# **CS255: Computer Security** Malware

Chengyu Song 09/27/2022

### Lab1: Reverse Engineering

- Goal: understand what the program does and how it works  $\bullet$
- Approaches

  - Static: disassembler (objdump, radare2, IDA, Ghidra, Binary Ninja) • Dynamic: debugging (gdb, lldb, windbg)
- Why useful?
  - QA: make sure the code is correct
  - Bug fixing: figure out why
  - Malware analysis





- Malware = Malicious Software
  - Virus
  - Worm
  - Botnet
  - Spyware
  - Rootkit
  - Ransomware

- Crypto miner
- Keylogger
- Remote Control
- etc

# **Computer Virus**

- Virus = code that replicates
- Originates from a theoretical question
  - Can a program reproduce itself like organism?
  - "Theory of self-reproducing automata", John von Neumann, 1966
  - <u>Quine</u>: a= `a=%r; print (a%%a) '; print (a%a)
- Like real virus, computer virus
  - Infect other programs for replication
  - **Hijack** the normal workflow for activation

# **Propagation of Virus**

- General infection strategy: find some code lying around, alter it to include the virus
  - Executables, boot sectors, script (including embedded)
- Example one: attached USB thumb drive
  - Alter executables it holds to include the virus or **autorun** script
  - So once the drive is attached to another machine, boom
- Example two: email attachment
  - Alters attachment to add a copy of itself

### **Activation of Virus**



### Payload

- Besides self-reproducing, what else can the virus do?
  - Pretty much **anything**, payload is decoupled from propagation
    - Only subject to permissions of the infected program
- Examples
  - Brag or exhort (pop up a message)
  - Trash files (just to be nasty) or encrypt them (ransomeware)
  - Damage hardware (e.g., CIH)
  - Keylogging





# **Computer Worms**

- Worm = malware that self-propagates
  - Propagation of virus requires certain type of user interaction
    - Execute program, open file, insert USB disk, etc
  - Worm propagate without user interaction
- How?
  - By exploit vulnerabilities of the target system
  - Requires interconnection

# **Notorious Worms (1)**

- Morris (1988): the first worm
  - Scanning the local subnet
  - Exploiting a fingerd buffer overflow
  - Exploiting sendmail's DEBUG mode (not a bug!)
  - Infected approximately 6,000 machine
    - 10% of computers connected to the Internet
  - Cost ~ \$10 million in downtime and cleanup

# **Notorious Worms (2)**

- ILOVEYOU (2000): email worm
  - Propagation through email attachment
  - Scans the contacts and sends an email to everyone
  - Estimated to have caused \$5.5–8.7 billion in damages and cost US\$15 billion for removal



Un e-mail con el virus ILOVEYOU en todo su esplendor.

# **Notorious Worms (3)**

- Code Red (2001): fast spreading
  - Exploits buffer overflow vulnerability inside MS IIS
  - Infected more than 359,000 computers in less than 14 hrs



Copyright UC Regents, Jeff Brown for CAIDA, UCSD.

# **Notorious Worms (4)**

- Slammer (2003): fastest ever
  - Exploits buffer overflow vulnerability inside MS SQLServer
  - Infected more than 90 percent of vulnerable hosts within 10 mins



# **Notorious Worms (5)**

- Stuxnet (2010): SCADA
  - Multi-mode spreading
    - Initially spreads via USB (virus-like)
  - Geographically clustered
    - Iran: 59%; Indonesia: 18%; India: 8%

• Once inside a network, quickly spreads internally using Windows RPC

# Notorious Worms (6)

#### • WannaCry (2017): ransomeware

• Leaked NSA EternalBlue exploit (Windows SMB)

| 6                                     | Wana Decrypt0r 2.0                                                                                                                                                                                                                                                |                                                                                            |                                                   | ×      |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|--------|
|                                       | Ooops, your files have been e                                                                                                                                                                                                                                     | encrypted!                                                                                 | English                                           | v      |
| 1                                     | What Happened to My Computer?<br>Your important files are encrypted.<br>Many of your documents, photos, videos, databases<br>accessible because they have been encrypted. May's<br>recover your files, but do not waste your time. Nob<br>our decryption service. | s and other files are<br>be you are busy lool<br>ody can recover yo                        | no longer<br>king for a way t<br>ur files without | n<br>t |
| Payment will be raised on             | Can I Recover My Files?                                                                                                                                                                                                                                           |                                                                                            |                                                   |        |
| 5/16/2017 00:47:55                    | Sure. We guarantee that you can recover all your fi                                                                                                                                                                                                               | les safely and easily                                                                      | . But you have                                    |        |
| Time Left<br>02:23:57:37              | not so enough time.<br>You can decrypt some of your files for free. Try not<br>But if you want to decrypt all your files, you need to<br>You only have 3 days to submit the payment. After<br>Also, if you don't pay in 7 days, you won't be able to              | w by clicking <decr<br>o pay.<br/>that the price will b<br/>o recover your files</decr<br> | ypt>.<br>e doubled.<br>forever.                   |        |
| Your files will be lost on            | We will have free events for users who are so poor                                                                                                                                                                                                                | that they couldn't p                                                                       | oay in 6 months                                   | £.     |
| 5/20/2017 00:47:55                    | How Do I Pay?<br>Payment is accepted in Bitcoin only. For more info<br>Please check the current price of Bitcoin and buy se                                                                                                                                       | rmation, click <abo<br>ome bitcoins. For m</abo<br>                                        | ut bitcoin>.<br>ore informatio                    | n,     |
| 06:23:57:37                           | Click <how bitcoins="" buy="" to="">.<br/>And send the correct amount to the address specific<br/>After your payment, click <check payment="">. Best t</check></how>                                                                                              | ed in this window.<br>ime to check: 9:00a                                                  | m - 11:00am                                       | ~      |
| About bitcoin<br>How to buy bitcoins? | Send \$300 worth of bitcoin to this address:<br>12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw                                                                                                                                                                                |                                                                                            |                                                   | Сору   |
| <u>Contact Us</u>                     | Check Payment                                                                                                                                                                                                                                                     | <u>D</u> ecr                                                                               | ypt                                               |        |

