
Chengyu Song 09/27/2022

CS255: Computer Security
Malware

Lab1: Reverse Engineering

• Goal: understand what the program does and how it works

• Approaches

• Static: disassembler (objdump, radare2, IDA, Ghidra, Binary Ninja)

• Dynamic: debugging (gdb, lldb, windbg)

• Why useful?

• QA: make sure the code is correct

• Bug fixing: figure out why

• Malware analysis

Malware

• Malware = Malicious Software

• Virus

• Worm

• Botnet

• Spyware

• Rootkit

• Ransomware

• Crypto miner

• Keylogger

• Remote Control

• etc

Computer Virus

• Virus = code that replicates

• Originates from a theoretical question

• Can a program reproduce itself like organism?

• "Theory of self-reproducing automata", John von Neumann, 1966

• Quine: a=‘a=%r;print(a%%a)';print(a%a)

• Like real virus, computer virus

• Infect other programs for replication

• Hijack the normal workflow for activation

https://en.wikipedia.org/wiki/Quine_(computing)

Propagation of Virus

• General infection strategy: find some code lying around, alter it to include the virus

• Executables, boot sectors, script (including embedded)

• Example one: attached USB thumb drive

• Alter executables it holds to include the virus or autorun script

• So once the drive is attached to another machine, boom

• Example two: email attachment

• Alters attachment to add a copy of itself

Activation of Virus

Payload

• Besides self-reproducing, what else can the virus do?

• Pretty much anything, payload is decoupled from propagation

• Only subject to permissions of the infected program

• Examples

• Brag or exhort (pop up a message)

• Trash files (just to be nasty) or encrypt them (ransomeware)

• Damage hardware (e.g., CIH)

• Keylogging

Computer Worms

• Worm = malware that self-propagates

• Propagation of virus requires certain type of user interaction

• Execute program, open file, insert USB disk, etc

• Worm propagate without user interaction

• How?

• By exploit vulnerabilities of the target system

• Requires interconnection

Notorious Worms (1)

• Morris (1988): the first worm

• Scanning the local subnet

• Exploiting a fingerd buffer overflow

• Exploiting sendmail's DEBUG mode (not a bug!)

• Infected approximately 6,000 machine

• 10% of computers connected to the Internet

• Cost ~ $10 million in downtime and cleanup

Notorious Worms (2)

• ILOVEYOU (2000): email worm

• Propagation through email attachment

• Scans the contacts and sends an email to everyone

• Estimated to have caused $5.5–8.7 billion in
damages and cost US$15 billion for removal

Notorious Worms (3)

• Code Red (2001): fast spreading

• Exploits buffer overflow vulnerability inside MS IIS

• Infected more than 359,000 computers in less than 14 hrs

Copyright UC Regents, Jeff Brown for CAIDA, UCSD.

Notorious Worms (4)

• Slammer (2003): fastest ever

• Exploits buffer overflow vulnerability inside MS SQLServer

• Infected more than 90 percent of vulnerable hosts within 10 mins

Notorious Worms (5)

• Stuxnet (2010): SCADA

• Multi-mode spreading

• Initially spreads via USB (virus-like)

• Once inside a network, quickly spreads internally using Windows RPC

• Geographically clustered

• Iran: 59%; Indonesia: 18%; India: 8%

Notorious Worms (6)

• WannaCry (2017): ransomeware

• Leaked NSA EternalBlue exploit (Windows SMB)

Notorious Worms (7)

• Mirai Botnet (2016)

• Infects vulnerable IoT devices (IP cameras and home routers)

• Common factory default usernames and passwords

• Used to launch DDoS attacks and mine crypto currency

Botnet

• Botnet = malware that is remotely controlled by command and control (C&C)
server

• Collection of compromised hosts (infected in any ways)

• Platform for many attacks

• Spam forwarding (70% of all spam)

• Click fraud / Phishing / Scaware (FakeAV) / Crypto coins

• Distributed denial-of-service (DDoS)

Spyware

• Spyware = malware that collects your activities

• Some people don't consider it as real malware (greyware)

• Google? Facebook?

• But with advances in machine learning, such activities matters a lot more!

Rootkit/Bootkit

• Rootkit/bootkit = malware that hides other malware

• Hide the evidence of infection

• Guarantees persistent

• Usually executes at very low level (kernel, bootloader, firmware, etc)

Motivations
Click Trajectories: End-to-End Analysis of the Spam Value Chain

Motivations
Apple’s walled-garden model

• Why malware is much more common on Android platforms than on iOS?

• They have similar sandbox and permission systems

• They all have app stores

• They all have plenty of vulnerabilities

Malware Infection
How malware gets into your system?

• Virus: require human interaction

• Do not open suspicious files/attachments

• Do not insert unknown USB/Disk

• Do not insert your thumb drive into unknown computer

• Worm & drive-by: exploit software vulnerabilities

• Patch your system as soon as possible

Malware Infection (cont.)
How malware gets into your system?

