
Sandbox and SFI

Chengyu Song

Slides modified from
Dawn Song

1

Sandbox
• A controlled environment for untrusted applications, by limiting system

resources they can access

• File system

• IPC

• CPU and memory

• Disk and I/O rates

• Network access

• Sensors (camera/microphone/GPS/...)

2

Mechanisms: chroot
chroot() changes the root directory of the calling process to that
specified in path. This directory will be used for pathnames
beginning with /. The root directory is inherited by all children of
the calling process.

Only a privileged process (Linux: one with the CAP_SYS_CHROOT
capability) may call chroot().

In the past, chroot() has been used by daemons to restrict
themselves prior to passing paths supplied by untrusted users to
system calls such as open(2).

3

chroot limitations
However, if a folder is moved out of the chroot directory,
an attacker can exploit that to get out of the chroot directory
as well. The easiest way to do that is to chdir(2) to the
to-be-moved directory, wait for it to be moved out, then open
a path like ../../../etc/passwd.

It is not intended to be used for any kind of security purpose,
neither to fully sandbox a process nor to restrict filesystem
system calls.

4

Mechanisms: Jail
• FreeBSD jail, an OS-level virtualization mechanism

• Each jail is a virtual environment running on the host machine with its

own files, processes, user and superuser accounts.

• Each jail is sealed from the others

• The limited scope of a jail allows system administrators to delegate

several tasks which require superuser access without handing out

complete control over the system

• https://www.freebsd.org/cgi/man.cgi?query=jail&format=html

5

https://www.freebsd.org/cgi/man.cgi?query=jail&format=html

Mechanisms: namespaces
• Linux namespaces (similar to jail): virtualization and isolation

• Cgroup: Cgroup root directory (resources quota)

• IPC: System V IPC, POSIX message queues

• Network: Network devices, stacks, ports, etc.

• Mount: Mount points

• PID: Process IDs

• User: User and group IDs

• UTS: Hostname and NIS domain name

6

Mechanisms: more OS-level virtualization
mechanisms
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

• Docker, containers, LXC, etc

7

https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Mechanisms: reusing DAC & MAC
• Windows: security tokens, job object, desktop object, integrity level

• Linux: DAC, capabilities, SELinux

8

Examples: browser sandbox

9

Examples: iOS sandbox
• Mandatory Access Control Framework (MACF)

• Apple Mobile File Integrity (AMFI)

• Entitlements

• Permission system

10

Examples: Android sandbox
• UID-based isolation

• SEAndroid

• Binder

• Permission system

11

Vulnerabilities in reference monitors
• Memory corruption

• Incomplete mediation

• Time-of-check-to-time-of-use (TOCTTOU)

• Confused deputy

12

TOCTTOU
/* Process A */ | /* Process B */
/* Part of a setuid program */ |
if (access("file", W_OK) != 0) { |
 exit(1); |
} |
 | /* After the access check */
 | symlink("/etc/passwd", "file");
 | /* Before the open, "file" */
 | /* points to the password */
fd = open("file", O_WRONLY); |
write(fd, buffer, sizeof |
 (buffer)); |

13

TOCTTOU
• In Unix, often occurs with file system calls because system calls are not

atomic

• But, TOCTTOU vulnerabilities can arise anywhere there is mutable state

shared between two or more entities

14

Confused deputy
• (SYSX)FORT is a fortran compiler, that:

• Needs to write stats to (SYSX)STAT

• Allows user to provide filename where debugging output is written to at

run time

• Problem

• Billing info is stored in the home directory. So user can provide billing

filename to compiler and trash the directory with debugging info.

15

Confused deputy
• Solutions?

• Capability delegation

• ACL: setuid()

• Problems?

• Trust

16

Software fault isolation (SFI)
• OS-level sandboxes work at process level,

• What about sub-process level components?

• Browser process: HTML parser, JS engine, etc.

• Monolithic kernel: file systems, drivers, etc.

• SFI: sandbox inside the process' address space

17

SFI mechanisms
• How can a compromised/malicious module attack others?

18

SFI mechanisms
• How can a compromised/malicious module attack others?

• Read, write, invoke

19

SFI mechanisms
• How can you confine a module's capability to read, write, invoke?

• Hardware features?

• Software-based approach: check/mask the target address

• inline reference monitor

20

Native client
https://developer.chrome.com/native-client

21

https://developer.chrome.com/native-client

API Integrity
• How to do inter-module communication under SFI?

• Can you pass a pointer?

• How to enforce fine-grained access control over objects?

• A specification

22

