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Abstract—The problem of learning is arguably at the very core of the problem of intelligence, both
biological and artificial. In this paper we sketch some of our work over the last ten years in the
area of supervised learning, focusing on three interlinked directions of research: theory, engineering
applications (that is, making intelligent software) and neuroscience(that is, understanding the brain’s
mechanisms of learning).

1. INTRODUCTION

Learning is now perceived as the gateway to understanding the problem of intelli-
gence. Since seeing is intelligence, learning is also becoming a key to the study of
artificial and biological vision. In the last few years both computer vision (which
attempts to build machines that see) and visual neuroscience (which aims to under-
stand how our visual system works) are undergoing a fundamental change in their
approaches. Visual neuroscience is beginning to focus on the mechanisms which
allow the cortex to adapt its circuitry for learn a new task. Instead of building a
hardwired machine or program to solve a specific visual task, computer vision is
trying to develop systems that can be trained with examples of any of a number of
visual tasks. Vision systems that learn and adapt represent one of the most impor-
tant directions in computer vision research. This reflects an overall trend: to make
intelligent systems that do not need to be fully and painfully programmed. It may
be the only way to develop vision systems that are robust and easy to use in many
different tasks. As a consequence of this new interest in learning, we are witnessing
arenaissance of statistics and function approximation techniques and their applica-
tions to domains such as computer vision. In this paper we sketch some of our work
over the last ten years in the area of supervised learning, focusing on three inter-
linked directions of research: theory, engineering applications (making intelligent
software), and neuroscience (understanding the brain’s mechanisms of learning).
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2. LEARNING AND REGULARIZATION

We have mainly concentrated on one aspect of learning: supervised learning.
Supervised learning, or learning-from-examples, refers to systems that are trained,
instead of programmed, by a set of examples, that is input-output pairs (x;, y;). At
run-time they will hopefully provide a correct output for a new input not contained
in the training set. One way to set the problem of learning-from-examples in
a mathematically well-founded framework is the following. Supervised learning
can be regarded as the regression problem of interpolating or approximating a
multivariate function from sparse data. The data are the examples. Generalization
means estimating the value of the function for points in the input space in which
data are not available.

Once the ill-posed problem of learning-from-examples has been formulated
as a problem of function approximation, an obvious approach to solving it is
regularization. Regularization imposes a constraint of smoothness on the space
of approximating functions by minimizing an appropriate cost functional.

A key result is that, under rather general conditions, the solution of the regular-
ization formulation of the approximation problem can be expressed as the linear
combination of basis functions, centered on the data points and depending on the
input x. The form of the basis function K depends on the specific smoothness prior.
As observed by Poggio and Girosi (1990) (and for the special case of Radial Basis
Functions by Broomhead and Lowe (1988)), the solution provided by regularization
rewritten as a network with one hidden layer containing as many units as examples
in the training set. We call these networks Regularization Networks (RN). The coef-
ficients ¢; that represent the ‘weights’ of the connections to the output are set during
learning (Girosi et al., 1995).

An interesting special case arises for radial K. The usual example is a Gaussian
These RBF networks consist of units each tuned to one of the examples with a bell-
shaped activation curve. In the limit of very small o for the variance of the Gaussian
basis functions, RBF networks become look-up tables.

We notice here that the new technique of Support Vector Machines (SVM),
proposed by Vapnik (1995), is closely connected to regularization (see Girosi, 1998
and Evgeniou et al., 1999).

3. OBJECT DETECTION WITH SUPPORT VECTOR MACHINES

So, one can only ask, does all of the theory mean anything? We describe a system
that can be trained to classes of objects such as faces or pedestrians.

3.1. Face detection

For object detection, we seek to identify the position and scale of all of the desired
objects in the image. A small sub-window of the image is shifted across the entire
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Figure 1. Sub-window scanning method to identify objects: the sub-window is translated and scaled
over the entire image. At each step, the contents of the window are fed into a classifier to determine if
the object exists at that location and scale.

image. At each shift, the sub-window is fed into the learned classifier to determine if
the object of interest is present. To achieve multi-scale detection, we incrementally
resize the image and run the detection window over each of these resized images.
This scheme is shown in Fig. 1.