• Trojan horse: disguise as something legitimate

• Download software from app store or trusted website

• Do not use pirate software

• Check integrity of the software

• Social engineering: motivate you to do something dangerous

• Think twice

Malware Detection

How to detect malware?

Idea #1: use signatures
How antivirus software works

• How does our immune system detect viruses? => signature-based detection

• Antivirus: look for bytes corresponding to the malware

• Where to get the samples?

• How to make sure each signature is unique/good?

• Why effective? replicating nature of malware

• Drove development of multi-billion $$ AV industry

• Limited but necessary

Antivirus
An interesting story ...

The Arm Race

• If you are a virus writer, what would you do to make sure your effort does not
get "wasted" by a signature from the AV industry?

• How do viruses evade the detection of our immune system?

Polymorphic Code
Malware fighting back

• Idea: change the appearance of the code every time it propagates

• How? Encryption!

• Encodes the message so that the adversary cannot recover its original
content without knowing the secret

• Obfuscation (packing)

• Weak (but simple/fast) crypto algorithm works fine too

• Strong crypto algorithm: use random key / initial padding

Unpacking

Polymorphic Propagation

Detecting Polymorphic Malware

• How would you detect a polymorphic malware?

• Idea #1: detect the unpacker/decryptor

• False positives: less code to match, legitimate software also use
obfuscation to protect IP

• Idea #2: decrypt and detect

• Speculative runs the software for a while and scan memory

• But for how long?

The Arm Race

• How to evade auto unpackers or memory scanners?

Metamorphic Code

• Idea: change the syntax of the code every time it propagates

• How? Code rewriter

• Renumber registers

• Change order of conditional code

• Reorder operations not dependent on one another

• Replace one low-level algorithm with another

• Junk dead code

• etc

Metamorphic Code

Detecting Metamorphic Malware

• How would you detect a metamorphic malware?

• Idea: focus on semantics (behaviors) instead of appearance

• Create signatures for malicious behaviors (e.g., syscall-based)

• Monitor dynamic behaviors of a process and detect malicious ones

Malicious Behavior Modeling
Effective and Efficient Malware Detection at the End Host

• How to model malicious behaviors?

• How to check malicious behaviors?

The Arm Race

• Virus-writer countermeasures?

• Anti dynamic analysis

• VM/emulator/debugger detection, triggers, env binding, etc

• Metamorphic syscalls

• Rootkits

Summary
Host side detection

• Deciding whether a software is malicious or not in general, is not decidable

• With theoretical proof (the halting problem)

• In practice, signature/black-list based approach has one big limitation

• Only detects known malware

• VT as an oracle

• What about white list approach, like on iOS

• Much better but still limited

Notes on ML/DL
Is ML/DL a panacea?

• How does ML/DL work?

• Features —> What kind of features are critical to malicious behavior?

• Later in the class

• Outside the Closed World: On Using Machine Learning For Network
Intrusion Detection (ToT)

• Practical Evasion of a Learning-Based Classifier

Malware Mitigations

What to do if infected by
malware?

Malware Removal
Host side mitigations

• Removal

• Quarantine

• Reinstall

• Persistent malware

• Rootkit

• Bootkit

• Firmware malware

Botnet Take Down
Network level mitigations

• How to communicate with another machine (C&C servers)?

• IP address => firewall blocking

• DNS names => DNS sinkhole

• Domain name generation => algorithm extraction

• Decentralize (P2P malware) => poison

Ecosystem Take Down
Block the monetization channels

Host Intrusion Detection

Intrusion Detection System

• Constant monitoring: looking for malicious behaviors or policy violations

Intrusion Detection SYSTEM
Major Components

• Monitors: collect data

• Policies/Signatures: define what is normal/malicious

• Policy engine: check if collected data comply policies/match signatures

• Reaction (optional)

Intrusion Detection System
Data sources

• Network IDS

• Course-grained: checking packet headers

• Fine-grained: checking payloads (a.k.a., deep packet inspection)

• Host IDS

• Course-grained: OS level events

• Fine-grained: program internal events

Signatures/Policies

• Signatures: similar to antivirus

• Appearance-base signatures

• Behavior-based signatures

• Policies

• What’s allowed/not allowed/need to be logged/etc

• e.g., accessing to sensitive configurations

Anomaly Detection

• Statistical-based anomaly detection: modeling what’s normal

• Usually ML/DL based

• Problem?

• Unseen inputs/events/samples

• False positives

Attacking IDS

• How would you do it?

Livewire
A Virtual Machine Introspection Based Architecture for Intrusion Detection

• Motivations: why VMI?

• Challenges?

• Solutions?

Livewire
A Virtual Machine Introspection Based Architecture for Intrusion Detection

Livewire
A Virtual Machine Introspection Based Architecture for Intrusion Detection

• Example Policy Modules

• Polling (scanning): lie detector, user program integrity, signature, raw socket

• Event-driven (plant monitors): memory access, NIC access

