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Finding vulnerabilities
• Dynamic analysis

• Fuzzing

• Symbolic execution

• Clang static analyzer (https://clang-

analyzer.llvm.org/available_checks.html)

• Static analysis

2

https://clang-analyzer.llvm.org/available_checks.html


Bottlenecks of dynamic analysis

3



Static analysis
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Static analysis
• Static analysis perform the analysis without running the program

• A syntactic analysis uses the code text but does not interpret statements

• A semantic analysis interprets statements and updates facts based on

statements in the code
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Syntactic example: optional arguments
• The system call open()  has optional arguments

• Typical mistake:

• Result: file has random permissions

• To detect this problem: Look for oflag == O_CREAT  without mode argument

  int open(const char *path, int oflag, ...);

  fd = open("file", O_CREAT);
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Syntactic example: name confusion
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Syntactic analysis
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Error pattern types
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Pattern representation and detection
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Semantic analysis
• Interpret statements and updates facts

• How to abstract data

• How to handle control
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Example
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Abstracting data
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Sign analysis (1)
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Sign analysis (2)
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Sign analysis (3)
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Sign analysis (4)

17



Sign analysis (5)
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Sign analysis (6)
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Sign analysis (7)

20



Sign analysis (8)
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Sign analysis (9)
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Sign analysis (10)
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Sign analysis (11)
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Static analysis vs. symbolic execution
• Data was not precisely  represented

• Some variables were ignored

• Control flow paths were joined

• It is not clear if there is an error

• It is not clear which path leads to the error
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Architecture of static analysis
The behavior of a program can be approximated by separately approximating

variable values, statements and control flow.
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Lattices in static analysis
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Lattices in static analysis (cont.)
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Transforms in static analysis
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Information flow analysis
• How information propagates in software

• Taint analysis (2 states lattice, tainted, not-tainted)

• Source: where tainted data is introduced

• Sink: where tainted data should not be used

• Cleanser/sanitizer: where tainted -> not tainted
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Taint analysis: application
• Privacy leak in Android apps

• Use of untrusted data

• Format string from Internet

• Memory from user space

• Command/SQL injection attacks (more in web session)

• Uninitialized data
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Take away
• Static analysis

• No execution of the program

• Analyzes all the code

• Use abstraction (loss of precision) to scale (coverage)

• Has false positives (may be a bug)
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Soundness and completeness
• Soundness: if the program contains an error, the analysis will report an error.

• "Sound for reporting correctness"

• Completeness: if the analysis reports an error, the program will contain an

error.

• "Complete for reporting correctness"

Note: these terms have different meaning in other contexts
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Soundness and completeness (cont.)
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Program verification
• Properties: true for every possible execution

• Safety: nothing bad happens (e.g., buffer overflow)

• Liveness: something good eventually happens

• Program verification in security

• How to prove safety properties
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How to reason about safety
• Approach: build up confidence on a function-by-function/module-by-module

basis

• Modularity provides boundaries for our reasoning

• Preconditions: what must hold for function to operate correctly

• Postconditions: what holds after function completes

• These basically describe a contract  for using the module

• Most basic contract? Argument number and types
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Functions in verification
• Mathematical function : f(x) -> y

• Individual statement can be considered as a function

• Preconditions: what must hold for correctness of the statement

• Postcondition: what holds after execution of the statement

• Stmt #1’s postcondition should logically imply Stmt #2’s precondition

• Invariants : conditions that always hold at a given point in a function
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Memory safety
• Memory access/dereference as a function

• What is the precondition for the correctness of this function?

  byte deref(byte *p) { 
    return *p; 
  }
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Memory safety (cont.)
• What is the precondition for the correctness of this function?

  /* p != NULL &&
     p does not point to freed object &&
     p does not point to unintialized memory &&
     p is with the upper and lower bounds */ 
  byte deref(byte *p) { 
    return *p; 
  }
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Verification (1)
• Proving precondition -> postcondition

• Given preconditions and postconditions

• Specifying what obligations caller has (precondition) and what callers

are entitled to rely upon (postcondition)

• Verify: no matter how function is called

• If precondition is met at function's entrance

• then postcondition is guaranteed to hold upon function's return
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Verification (2)
• Basic idea:

• Write down a precondition and postcondition for every line of code

• Use logical reasoning
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Verification (3)
• Requirement

• Each statement's postcondition must match (imply) precondition of any

following statement

• At every point between statements, write down invariants that must be

true at that point

• Invariant is postcondition for preceding statement, and

precondition for next one
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Example
• How to proof the following function won't have buffer overflow?

  int sum(int a[], size_t n) { 
    int total = 0; 
    for (size_t i=0; i<n; i++) 
      total += a[i]; 
    return total; 
  }
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Example

44



Example
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Example
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Example
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Example
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Summary
• Software security: vulnerabilities

• Exploits: the most popular way of getting attacked, including malware

• Memory vulnerabilities: root causes, how to exploit, defense

mechanisms

• How to find vulnerabilities: fuzzing, symbolic execution, static analysis,

verification

• Other vulnerabilities?

• In future sessions
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