The first step is to build an appropriate representation of the subimage for the
classifier. For this, we build an overcomplete, multiscale set of the absolute values
of Haar wavelets as the basic dictionary with which to describe shape. In the case
of pedestrian detection this results in roughly 1300 coefficients for each subwindow
and about 400 when the system is trained to detect faces (because the subwindow is
smaller). The full system is described in depth in Oren et al. (1997), Papageorgiou
(1997), and Papageorgiou et al. (1998a, b).

To gauge the performance of a detection system, it is necessary to analyze the
full ROC curve which gives an indication of the tradeoff between accuracy and
the number of false positives gathered around MIT and over the Internet. Figure 2
compares the ROC curves of several different incarnations of our system.

From the ROC curve, it is clear that most of the impact on performance comes
from what features are used; the complexity of the classifier is secondary. As ex-
pected, using color features results in a more powerful system. The curve of the sys-
tem with no feature selection is clearly superior to all the others. This indicates that
for the best accuracy, using all the features is optimal. When classifying using this
full set of features, we pay for the accuracy through a slower system. Examples of
processed images are shown in Fig. 3; these images were not part of the training set.
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Figure 2. ROC curves for different detection systems. The detection rate is plotted against the false

positive rate, measured on a logarithmic scale. The false detection rate is defined as the number of
false detections per inspected window.

Figure 3. Results from our pedestrian detection system. Typically, missed pedestrians are due to

occlusion or lack of contrast with the background. False positives can be eliminated with further
training.

4. OBJECT RECOGNITION IN IT CORTEX

Ten years ago an example-based approach to object recognition, based on Gaussian
Radial Basis Functions, suggested a view-based approach to recognition (Poggio
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Figure 4. A Gaussian RBF network with four units which, after training, are each tuned to one of the
four training views shown in the next figure. The resulting tuning curve of each of the unit is also in
the next figure. The units are view-dependent and selective, relative to distractor objects of the same

type.

and Edelman, 1990). Different simulations with artificial (Poggio and Edelman,
1990) and real ‘wire-frame’ objects (Brunelli and Poggio, 1991) and also with
images of faces (Beymer, 1993; Romano, 1993) show that a view-based scheme
of this type can be made to work well.

It was natural to ask whether a similar approach may be used by our brain. As
Poggio and Girosi (1989) and Poggio (1990) argued, networks that learn from
examples have an obvious appeal from the point of view of neural mechanisms and
available neural data. Over the last ten years many psychophysical experiments (for
the first such work see Biilthoff and Edelman, 1992) have supported the example-
based and view-based schemes that we suggested as one of the mechanisms for
object recognition. Recent physiological experiments have provided a suggestive
glimpse on how neurons in IT cortex may represent objects for recognition. The
experimental results seem to agree to a surprising extent with the model (Logothetis
et al., 1995). Even more recently, we have developed a more detailed model of the
circuitry and the mechanisms underlying the properties of the view-tuned units of
the model (Riesenhuber and Poggio, 1998).

Figure 4 shows our basic module for object recognition. Classification of a visual
stimulus is accomplished by a network of units. Each unit is broadly tuned to a
particular view of the object. We refer to this optimal view as the center of the unit
and to the unit as a view-tuned unit. One can think of it as a template to which the
input is compared. The unit is maximally excited when the stimulus exactly matches
its template but also responds proportionately less to similar stimuli. The weighted
sum of activities of all the units represents the output of the network. The simplest
recognition scheme of this type is the Gaussian RBF network: each center stores a
sample view of the object and acts as a unit with a Gaussian-like recognition field
around that view. At the output of the network the activities of the various units
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Figure 5. Tuning of each of the four hidden units of the network of the previous figure for images
of the ‘correct’ 3D objects. The tuning is broad and selective: the dotted lines indicate the average
response to 300 distractor objects of the same type. The bottom graphs show the tuning of the output
of the network after learning (that is computation of the weights ¢): it is view-invariant and object
specific. Again the dotted curve indicates the average response of the network to the same 300
distractors. From Vetter and Poggio, unpublished.

are combined with appropriate weights, found during the learning stage, in a view-

invariant cell.

