UCR

Computer Science and Engineering



Christian R. Shelton, Professor

Balancing Multiple Sources of Reward in Reinforcement Learning (2001)

by Christian R. Shelton


Abstract: For many problems which would be natural for reinforcement learning, the reward signal is not a single scalar value but has multiple scalar components. Examples of such problems include agents with multiple goals and agents with multiple users. Creating a single reward value by combining the multiple components can throw away vital information and can lead to incorrect solutions. We describe the multiple reward source problem and discuss the problems with applying traditional reinforcement learning. We then present an new algorithm for finding a solution and results on simulated environments.

Download Information

Christian R. Shelton (2001). "Balancing Multiple Sources of Reward in Reinforcement Learning." Advances in Neural Information Processing Systems 2000 (pp. 1082-1088). pdf   ps ps.gz    

Bibtex citation

@inproceedings{She01e,
   author = "Christian R. Shelton",
   title = "Balancing Multiple Sources of Reward in Reinforcement Learning",
   booktitle = "Advances in Neural Information Processing Systems 2000",
   booktitleabbr = "{NIPS} 13",
   year = 2001,
   pages = "1082--1088",
}

More Information

Address

University of California, Riverside
Chung Hall, room 327
Riverside, CA 92521
Tel: (951) 827-2554
E-mail: cshelton@cs.ucr.edu

 


Other Links