
Access Control

Chengyu Song

Slides modified from
John Mitch, David Wagner, and Dawn Song

1

Overview of OS security
• Problems

• An application may be a malware

• A benign software can be compromised and becomes malicious

• Goal: how can we still protect the system?

• Approach: security system architecture that follows a set of basic design

principles

2

Principles of secure design
• Compartmentation

• Isolation

• Principle of least privilege

• Access control

• Complete mediation, tamper proof, correctness

• Defense in depth

• Keep it simple

3

First idea: compartmentation

4

Compartmentation you have seen
• In ships

• In buildings

• At home

• What was the first concept you learn in the OS class?

5

Isolation
• Mechanisms to enforce the separation

• Reference monitor

• Hardware reference monitors

• Examples?

• Software reference monitors

• Examples?

6

Software reference monitors
• Kernel access control mechanisms

• Inlined reference monitors

• CFI, SFI, memory safety

7

OS access control
• Kernel reference monitor

• Who (subject) gets to access what (object) and how (rights)

• Goal: protect the confidentiality and integrity of objects

• Older than computers, policies were created for accessing classified

documents, e.g.,

• Bell--LaPadula Model (confidentiality)

• Biba model (integrity)

8

Access control in computer systems
• Subject: users (processes)

• Object: all other OS abstractions

• Including other processes

• Rights

• Unix: read, write, execute (rwx)

• Windows: more complicated

9

Principles of access control
• Complete mediation: any access to any object should be checked by the

access control system

• Tamper proof: data used by the access control system should be protected

from illegal modification

• Correctness: the correctness of the access control system should be verifiable

10

Complete mediation

11

Access control matrix

• Problem: sparse, many cells are empty

12

Access control lists (ACL)
• ACL: associate access rights with objects

13

Capabilities
• Cap: associate access rights with subjects

14

ACLs and capabilities
• Capabilities are easier to transfer

• They are like keys, can handoff, does not depend on subject

• In practice, ACLs are easier to manage

• Object-centric, easy to grant, revoke

• To revoke capabilities, have to keep track of all subjects that have the

capability – a challenging problem

15

ACLs and capabilities (cont.)
• ACL is the de-facto model for file protection. Why?

• Capabilities are widely used in mobile systems. Why?

• Hint: length of the list

16

Unix access control model
$ ll sec1.html
-rw-r--r-- 1 csong staff 3.4K Jun 2 11:31 sec1.html

• Unix uses ACLs: rights are associated with files

• Three sets of rights: owner, group, others

17

Owners
• Q: who gets to assign the access rights?

• A: the owner of the object

18

Groups
• Motivations: ACLs have a problem when objects are heavily shared the ACLs

become very large

• Hard to embed into inode

• Solution: put subject into groups (roles)

• Administrator, PowerUser, User, Guest

• Assign permissions to groups/roles; each user gets permission

19

Role-Based Access Control (RBAC)

20

Unix access control rights
• Files

• Literal: read, write content and execute

• Directories

• Read: read file names, but not attributes

• Write: create, rename, and delete files

• Execute: read file attributes, list files

21

DAC and Root
• The access control model we have discussed so far is called Discretionary

Access Control (DAC)

• Including both ACLs and capabilities

• Root is a special user in DAC who can override any existing policies e.g.,

• Change the owner/group of any files

• Change the access rights of any files

• This is the reason why attackers are after root

22

Users and processes
• FACT: although ACLs use users as subject, the OS actually treats processes as

subjects

• Processes act on behalf of the users, like a proxy

• Q: how to decide/change the identity (user id) of a process?

• A1: inherited from its parent process unless

• A2: changed by the process (via setuid() system call) or

• A3: executed a setuid program

23

Process tree (Unix)
• The first process of the *nix system is init

• Executed as root

• Start daemons (services) and the login process

• After a successful login

• A new shell is spawned and it changes its uid to the authenticated

user

24

setuid programs
• Each process has three uids

• ruid : real user id -> who starts the process

• euid : effective user id -> used for access control

• suid : saved user id -> so previous euid can be restored

• setuid programs

• Once executed, changes the euid of the process to the owner of the file

• Why is this useful?