# Notorious Worms (7)

- Mirai Botnet (2016)
  - Infects vulnerable IoT devices (IP cameras and home routers)
    - Common factory default usernames and passwords
  - Used to launch DDoS attacks and mine crypto currency

### Botnet

- server
  - Collection of compromised hosts (infected in any ways)
  - Platform for many attacks
    - Spam forwarding (70% of all spam)
    - Click fraud / Phishing / Scaware (FakeAV) / Crypto coins
    - Distributed denial-of-service (DDoS)

#### Botnet = malware that is remotely controlled by command and control (C&C)





- Spyware = malware that collects your activities
  - Some people don't consider it as real malware (greyware)
    - Google? Facebook?
  - But with advances in machine learning, such activities matters a lot more!

### **Rootkit/Bootkit**

- Rootkit/bootkit = malware that hides other malware
  - Hide the evidence of infection
  - Guarantees persistent
  - Usually executes at very low level (kernel, bootloader, firmware, etc)

### **Motivations** Click Trajectories: End-to-End Analysis of the Spam Value Chain



Figure 1: Infrastructure involved in a single URL's value chain, including advertisement, click support and realization steps.



### **Motivations Apple's walled-garden model**

- - They have similar sandbox and permission systems
  - They all have app stores
  - They all have plenty of vulnerabilities

# Why malware is much more common on Android platforms than on iOS?

#### **Malware Infection** How malware gets into your system?

- Virus: require human interaction
  - Do not open suspicious files/attachments
  - Do not insert unknown USB/Disk
  - Do not insert your thumb drive into unknown computer
- Worm & drive-by: exploit software vulnerabilities
  - Patch your system as soon as possible

#### **Malware Infection (cont.)** How malware gets into your system?

- Trojan horse: disguise as something legitimate
  - Download software from app store or trusted website
  - Do not use pirate software
  - Check integrity of the software
- Social engineering: motivate you to do something dangerous
  - Think twice

# **Malware Detection**



# How to detect malware?

#### Idea #1: use signatures How antivirus software works

- How does our immune system detect viruses? => signature-based detection
- Antivirus: look for bytes corresponding to the malware
  - Where to get the samples?
  - How to make sure each signature is unique/good?
  - Why effective? replicating nature of malware
- Drove development of multi-billion \$\$ AV industry
  - Limited but necessary



### **Antivirus** An interesting story ...



VirusTotal is a free service that **analyzes suspicious files and URLs** and facilitates the quick detection of viruses, worms, trojans, and all kinds of malware.

| SHA256:     |        | 71d1723d1269abef2b7    | 78d6c46390452058c047bc44949bad8f493446f947c8bc |
|-------------|--------|------------------------|------------------------------------------------|
| File name:  |        | qvodsetupls27.exe      |                                                |
| Detection r | ratio: | 41 / 46                |                                                |
| Analysis da | ate:   | 2013-04-11 11:56:27 U  | ITC (3 days, 10 hours ago)                     |
|             |        |                        | More details                                   |
| Analysis    | 0      | Additional information | Comments P Votes                               |
| Antivirus   |        |                        | Result                                         |
| Agnitum     |        |                        | Trojan.DR.Agent!AmUdZaEHJGw                    |
| AhnLab-V3   |        |                        | Dropper/Win32.Agent                            |
| AntiVir     |        |                        | DR/MicroJoiner.Gen                             |
| Antiy-AVL   |        |                        | -                                              |
| Avast       |        |                        | Win32:Microjoin-CD [Trj]                       |
| AVG         |        |                        | Dropper.Tiny.I                                 |
| BitDefender |        |                        | Trojan.Crypt.CG                                |
|             |        |                        |                                                |



| Update   |
|----------|
| 20130410 |
| 20130410 |
| 20130411 |
| 20130411 |
| 20130411 |
| 20130411 |
| 20130411 |

### The Arm Race

- If you are a virus writer, what would you do to make sure your effort does not get "wasted" by a signature from the AV industry?
- How do viruses evade the detection of our immune system?

