
ROP and CFI

Chengyu Song

1

Lab1 tips
• crackme: inputs to printf and scanf

• crackme0x00: free!!

• crackme0x01: what is the input to scanf ?

• crackme0x02: calculation, but really?

• crackme0x03: which one is the correct branch?

• crackme0x04: what does the loop in check do?

• crackme0x05: one more check, what does parell do?

2

Prevent exploit against stack buffer overflow
• What are the key steps?

1. Overwrite the return address, sequentially → stack canary

2. Jump to the beginning of the shellcode → ASLR

3. Execute the shellcode → DEP/NX

3

Prevention bypass
• Can we bypass these preventions?

1. Stack canary

2. ASLR

3. DEP/NX

4

Code reuse attacks (CRA)
• Q1: if we cannot inject code, can we just reuse existing code?

• Q2: does CRA has the same capability as shellcode?

• Q3: is CRA general enough (i.e., Turing-complete)?

5

Return-to-libc attacks (1)
void start() {
 printf("IOLI Crackme Level 0x00\n");
 printf("Password:");

 char buf[32];
 memset(buf, 0, sizeof(buf));
 read(0, buf, 256);

 if (!strcmp(buf, "250382"))
 printf("Password OK :)\n");
 else
 printf("Invalid Password!\n");
}

6

Return-to-libc attacks (2)
int main(int argc, char *argv[])
{
 setvbuf(stdout, NULL, _IONBF, 0);
 setvbuf(stdin, NULL, _IONBF, 0);

 void *self = dlopen(NULL, RTLD_NOW);
 printf("stack : %p\n", &argc);
 printf("printf(): %p\n", dlsym(self, "printf"));

 start();

 return 0;
}

7

Return-to-libc attacks (3)
• Task 1: exploit the buffer overflow and print out "Password OK :)"

• Challenge: with DEP, you cannot inject shellcode, so how?

 [printf's frame] [buf]
 [ra] [.....]
 [args...] [ra] -> printf
 [fmt] [dummy]
 [caller's frame] [arg1] -> "Password OK :)"

8

Return-to-libc attacks (4)
• Task 2: can you start a shell?

 [buf]
 [.....]
 [ra] -> system
 [dummy]
 [arg1] -> "/bin/sh"

9

Return-to-libc attacks (5)
• Task 3: can you chain two function calls?

 [buf]
 [.....]
 [old-ra] -> 1) printf
 [ra] -------------------> 2) system
 [old-arg1] -> 1) "Password OK :)"
 [arg1] -> "/bin/sh"

10

Return-oriented Programming
• Can we do arbitrary computation with CRA?

• ROP gadgets: code snippets ends with a ret instruction

• Do not need to be intended instructions (x86 instructions are variable

length so jumping to the middle of an instruction could make the

following byte stream interpreted differently).

• What kind of primitives do we need?

• Load/store, arithmetic/logic, control-flow, syscall, function calls

11

ROP: load constant

12

ROP: load from memory

13

ROP: store to memory

14

ROP: simple add

15

ROP: unconditional jump

16

ROP: other operations
• Please refer to the paper for details.

17

https://hovav.net/ucsd/dist/geometry.pdf

Other flavors of CRA
• Call-oriented programming

• Jump-oriented programming

• Counterfeit object-oriented programming

18

https://dl.acm.org/doi/pdf/10.1145/1866307.1866370
https://ieeexplore.ieee.org/iel7/7160813/7163005/07163058.pdf

Defend against ROP
• Key steps in ROP

1. Control stack/ ESP

2. Locate gadgets

• What defenses would work?

19

Arm race: round 0
• Defense: Stack canary → Offense: stack pivot

• Defense: ASLR → Offense: information leak

20

Arm race: round 1
• Defense: shadow stack → Offense: CRA without returns

• Defense: fine-grained randomization → Offense: Just-in-time CRA

21

https://ieeexplore.ieee.org/iel7/6547086/6547088/06547134.pdf

Control-flow Integrity (CFI)
• One simple principle: runtime control-flow should not deviate from the control-

flow graph (CFG) derived from analysis

• Both forward-edge (calls/jmps) and backward-edge (ret)

22

CFI: CFG construction
• Binary analysis: coarse-grained, call to any valid function begins, return to

any callsites

• Static source code analysis: fine-grained, many implementations

• Dynamic analysis accurate, with higher performance overhead

23

https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_zhang.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://dl.acm.org/doi/pdf/10.1145/3243734.3243797

CFI: enforcement
• Labeling

• Shadow stack

• Finite set

• Encryption: CFI and ASLR is equivalent!!

• Hardware

24

https://dl.acm.org/doi/pdf/10.1145/2714576.2714635
https://cseweb.ucsd.edu/~lerner/papers/ivtbl-ndss16.pdf
https://dl.acm.org/doi/pdf/10.1145/2810103.2813676

CFI: challenges
• How to support dynamic linking: Modular-CFI

• How to support dynamic code generation (JIT): RockJIT

25

http://www.cse.psu.edu/~gxt29/papers/mcfi.pdf
https://dl.acm.org/doi/pdf/10.1145/2660267.2660281

CFI availability
• Microsoft: control-flow guard (/guard:cf)

• Windows 8.1 and VS 2015 and newer

• Return flow guard

• GCC: vtable verification (VTV)

• Clang: -fsanitize=cfi

• https://clang.llvm.org/docs/ControlFlowIntegrity.html

• Intel: Control-flow Enforcement Technology (CET)

• ARM: Branch Target Integrity (BTI)

26

Arm race: round 2
• Q: if the control-flow graph (CFG) is not accurate enough to only allow a

single target, can we still launch CRA?

• A: Yes!!

• Against coarse-grained CFI: Out-of-Control

• Against CFI without shadow stack: Losing Control

• Against fine-grained CFI: Control Jujutsu, COOP

27

http://nsl.cs.columbia.edu/projects/minestrone/papers/outofcontrol_oakland14.pdf
https://dl.acm.org/doi/pdf/10.1145/2810103.2813671
https://dl.acm.org/doi/pdf/10.1145/2810103.2813646
https://ieeexplore.ieee.org/iel7/7160813/7163005/07163058.pdf

