
Abusing Performance Optimization
Weaknesses to Bypass ASLR

Byoungyoung Lee
Yeongjin Jang

Tielei Wang
Chengyu Song

Long Lu
Taesoo Kim
Wenke Lee

Georgia Tech Information Security Center

(Rough) System Attack Trends

Executing injected code Executing existing code
out of original program order

• Ret/Jmp/Call to Stack
• Ret/Jmp/Call to Heap

• Ret/Jmp/Call to libc
• Ret/Jmp/Call to “gadgets”

In general, to launch such attacks, one needs to know
the addresses of stack, heap objects, code gadgets, etc.

Address Space Layout Randomization
(ASLR)

• Intuition: introducing diversity into the memory layout of
computer systems will defeat many easily replicated attacks [1]

A Brief History of ASLR

1998/1999

Stack
Randomization

2001

PaX
Project

2007

MS Vista
Mac OS X Leopard
10.5

2011

iOS 4.3
Android
4.0

2005

Linux Kernel
2.6.12

Bypassing ASLR
• Abusing non-randomized data structures

– Executables compiled without the PIE flag
– VirtualAlloc and MapViewOfFile are not randomized [2]
– SharedUserData is located at fixed address[3]

Exploiting vulnerabilities to leak addresses
– Type Confusion
– Heap Overflow
– Use-after-free
– Integer Overflow
– Format String
– Uninitialized Memory Read

Today, we will talk about ...
● Performance oriented designs that are at odds with ASLR

Hash Table

● Hash Table
○ map keys to values
○ keys are hashed to find proper

buckets

bucket# = hash(key) % arraySize

Hash Table

● Collision Resolution
○ # of buckets are limited!
○ Open addressing: find the next available bucket

■ Linear probing
■ Quadratic probing
■ Double hashing

Hash Table and ASLR?

#

● Built-in hash tables
○ JavaScript, Java, Python, Ruby, …
○ Sometimes they use memory addresses as a key for

objects

Hash Table and ASLR?

● Memory addresses as a key
○ (Always) unique identifier for an object
○ Fast / Easy to implement

● Alternatives
○ Random numbers ⇒ collision free?
○ Static counters ⇒ thread safe?

Hash Table and ASLR?

Q. Can you read the key?
A. If the language allows, yes

Q. Is this a security breach?
A. It depends

x = object()
id(x)
hash(x)

Address Information in Script Languages

● Usually running scripts from the shell means
 you have everything.

● What if it is running in restricted environments?
○ Sandboxed environments
○ Many script languages have sandbox-like extensions for

Hash Table and ASLR?

Q. Can you still read the key even if it is not allowed?
A. Partially, via timing attacks

Attacking ASLR with Hash Tables
Can you read

the key?
Can you infer

the key?
Is the key

a memory address?

Python yes - yes

Ruby yes - yes

Julia yes - yes

PHP yes - no

Java (JVM) yes - no

Java (DVM) yes - yes

JavaScript (WebKit) no yes yes

JavaScript (V8) no yes no

Examples - Directly Reading a Key
x = object()
id(x)
hash(x)

x = object()
x.object_id

Object x = new Object();
x.hashCode();

type x
end
object_id(x)

Hash Table in WebKit JavaScript

● Name object
○ Adding (unique) private properties to any object
○ New (experimental) features for ES6 Harmony
○ How is it unique?

