Crypto II: Public Key Cryptography

Chengyu Song

Slides modified from Dawn Song, Dan Boneh, David Wagner, Doug Tygar

Administrivia

- Midterm
- Lab2
 - Due: next Monday

Overview

- Cryptography: secure communication over insecure communication channels
- Three goals
 - Confidentiality
 - Integrity
 - Authenticity
- Last lecture: symmetric-key -> confidentiality and authenticity
- This lecture: HMAC for integrity, public key, digital signature, certificate

Hash functions

- Properties
- Variable input size
- Fixed output size (e.g., 512 bits)
- Efficient to compute
 - One way only!
- Pseudo-random (mixes up input well)
 - Block cipher: two ways

Collisions

- Collision occurs when
- x
 eq y but H(x) = H(y)
- Since input space >> output space, collisions are guaranteed to happen
 - The question is, can you control it

Birthday paradox

- Ignore leap days
- Probability that two people are born on same day is 1/365
- How many people until probability of at least one common birthday > 50%?
- How many people until probability of at least one common birthday > 99%?

Birthday paradox

- Ignore leap days
- Probability that two people are born on same day is 1/365
- How many people until probability of at least one common birthday > 50%?

• Only 23!

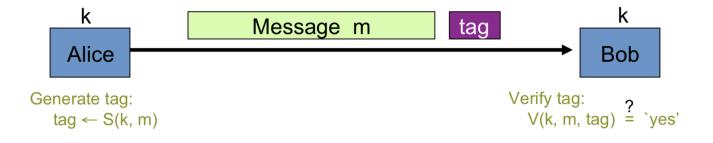
- How many people until probability of at least one common birthday > 99%?
 - Only 70!

Probability of collision

- Suppose hash value range is n
- And k inputs are hashed
- Probability of collision is

$$P(n,k) = 1 - rac{n!}{(n-k)!n^k} pprox 1 - e^{-k^2/2n}$$

Cryptographic hash functions


- Cryptogtaphic hash functions add conditions
- Preimage resistance
 - Given h, intractable to find y such that H(y) = h
- Second preimage resistance
 - Given x, intractable to find $y \neq x$ such that H(y) = H(x)
- Collision resistance
 - Intractable to find x,y such that y
 eq x and H(y) = H(x)

We have a hash function crisis

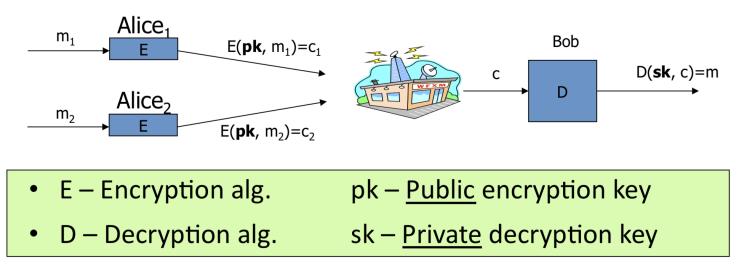
- Popular hash function MD5
 - Thoroughly broken
- Government standard function SHA-1, SHA-2
 - Theoretical weaknesses
 - SHA-1 is broken this year
- "New" cryptographic hash function SHA-3
 - Too new to fully evaluate
 - Maybe good enough

Message authentication code (MAC)

- Goal: provide message integrity (no confidentiality)
 - Example: Protecting public binaries on disk

NOTE: non-keyed checksum/hash is an insecure MAC !!

Secure MAC


- Attacker's power: chosen message attack
 - for m_1, m_2, \ldots, m_q attacker is given $t_i \leftarrow S(k,m)$
- Attacker's goal: existential forgery
 - produce a **new** valid message/tag pair (m,t) such that
 - $(m,t)
 ot\in \{(m_1,t_1),(m_2,t_2),\ldots,(m_q,t_q)\}$
- A secure PRF gives a secure MAC:
 - S(k,m) = F(k,m)
 - V(k,m,t): output 'yes' if t=F(k,m) and 'no' otherwise

HMAC (Hash-MAC)

- Most widely used MAC on the Internet
- Building a MAC out of a hash function H (e.g., SHA-256)
- Standardized method:
 - opad, ipad: fixed strings
 - $S(k,m) = H(k \oplus opad, H(k \oplus ipad, m))$

Public-key encryption

• Motivation: how to securely exchange keys?

Algorithms E, D are publicly known.

