ROP and CFI

Chengyu Song

Lab1 tips

crackme: inputs to printf and scanf
crackmeOx00: free!!
crackmeOx01: what is the input to scanf ?
crackmeOx02: calculation, but really?
crackmeOx03: which one is the correct branch?
crackmeOx04: what does the loop in check do?

crackmeOx05: one more check, what does parell do?

Prevent exploit against stack buffer overflow

» What are the key steps?
1. Overwrite the return address, sequentially — stack canary
/. Jump to the beginning of the shellcode — ASLR
5. Execute the shellcode = DEP/NX

Prevention bypass

» Can we bypass these preventions?
1. Stack canary
2. ASLR
3. DEP/NX

Code reuse attacks (CRA)

Q1: if we cannot inject code, can we just reuse existing code?
Q2: does CRA has the same capability as shellcode?

Q3:is CRA general enough (i.e., Turing-complete)?

Return-to-libc attacks (1)

void start() {
printf("IOLI Crackme Level 0x00\n");
printf("Password:");

char buf[32];
memset(buf, 0, sizeof(buf));
read(@, buf, 256);

if (!strcmp(buf, "250382"))
printf("Password OK :)\n'");
else
printf("Invalid Password!\n");

Return-to-libc attacks (2)

int main(int argc, char *argv[])

{
setvbuf(stdout, NULL, _IONBF, ©);

setvbuf(stdin, NULL, _IONBF, 0);

void *self = dlopen(NULL, RTLD _NOW);
printf("stack : %p\n'", &argc);
printf("printf(): %p\n", dlsym(self, "printf"));

start();

return 0;

Return-to-libc attacks (3)

Task 1: exploit the buffer overflow and print out "Password OK)"

Challenge: with DEP, you cannot inject shellcode, so how?

[printf's frame]
[ra]

[args...]

[fmt]

[caller's frame]

Return-to-libc attacks (4)

» Task 2: can you start a shell?

[ra] -> system
[dummy]
[argl] -> "/bin/sh"

Return-to-libc attacks (5)

» Task 3: can you chain two function calls?

[buf]

[.....]

[old-ra] -> 1) printf

[ra] - > 2) system

[old-argl] -> 1) "Password OK :)"
[argl 1 -> "/bin/sh"

10

11

Return-oriented Programming

Can we do arbitrary computation with CRA?

ROP gadgets: code snippets ends with a ret instruction
Do not need to be intended instructions (x86 instructions are variable
length so jumping to the middle of an instruction could make the
following byte stream interpreted differently).

What kind of primitives do we need?

Load/store, arithmetic/logic, control-flow, syscall, function calls

ROP: load constant

%esp

Oxdeadbeef

-
L

> pop %edx

-

ret

Figure 2: Load the constant Oxdeadbeef into %edx.

12

ROP: load from memory

+ 64

%esp

™ movl 64(%eax), Yoeax
ret

-

Oxdeadbeef

™ pop Y%eax
ret

Figure 3: Load a word in memory into %eax.

13

ROP: store to memory

™ movl %eax, 24(%edx)
ret

%esp —»

+24 -

™ pop Y%edx
ret

Figure 4: Store %eax to a word in memory.

14

ROP: simple add

%esp

™ addl (%edx), %eax
push %edi
ret

> pop %edx
ret

= ret

>

Oxdeadbeef

> pop Yedi
ret

Figure 5: Simple add into %eax.

15

ROP: unconditional jump

L]

™ pop %esp
ret

%esp — -

Figure 10: An infinite loop by means of an unconditional jump.

16

ROP: other operations

* Please refer to the - for details.

https://hovav.net/ucsd/dist/geometry.pdf

Other flavors of CRA

Call-oriented programming

https://dl.acm.org/doi/pdf/10.1145/1866307.1866370
https://ieeexplore.ieee.org/iel7/7160813/7163005/07163058.pdf

Defend against ROP

« Key steps in ROP
1. Control stack/ ESP
/. Locate gadgets

» What defenses would work?

19

Arm race: round 0

» Defense: Stack canary — Offense: stack pivot

» Defense: ASLR — Offense: information leak

20

Arm race: round 1

Defense: shadow stack = Offense: CRA without returns

Defense: fine-grained randomization — Offense:_

21

https://ieeexplore.ieee.org/iel7/6547086/6547088/06547134.pdf

22

Control-flow Integrity (CFl)

One simple principle: runtime control-flow should not deviate from the control-
flow graph (CFG) derived from analysis

Both forward-edge (calls/jmps) and backward-edge (ret)

CFI: CFG construction

_: coarse-grained, call to any valid function begins, return to
any callsites

m: fine-grained, many implementations

Dynamic analysis accurate, with higher performance overhead

23

https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_zhang.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://dl.acm.org/doi/pdf/10.1145/3243734.3243797

CFl: enforcement

Labeling

Shadow stack
P~

Encryption: CFl and ASLR is equivalent!!

Hardware

24

https://dl.acm.org/doi/pdf/10.1145/2714576.2714635
https://cseweb.ucsd.edu/~lerner/papers/ivtbl-ndss16.pdf
https://dl.acm.org/doi/pdf/10.1145/2810103.2813676

CFl: challenges
How to support dynamic linking: _

How to support dynamic code generation (JIT): -

http://www.cse.psu.edu/~gxt29/papers/mcfi.pdf
https://dl.acm.org/doi/pdf/10.1145/2660267.2660281

CFl availability

Microsoft: control-flow guard (/guard:cf)
Windows 8.1 and VS 2015 and newer
Return flow guard
GCC: vtable verification (VTV)
Clang: -fsanitize=cfi
https.//clang.llvm.org/docs/ControlFlowIntegrity.html
Intel: Control-flow Enforcement Technology (CET)

ARM: Branch Target Integrity (BTI)

26

Arm race: round 2

Q: if the control-flow graph (CFG) is not accurate enough to only allow a
single target, can we still launch CRA?
A:Yesl!!

Against coarse-grained CFl: Out-of-Control

Against CFl without shadow stack: Losing Control

Against fine-grained CFI: Control Jujutsu, COOP

27

http://nsl.cs.columbia.edu/projects/minestrone/papers/outofcontrol_oakland14.pdf
https://dl.acm.org/doi/pdf/10.1145/2810103.2813671
https://dl.acm.org/doi/pdf/10.1145/2810103.2813646
https://ieeexplore.ieee.org/iel7/7160813/7163005/07163058.pdf