25

Problems of DAC
• Root has unrestricted privileges

• Processes may be malicious

26

Mandatory Access Control (MAC)
• MAC = mandatory, so even root is checked against the policies

• Examples

• Integrity levels on Windows

• Capabilities on Linux

• Same name, different meanings

• Divide root's privileges into different capabilities so as to enforce

the principle of least privilege

• SELinux

27

Linux capabilities
• http://elixir.free-

electrons.com/linux/v4.13.11/source/include/uapi/linux/capability.h#L96

28

http://elixir.free-electrons.com/linux/v4.13.11/source/include/uapi/linux/capability.h#L96

Mechanisms and Policies
• So far we've discussed are all mechanisms, but we still need policies to drive

the mechanisms

• Q: how to define access control policies?

29

Principle of least privilege
• Privilege

• Ability to access or modify a resource

• Principle of Least Privilege

• A system module should only have the minimal privileges needed for

intended purposes

30

Monolithic design

31

Problem of monolithic design

32

Problem of monolithic design

33

Software compartmentation
• Identify components of the program

• Identify privileges required by each component

• Group components based on privileges

• Separate and isolate

• Enforce least privilege

34

Examples
• Web Browsers

• Microkernels

35

Secure browser with compartmentation

36

Microkernel

https://en.wikipedia.org/wiki/Microkernel

37

https://en.wikipedia.org/wiki/Microkernel

Sandbox
• A controlled environment for untrusted applications, by limiting system

resources they can access

• File system

• IPC

• CPU and memory

• Disk and I/O rates

• Network access

• Sensors (camera/microphone/GPS/...)

2

Mechanisms: chroot
chroot() changes the root directory of the calling process to that
specified in path. This directory will be used for pathnames
beginning with /. The root directory is inherited by all children of
the calling process.

Only a privileged process (Linux: one with the CAP_SYS_CHROOT
capability) may call chroot().

In the past, chroot() has been used by daemons to restrict
themselves prior to passing paths supplied by untrusted users to
system calls such as open(2).

3

chroot limitations
However, if a folder is moved out of the chroot directory,
an attacker can exploit that to get out of the chroot directory
as well. The easiest way to do that is to chdir(2) to the
to-be-moved directory, wait for it to be moved out, then open
a path like ../../../etc/passwd.

It is not intended to be used for any kind of security purpose,
neither to fully sandbox a process nor to restrict filesystem
system calls.

4

Mechanisms: Jail
• FreeBSD jail, an OS-level virtualization mechanism

• Each jail is a virtual environment running on the host machine with its

own files, processes, user and superuser accounts.

• Each jail is sealed from the others

• The limited scope of a jail allows system administrators to delegate

several tasks which require superuser access without handing out

complete control over the system

• https://www.freebsd.org/cgi/man.cgi?query=jail&format=html

5

https://www.freebsd.org/cgi/man.cgi?query=jail&format=html

Mechanisms: namespaces
• Linux namespaces (similar to jail): virtualization and isolation

• Cgroup: Cgroup root directory (resources quota)

• IPC: System V IPC, POSIX message queues

• Network: Network devices, stacks, ports, etc.

• Mount: Mount points

• PID: Process IDs

• User: User and group IDs

• UTS: Hostname and NIS domain name

6

Mechanisms: more OS-level virtualization
mechanisms
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

• Docker, containers, LXC, etc

7

https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Mechanisms: reusing DAC & MAC
• Windows: security tokens, job object, desktop object, integrity level

• Linux: DAC, capabilities, SELinux

8

Examples: iOS sandbox
• Mandatory Access Control Framework (MACF)

• Apple Mobile File Integrity (AMFI)

• Entitlements

• Permission system

10

Examples: Android sandbox
• UID-based isolation

• SEAndroid

• Binder

• Permission system

11

Caveats
• What is intended behavior?!!

• User's vs app's

• Performance degradation

• WHy?

• Inter-component interface design

• Why we need Inter-component communication?

• What can go wrong?

38