### **Polymorphic Code** Malware fighting back

- Idea: change the appearance of the code every time it propagates
- How? Encryption!
  - content without knowing the secret
- Obfuscation (packing)
  - Weak (but simple/fast) crypto algorithm works fine too
  - Strong crypto algorithm: use random key / initial padding

Encodes the message so that the adversary cannot recover its original

# Unpacking



decryptor applies key to decrypt the glob ...

... and jumps to the decrypted code once stored in memory

# **Polymorphic Propagation**



Once running, virus uses an *encryptor* with a **new key** to propagate

New virus instance bears little resemblance to original

# **Detecting Polymorphic Malware**

- How would you detect a polymorphic malware?
- Idea #1: detect the unpacker/decryptor
  - False positives: less code to match, legitimate software also use obfuscation to protect IP
- Idea #2: decrypt and detect
  - Speculative runs the software for a while and scan memory
    - But for how long?

### **The Arm Race**

• How to evade auto unpackers or memory scanners?

# **Metamorphic Code**

- Idea: change the syntax of the code every time it propagates
- How? Code rewriter
  - Renumber registers
  - Change order of conditional code
  - Reorder operations not dependent on one another
  - Replace one low-level algorithm with another
  - Junk dead code
  - etc

### Metamorphic Code



Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

# **Detecting Metamorphic Malware**

- How would you detect a metamorphic malware?
- Idea: focus on semantics (behaviors) instead of appearance
  - Create signatures for malicious behaviors (e.g., syscall-based)
  - Monitor dynamic behaviors of a process and detect malicious ones

### **Malicious Behavior Modeling** Effective and Efficient Malware Detection at the End Host

- How to model malicious behaviors?
- How to check malicious behaviors?



Figure 1: Partial behavior graph for Netsky.

### The Arm Race

- Virus-writer countermeasures?
  - Anti dynamic analysis
  - VM/emulator/debugger detection, triggers, env binding, etc
- Metamorphic syscalls
- Rootkits

#### Summary Host side detection

- Deciding whether a software is malicious or not in general, is not decidable  $\bullet$ • With theoretical proof (the halting problem)
- In practice, signature/black-list based approach has one big limitation
  - Only detects known malware
  - VT as an oracle
- What about white list approach, like on iOS
  - Much better but still limited

### **Notes on ML/DL** Is ML/DL a panacea?

- How does ML/DL work?
- Later in the class
  - Outside the Closed World: On Using Machine Learning For Network Intrusion Detection (ToT)
  - Practical Evasion of a Learning-Based Classifier

#### Features —> What kind of features are critical to malicious behavior?

# Malware Mitigations



What to do if infected by malware?

#### Malware Removal Host side mitigations

- Removal
- Quarantine
- Reinstall
- Persistent malware
  - Rootkit
  - Bootkit
  - Firmware malware

#### **Botnet Take Down Network level mitigations**

- How to communicate with another machine (C&C servers)?
  - IP address => firewall blocking
  - DNS names => DNS sinkhole
  - Domain name generation => algorithm extraction
  - Decentralize (P2P malware) => poison

### **Ecosystem Take Down** Block the monetization channels



Figure 1: Infrastructure involved in a single URL's value chain, including advertisement, click support and realization steps.



# Host Intrusion Detection

### **Intrusion Detection System**

Constant monitoring: looking for malicious behaviors or policy violations





### Intrusion Detection SYSTEM **Major Components**

- Monitors: collect data
- Policies/Signatures: define what is normal/malicious
- Policy engine: check if collected data comply policies/match signatures
- Reaction (optional)



### Intrusion Detection System **Data sources**

- Network IDS
  - Course-grained: checking packet headers
  - Fine-grained: checking payloads (a.k.a., deep packet inspection)
- Host IDS
  - Course-grained: OS level events
  - Fine-grained: program internal events



# Signatures/Policies

- Signatures: similar to antivirus
  - Appearance-base signatures
  - Behavior-based signatures
- Policies
  - What's allowed/not allowed/need to be logged/etc
    - e.g., accessing to sensitive configurations

I to be logged/etc nfigurations

# **Anomaly Detection**

- Statistical-based anomaly detection: modeling what's normal
  - Usually ML/DL based
- Problem?
  - Unseen inputs/events/samples
  - False positives

## Attacking IDS

• How would you do it?

# <text>

A .



#### **Livewire** A Virtual Machine Introspection Based Architecture for Intrusion Detection

- Motivations: why VMI?
- Challenges?
- Solutions?



#### **Livewire** A Virtual Machine Introspection Based Architecture for Intrusion Detection





### Livewire

- Example Policy Modules

  - Event-driven (plant monitors): memory access, NIC access

#### **A Virtual Machine Introspection Based Architecture for Intrusion Detection**

• Polling (scanning): lie detector, user program integrity, signature, raw socket