■ using memory addresses

// Source/WTF/wtf/text/StringImpl.h

enum CreateEmptyUniqueTag { CreateEmptyUnique };
 StringImpl(CreateEmptyUniqueTag)
 : m_refCount(s_refCountIncrement)
 , m_length(0)
 , m_data16(reinterpret_cast<const UChar*>(1))
 {
 ASSERT(m_data16);

 unsigned hash = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
 hash <<= s_flagCount;
 if (!hash)
 hash = 1 << s_flagCount;
 m_hashAndFlags = hash | BufferInternal;

 STRING_STATS_ADD_16BIT_STRING(m_length);
 }

How to Infer a Key in WebKit Javascript

● Requirements
○ Collision resolution should follow a certain order

⇒ double hashing
○ A hash algorithm must be deterministic

⇒ yes
○ Hash tables must be (partially) controllable

⇒ Number / String

How to Infer a Key in WebKit Javascript

● Requirements (in WebKit JavaScript)
○ Collision resolution should follow a certain order

⇒ Double hashing
○ A hash algorithm must be deterministic

⇒ Yes
○ Hash tables must be (partially) controllable

⇒ Number / String

How to Infer the Key in WebKit Javascript

#

Number(3)

String(“Hello”)

Name(“inferMe”)

Keys / hashes are known

Keys / hashes are unknown

Abusing Collision Resolution
● Linear Probing

○ If there’s a collision, simply try the next slot
○ Given key k & ith trial

 bucket# ⇐ (hash(k)+i) % tableSize

Abusing Collision Resolution

bucket# ⇐ Hash(Number(1)) % 8 = 1
bucket# ⇐ Hash(Number(9)) % 8 = 1

bucket# ⇐ Hash(Number(17)) % 8 = 1

Abusing Collision Resolution
● Search timing differences

○ Assume the table is filled up
○ Except bucket # 0

Abusing Collision Resolution
● Time differences b/w worst and best cases

bucket# ⇐ Hash(Number(1)) % 8 = 1
 ⇒ Slow

… ...

Abusing Collision Resolution
● Time differences b/w worst and best cases

bucket# ⇐ Hash(Number(0)) % 8 = 0
 ⇒ Fast

… ...

Abusing Collision Resolution

● If you catch this timing difference,
 ⇒ learn something about hash (key)

 ⇒ one bit information at a time

● Is this doable in JavaScript?
○ JS timer is mili-seconds ⇒ repeat thousand times
○ Table size is too big ⇒ repeat a lot again
⇒ Calibration !

Abusing Collision Resolution
● Weak key

○ A key that the second hash function returns small
integer numbers
■ To avoid fuzziness of double-hashing

○ Can be found with high probabilities
⇒ Repeat the Name object creation until we find the
weak key

Abusing Collision Resolution
● Prototype implementations

○ Ported WebKit’s hash functions to JavaScript
○ Pre-built an inversion table

■ h-1(String/Number) ⇒ bucket #
○ Currently leaking 12-bits

■ Possible up to 23-bits
■ Need better mathematical properties.

// Source/WTF/wtf/text/StringImpl.h

enum CreateEmptyUniqueTag { CreateEmptyUnique };
 StringImpl(CreateEmptyUniqueTag)
 : m_refCount(s_refCountIncrement)
 , m_length(0)
 , m_data16(reinterpret_cast<const UChar*>(1))
 {
 ASSERT(m_data16);

 unsigned hash = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
 WTFLogAlways("Address : 0x%08x\n", hash);
 hash <<= s_flagCount;
 if (!hash)
 hash = 1 << s_flagCount;
 m_hashAndFlags = hash | BufferInternal;

 STRING_STATS_ADD_16BIT_STRING(m_length);
 }

DEMO

● Reported and patched in WebKit

● Related work
○ DoS attacks on hash tables [7,8]
○ Timing attacks on hash tables (Firefox) [9]

Countermeasures

● Non-deterministic hashing for controllable objects
○ Universal Hashing

● Simply not using addresses
○ Random values

■ Possible collisions ?
○ XOR masking

■ Two-time pads?

