 0)
‘Else tru%

X =X - 1; X =x+ 1;

N

if (y == 0)
‘false true1 false

Exit truerif (x < 0)

Err

Analysis: update data about x based
on control flow

Assuming arbitrary initialization,
anything can be true about x

Sign analysis (2)

Entryl

(e
x = 0;
[x==0 |,

if (y ==
|false

0)

trueI

if (y ==
‘Vfalse

Exit

0)

false
true:L

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

o (0] (w0
k0 x=0 [00

The assighnment updates the fact
about x

Sign analysis (3)

e

Entryl

X = 0;

(0]

0)

if (y ==
| alse truq‘

Analysis: update data about x based
on control flow

The condition does not affect x so
the fact “flows through”

Sign analysis (4)

Entry

Y

if (y == 0)
false true
\[
X =x - 1; X =x+ 1;

Exit

if (y == 0)
‘false truen false

truerif (x < 0)

Err

(RN

/

Analysis: update data about x based
on control flow

Loss of precision! We cannot write
x==-1 so we approximate it by x<0

Sign analysis (5)

Entryl Analysis: update data about x based

t
\Il on control flow
Xx = 0;

Sign analysis (6)

Entryl
CEe——

x = 03

X =X - 1;

if (y == 0)
‘ false true1 false

Exit true* if (x < 0)

Err

Analysis: update data about x based
on control flow

At the join point x is either strictly
positive or strictly negative

Sign analysis (7)

Entry

T R

x = 0;

E=ap—

if (y == 0)
false tru%

X =x - 1;

=
x<0 \ =0

“;false

Exit

P

if (y == 0)

false
true:L

truer

if (x < 0)

Err

Analysis: update data about x based
on control flow

true

00 | s

—

‘\ x r’
N - -
o

false

At the join point x is either strictly
positive or strictly negative

Sign analysis (8)

RS Analysis: update data about x based
CE— ¢
on control flow

x = 0;
!

if (y == -

B! = G

X =x - 1; X =x+ 1; [x<0] []

X== X>0
1=
x<0 \ x1=0 x>0 "‘-~\\““ : f’___,-—-"

Sign analysis (9)

Entry Analysis: update data about x based
¥
> on control flow
X = H

Sign analysis (10)

Entry

e

x = 0;

!

if (y == 0)
false truq’

X =x - 1;

=
X<0 \ it

if (y == 0)

‘l:false m

rue

Exit truer

if (x < 0)

Err

x<0

Analysis: update data about x based
on control flow

(0] [0 (o=
x<0 | Cxe=0 %0

The conditional restricts x

Sign analysis (11)

(e ——
x = 0;
o]

if (y == 0)
Else tru%

Entry

X =x - 1; X =X+ 1;

|=
x<0 \L[—]X 0 x>0

rif (y == 0)
x1=0 false Tue false

Exit

truerif (x < 0)

Err x<0

24

Analysis: update data about x based
on control flow

The analysis concludes that it may be
possible to reach Err with x<0

Static analysis vs. symbolic execution

Data was not precisely represented
Some variables were ignored
Control flow paths were joined

It is not clear if there is an error

It is not clear which path leads to the error

25

26

Architecture of static analysis

The behavior of a program can be approximated by separately approximating

variable values, statements and control flow.

[Variables] [Lattice

|

. Statlc
Executions
Analyzer J\

p
Statements s Transformers Systerp 2
Flow . Equations

Lattices in static analysis

27

true

* cannot represent non-
zero values

* no relationships between
variables

cannot represent values
no relationships between
variables

: top
[x<=0] [x!=0] x>=0
{ xga‘,z}:—_::[:j;(\::/i‘] ::;;050 @ @@ { 1 } { 0] ‘ ______
false bot
e
Signs Parity Constants
* positive/negative/zero even or odd a single value

cannot represent more
values: x==3| |x==4

no relationships between
variables

28

Lattices in static analysis (cont.)

A lattice is a set with

* apartial order for comparing elements
e aleast upper bound called join

* agreatest lower bound called meet

Stat'c In static analysis
Analyzer .
* |attice elements abstract states

e order is used to check if results change

* meet and join are used at branch and join
points

Most analyses use only meet or only join

Transformers] [Propagatlon

Transforms in static analysis

D A transformer (or transfer function) describes !
I ' how a statement modifies lattice elements f
%0
x =0 X = x+1
/—*[trueD
& (@ =

Information flow analysis

How information propagates in software
Taint analysis (2 states lattice, tainted, not-tainted)
Source: where tainted data is introduced
Sink: where tainted data should not be used

Cleanser/sanitizer: where tainted -> not tainted

30

Taint analysis: application

Privacy leak in Android apps
Use of untrusted data
Format string from Internet
Memory from user space

Command/SQL injection attacks (more in web session)

Uninitialized data

31

Take away

Static analysis
No execution of the program
Analyzes all the code
Use abstraction (loss of precision) to scale (coverage)

Has false positives (may be a bug)

32

33

Soundness and completeness

Soundness: if the program contains an error, the analysis will report an error.
"Sound for reporting correctness”

Completeness: if the analysis reports an error, the program will contain an

error.

"Complete for reporting correctness”

Note: these terms have different meaning in other contexts

34

Soundness and completeness (cont.)