Public-key encryption

- **Definition**: a public-key encryption system is a triple of algorithms (G, E, D)
 - G(): outputs a valid and randomized key pair (pk,sk)
 - E(pk,m): given $m\in M$ outputs $c\in C$
 - D(sk,c): given $c\in C$ outputs $m\in M$ or ot
 - Consistency: orall (pk,sk) outputs by G
 - $orall m \in M: D(sk, E(pk, m)) = m$

Trapdoor function (TDF)

- A trapdoor function is a function that is easy to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special information, i.e.,
 - $E(pk,\cdot)$ is efficient
 - $D(sk,\cdot)$ is also efficient
 - But given c=E(pk,m) and pk, it is difficult to find m

Example TDF

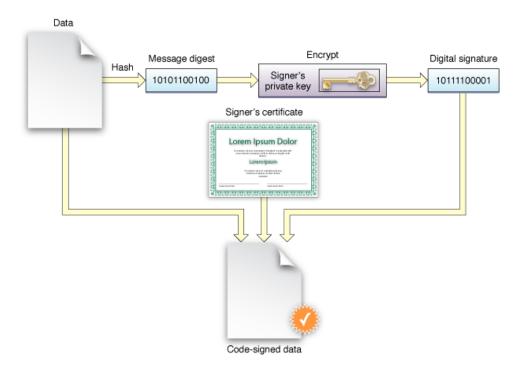
- RSA (Rivest-Shamir-Adleman): integer factorization
- DH (Diffie-Hellman): discrete logarithm
- ECDH (Elliptic-curve Diffie-Hellman): discrete logarithm

Digital signatures

Goal: bind document to author

• Problem: attacker can copy Bob's signature from one document to another

Digital signatures


- Solution: make signature depend on document
- **Example**: signatures from trapdoor functions (e.g. RSA)

```
sign(sk, m) := F^{-1} (sk, H(m))
Verify(pk, m, sig) := accept if F(pk, sig) = H(m)
reject otherwise
```


Digital Signatures: applications

Software distribution

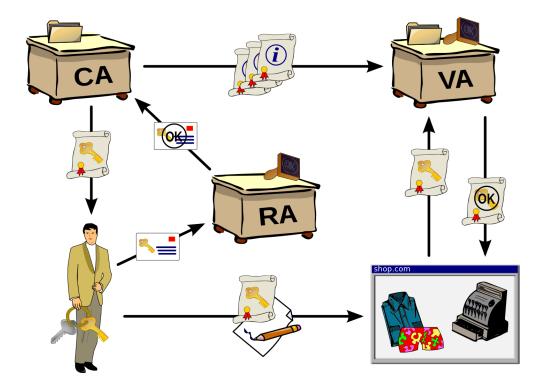
Certificates

- Problem1: how do I know which key belongs to whom?
- Certificate: bind Bob's ID to his \boldsymbol{pk}

Example

🔄 GeoTrust Global CA	
→ 📴 Google Internet Aut	hority G2
→ 🔄 www.google.com	
_ •••	<u>_</u>
www.google.com Issued by: Google Internet Authority G2 Expires: Wednesday, January 24, 2018 at 5:30:00 AM Pacific Standard Time This certificate is valid	
▶ Trust	
▼ Details	
Subject Name	
Country	US
State/Province	California
Locality	Mountain View
Organization	Google Inc
Common Name	www.google.com
Issuer Name	
Country	
Organization	-
Common Name	Google Internet Authority G2
Serial Number	2472520656522629218
Version	3
Signature Algorithm	SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)
Parameters	None
	Wednesday, November 1, 2017 at 6:30:00 AM Pacific Daylight Time
Not Valid After	Wednesday, January 24, 2018 at 5:30:00 AM Pacific Standard Time
Public Key Info	
	Elliptic Curve Public Key (1.2.840.10045.2.1)
-	Elliptic Curve secp256r1 (1.2.840.10045.3.1.7)
	65 bytes : 04 23 54 8A BD 3B B6 B0
Key Size	•
	Encrypt, Verify, Derive
, souge	
Signature	256 bytes : 04 71 6A 0F 32 8B B0 95

Certificate Authority (CA)


- Problem2: how would I trust a certificate?
- CA: digitally signs a certificate to make it valid

Root CA

- Problem3: how do I obtain the CA's public key to verify the certificate?
- Root CA: public key pre-installed in your system/browser and trusted by default

Public key infrastructure (PKI)

Certificate revocation

- What happens if Bob loses his secret key sk?
 - Certificate on pk_{bob} must be revoked
- Revocation methods:
 - Expiration: certificates active in fixed time window (one year)
 - Certificate Revocation Lists (CRLs):
 - CA publishes a list of revoked certificates
- Online Certificate Status Protocol (OCSP)

Problems of PKI

- Hard to acquire a certificate
 - Better now with services like "Let's Encrypt"
- Rogue root CA
 - Comodo and DigiNotar CAs hacked, incorrectly issue certs for gmail.com, yahoo.com, and many others
 - CA:Symantec Issues
 - Distrusting WoSign and StartCom Certificates

For next class ...

• Network Security I: Protocol Security