// php-src/ext/spl/php_spl.c

PHPAPI void php_spl_object_hash(zval *obj, char *result TSRMLS_DC) /* {{{*/
{

intptr_t hash_handle, hash_handlers;
char *hex;

if (!SPL_G(hash_mask_init)) {
if (!BG(mt_rand_is_seeded)) {

php_mt_srand(GENERATE_SEED() TSRMLS_CC);
}

SPL_G(hash_mask_handle) = (intptr_t)(php_mt_rand(TSRMLS_C) >> 1);
SPL_G(hash_mask_handlers) = (intptr_t)(php_mt_rand(TSRMLS_C) >> 1);
SPL_G(hash_mask_init) = 1;

}

hash_handle = SPL_G(hash_mask_handle)^(intptr_t)Z_OBJ_HANDLE_P(obj);
hash_handlers = SPL_G(hash_mask_handlers)^(intptr_t)Z_OBJ_HT_P(obj);

spprintf(&hex, 32, "%016lx%016lx", hash_handle, hash_handlers);

strlcpy(result, hex, 33);
efree(hex);

}

Random mask init

Two-time pads!

History of ASLR adoption in Android
• Why ASLR on Android?

– Prevent exploitations of native code in apps

• Adopted incrementally
– Performance concerns on early Android devices
 (enabling PIE ➔ load latency / memory overheads)
– Android 4.1 implemented full ASLR enforcements

(actual) ASLR enforcements in Android
related to performance prioritized design

Performance Prioritized Designs of Android

Dalvik VM

Android Runtime Library

Application

• Multi-layered architectures
– Android Applications run in a Dalvik VM
– with additional runtime libraries

➔ Slow app launch time

Zygote: the process creation module

Zygote: the process creation module

Zygote weakens ASLR effectiveness

①

②

③

• All apps have the same memory layouts for shared libraries
loaded by the Zygote process

• Weakens Android ASLR security

Attacking the ASLR weakness

• Fully working exploits (with an ideal ASLR) must
– Exploit an Information leak vulnerability
– Exploit a control-flow hijack vulnerability
➔ should be achieved in the same app!

Attacking the ASLR weakness

• Zygote’s ASLR weakness allows for
– Remote Coordinated Attacks

• Information leak in Chrome + control-flow hijack in VLC
• Reduce the vulnerability searching spaces

– Local Trojan Attacks
• Obtain the memory layout by having the trojan app installed

Remote Coordinated Attack

①

②

③

④
Attacker’s
web server

Victim’s Android

VLC player

Chrome Malicious JavaScript
➔ Exploit the information leak vulnerability
 (CVE-2013-0912)

Crafted video file
➔ Exploit the control-flow hijack vulnerability

with leaked memory layout information

Local Trojan Attack

• Zero permission trojan app
– Asks for (almost) no permissions
– Scans memory spaces using app native code
– Layout information can be further exported

• Once a trojan app is installed, ASLR can be easily bypassed

Countermeasures

References
S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer Systems. In Proceedings of the 6th
Workshop on Hot Topics in Operating Systems (HotOS-VI) (HOTOS '97). 1997.
Ken Johnson, MaF Miller. Exploit Mitigation Improvements in Windows 8. Black hat USA, 2012.
Yang Yu. DEP/ASLR bypass without ROP/JIT. CanSecWest 2013.
Andrea Bittau, et al. Hacking Blind. IEEE S&P. 2014.
Fermin J. Serna. The info leak era on software exploitation. Blackhat USA, 2012.
Xiaobo Chen. ASLR Bypass Apocalypse in Recent Zero-Day Exploits. http://www.fireeye.
com/blog/technical/cyber-exploits/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
Scott A. Crosby, and Dan S. Wallach, Denial of Service via Algorithmic Complexity Attacks. USENIX
Security
Alexander Klink, and Julian Walde, Efficient Denial of Service Attacks on Web Application Platforms. CCC
2011
pakt, and Dion Blazakis, Leaking addresses with vulnerabilities that can’t read good. Summercon 2013
A. Bittau, A. Belay, A. Mashtizadeh, and D. Mazières, D. Boneh: Hacking Blind. Oakland 2014

Thank you! :)

Questions?