This example is clearly a caricature of a view-based recognition module but
it helps making the main points of the argument. Physiological experiments in
Logothetis’ lab confirmed the main predictions of the model and found additional
information about properties of IT cells (Logothetis ef al., 1995; Logothetis and
Pauls, 1995). Supporting the model, Logothetis and coworkers found a significant
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Figure 6. The top graph shows the activity of three units in IT cortex, as a function of the angle of
the stimulus view. The three neurons are tuned to three different views of the same object. One of the
units shows two peaks for two mirror symmetric views. The neurons firing rate was significantly lower
for all distractors (not shown here). The bottom graph represents the almost perfect, view-invariant
behavioral performance of the monkey for this particular object to which he was extensively trained
(from Logothetis and Pauls, unpublished, 1995).

number of units that showed a remarkable selectivity for individual views of wire
objects that the monkey was trained to recognize.

Figure 6 shows the responses of three units that were found to respond selectively
to four different views of an wire object (Wire 71). The animal had been exposed
repeatedly to this object, and its psychophysical performance remains above 95%
for all tested views, as can be seen in the lower plot of Fig. 6. The figure is
surprisingly similar to Fig. 5 showing the response of the view-tuned hidden units
of the model of Fig. 4.

The main finding of this study is that there are neurons in IT cortex with properties
intriguingly similar to the ‘cartoon” model of Fig. 4. Several neurons showed a
remarkable selectivity for specific views of a computer-rendered object that the
monkey had learned to recognize. A much smaller number of neurons were object-
specific but view-invariant, as expected in a network in which ‘complex’-like view-
invariant cells are fed by view-centered ‘simple’-like units.
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Figure 7. Model to explain receptive field properties of the view-tuned units of Fig. 4 found in
experiments (from Riesenhuber and Poggio, in preparation).
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Figure 8. Comparison of theoretical model and experimental data.

More recently we have tried to address the question of the circuitry under-
lying the properties of the view-tuned cells. The key problem is to explain in
terms of biologically plausible mechanisms their viewpoint invariance obtained
from just one object view, which arises from a combination of selectivity to a
specific object and tolerance to viewpoint changes. Riesenhuber and Poggio (1998)
have described a model that conforms to the main anatomical and physiological
constraints, reproduces all the data obtained by Logothetis et al. (1995) and makes
several predictions for experiments on a subpopulation of IT cells. A key component
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of the model is a cortical mechanism that can be used to either provide the sum of
several afferents to a cell or to enable only the strongest one. The model explains
the receptive field properties found in the experiment based on a simple hierarchical
feedforward model. The structure of the model reflects the idea that invariance
and specificity must be built up through separate mechanisms. Figure 4 shows
connections to ‘invariance’ units in green and to ‘specificity’ units in blue.

A crucial element of the model is the mechanism an intermediate neuron uses
to pool the activities of its afferents. Let us consider two alternative pooling
mechanisms: linear summation (a special case of the weighted sum described
above used to increase feature complexity) and a highly nonlinear maximum (MAX)
operation (which can also be regarded as a Nearest Neighbor classification scheme),
where the strongest afferent determines the response of the postsynaptic unit. It
turns out that a sensible way to pool responses to achieve invariance is via a
nonlinear MAX function, whereas the pooling underlying specificity is closer to
a weighted sum. Simulations show agreement of the resulting model of a view-
tuned cell with several physiological experiments from different labs. In particular,
Fig. 4 shows the predictions of the model in comparison with experimental data.
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