Report all errors
Report no false alarms

UNDECIDABLE
(Ex: manual verification)

May not report all errors
Report no false alarms

(Ex: symbolic execution)

- Complete Incomplete

Report all errors
May report false alarms

(Ex: Abstract interpretation)

May not report all errors
May report false alarms

(Ex: Syntacticanalysis)

Program verification

Properties: true for every possible execution
Safety: nothing bad happens (e.g., buffer overflow)
Liveness: something good eventually happens
Program verification in security

How to prove safety properties

35

36

How to reason about safety

Approach: build up confidence on a function-by-function/module-by-module
basis
Modularity provides boundaries for our reasoning
Preconditions: what must hold for function to operate correctly
Postconditions: what holds after function completes
These basically describe a contract for using the module

Most basic contract? Argument number and types

Functions in verification

Mathematical function : f(x) -> vy

Individual statement can be considered as a function
Preconditions: what must hold for correctness of the statement
Postcondition: what holds after execution of the statement
Stmt #1’s postcondition should logically imply Stmt #2’s precondition

Invariants : conditions that always hold at a given point in a function

37

Memory safety

Memory access/dereference as a function

byte deref(byte *p) {
return *p;

by

What is the precondition for the correctness of this function?

38

Memory safety (cont.)

» What is the precondition for the correctness of this function?

/* p = NULL &&
p does not point to freed object &&
p does not point to unintialized memory &&
p is with the upper and lower bounds */
byte deref(byte *p) {
return *p;

by

39

40

Verification (1)

Proving precondition -> postcondition

Given preconditions and postconditions
Specifying what obligations caller has (precondition) and what callers
are entitled to rely upon (postcondition)

Verify: no matter how function is called
If precondition is met at function’s entrance

then postcondition is guaranteed to hold upon function’s return

Verification (2)

» Basic idea:
» Write down a precondition and postcondition for every line of code

» Use logical reasoning

Z

42

Verification (3)

Requirement

Each statement’s postcondition must match (imply) precondition of any

following statement

At every point between statements, write down invariants that must be

true at that point

Invariant is postcondition for preceding statement, and

precondition for next one

43

Example

How to proof the following function won't have buffer overflow?

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];
return total;

by

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
total += a[i];
return total;

¥

General correctness proof strategy for memory safety:

(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

44

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
total += a[i];
return total;

¥

General correctness proof strategy for memory safety:

(1) Identify each point of memory access?
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

45

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
total += al[i];
return total;

¥

General correctness proof strategy for memory safety:

(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

46

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
[* 22 %/
total += a[i];
return total;

}

General correctness proof strategy for memory safety:

(1) Identify each point of memory access
(2) Write down precondition it requires?
(3) Propagate requirement up to beginning of function

47

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
/* requires: a != NULL &&
O <= 1 && 1 < size(a) */
total += a[i];
return total;

¥

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

48

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
/* requires: a != NULL &&
O <= 1 && 1 < size(a) */
total += a[i];
return total;

¥

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

49

Example

int sum(int a[], size_t n) {
int total = ©;
for (size_ t i=0; i<n; i++)
/* requires: a != NULL &&
O <= 1 && 1 < size(a) */
total += a[i];
return total;

¥

Let’s simplify, given that a never changes.

50

Example

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = ©;
for (size t i=0; i<n; i++)
/* requires: 0 <= 1 && i < size(a) */
total += a[i];
return total;

}

51

Example

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = ©;
for (size t i=0; i<n; i++)
/* requires: 0 <= 1 && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

52

Example

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = ©; ‘)
for (size t i=@; i<n; i++))
/* requires: O <= 1 && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

53

Example

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; /
for (size t i=0; i<n; i++)
/* requires: O <= 1 && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

54

Example

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = 0; /
for (size t i=0; i<n; i++)
/* requires: O <= 1 && i < size(a) */
total += a[i];
return total;

}

Let’s simplify given that the @ <= i partis clear.

55

Example

/* requires: a != NULL */
int sum(int a[], size t n) {
int total = ©;
for (size t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];
return total;

}

56

Example

/* requires: a != NULL */
int sum(int a[], size t n) { D)
int total = ©; ‘
for (size t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

57

Example

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = ©;)
for (size t i=0; i<n; i++))
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

¥

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

58

Example

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = ©;)
for (size t i=0; i<n; i++))
/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];
return total;

¥

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

59

Example

/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {

int total = ©;)

for (size t i=0; i<n; i++))

/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;

¥

Example
/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {
int total = 9;)
for (size t i=0; i<n; i++) ’

/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;

¥

What abouti < n?

61

Example
/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size_t n) {
int total = 9;)
for (size t i=0; i<n; i++) ’

/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;

¥

What about i < n ? That follows from the loop condition.

62

Example
/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size_t n) {
int total = 9;)
for (size t i=0; i<n; i++) ’

/* invariant?: i < n & & n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;

¥

At this point we know the proposed invariant will always hold...

63

Example

/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size t n) {
int total = ©;
for (size t i=0; i<n; i++)
/* invariant: a != NULL &&
O <= 1 &% i < n & & n <= size(a) */
total += a[i];
return total;

¥

... and we’re done!

64

Example

/* requires: a != NULL & & n <= size(a) */
int sum(int a[], size_t n) {
int total = ©;
for (size t i=0; i<n; i++)
/* invariant: a != NULL &&
O <=1 & i < n & n <= size(a) */
total += a[i];
return total;

¥

A more complicated loop might need us to use induction:
Base case: first entrance into loop.
Induction: show that postcondition of last statement of
loop plus loop test condition implies invariant.

65

Summary

Software security: vulnerabilities
Exploits: the most popular way of getting attacked, including malware
Memory vulnerabilities: root causes, how to exploit, defense
mechanisms
How to find vulnerabilities: fuzzing, symbolic execution, static analysis,
verification
Other vulnerabilities?

In future sessions

