
Policy Improvement for POMDPs
using Normalized Importance Sampling

Christian R. Shelton
Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139
cshelton@ai.mit.edu

Abstract

We present a new method for estimating the
expected return of a POMDP from experi-
ence. The estimator does not assume any
knowledge of the POMDP, can estimate the
returns for finite state controllers, allows ex-
perience to be gathered from arbitrary se-
quences of policies, and estimates the return
for any new policy. We motivate the estima-
tor from function-approximation and impor-
tance sampling points-of-view and derive its
bias and variance. Although the estimator is
biased, it has low variance and the bias is of-
ten irrelevant when the estimator is used for
pair-wise comparisons. We conclude by ex-
tending the estimator to policies with mem-
ory and compare its performance in a greedy
search algorithm to the REINFORCE algo-
rithm showing an order of magnitude reduc-
tion in the number of trials required.

1 Introduction

We assume a standard reinforcement learning setup:
an agent interacts with an environment modeled as
a partially-observable Markov decision process. Con-
sider the situation after a sequence of interactions.
The agent has now accumulated data and would like
to use that data to select how it will act next. In par-
ticular, it has accumulated a sequence of observations,
actions, and rewards and it would like to select a pol-
icy, a mapping from observations to actions, for future
interaction with the world. Ultimately, the goal of the
agent is to find a policy mapping that maximizes the
agent’s return, the sum of rewards experienced.

[Kearns et al., 1999] presents a method for estimating
the return for every policy simultaneously using data
gathered while executing a fixed policy. In this pa-
per we consider the case where the policies used for

gathering data are unrestricted. Either we did not
have control over the method for data collection, or
we would like to allow the learning algorithm the free-
dom to pick any policy for any trial and still be able
to use the data.

Importance sampling has been studied before in con-
junction with reinforcement learning. In particu-
lar, [Precup et al., 2000, Precup et al., 2001] use im-
portance sampling to estimate Q-values for MDPs
with function approximation for the case where
all data have been collected using a single pol-
icy. [Meuleau et al., 2001] uses importance sam-
pling for POMDPs, but to modify the REINFORCE
algorithm [Williams, 1992] which ignores past tri-
als. [Peshkin and Mukherjee, 2001] considers estima-
tors very similar to the ones developed here and prove
theoretical PAC bounds for them. This paper differs
from previous work in that it allows multiple sampling
policies, uses normalized estimators for POMDP prob-
lems, derives exact bias and variance formulas for nor-
malized and unnormalized estimators, and extends im-
portance sampling from reactive policies to finite state
controllers.

In the next section we develop two estimators (unnor-
malized and normalized). Section 3 shows that while
the normalized estimator is biased, its variance is much
lower than the unnormalized (unbiased) estimator re-
sulting in a better estimator for comparisons. Sec-
tion 4 demonstrates some results on simulated envi-
ronments. We conclude with a discussion of how to
improve the estimator further.

2 Estimators

2.1 Notation

In this paper we will use s to represent the hidden
state of the world, x for the observation, a for the ac-
tion, and r for the reward. Subscripts denote the time
index and superscripts the trial number. We will be

studying episodic tasks of fixed-length, T . The start-
ing distribution over states is fixed (and unknown).

Let π(x, a) be a policy (the probability of picking ac-
tion a upon observing x). For the moment we will
consider only reactive policies of this form. h repre-
sents a history1 (of T time steps) and therefore is a
tuple of four sequences: states (s1 through sT), obser-
vations (x1 through xT), actions (a1 through aT), and
rewards (r1 through rT). The state sequence is not
available to the algorithm and is for theoretical con-
sideration only. Lastly, we let R be the return (or sum
of r1 through rT).

π1 through πn are the n policies tried. h1 through
hn are the associated n histories with R1 through Rn

being the returns of those histories. Thus during trial
i the agent executed policy πi resulting in the history
hi. Ri is used as a shorthand notation for R(hi), the
return of hi.

2.2 Importance Sampling

Importance sampling is typically presented as a
method for reducing the variance of the estimate of
an expectation by carefully choosing a sampling dis-
tribution [Rubinstein, 1981]. For example, the most
direct method for evaluating

∫
f(x)p(x) dx is to sam-

ple i.i.d. xi ∼ p(x) and use 1
n

∑
i f(xi) as the esti-

mate. However, by choosing a different distribution
q(x) which has higher density in the places where
|f(x)| is larger, we can get a new estimate which is
still unbiased and has lower variance. In particular,

we now draw xi ∼ q(x) and use 1
n

∑
i f(xi)

p(xi)
q(xi)

as our

estimate. This can be viewed as estimating the expec-

tation of f(x) p(x)
q(x) with respect to q(x) which is like

approximating
∫
f(x) p(x)

q(x) q(x) dx with samples drawn

from q(x). If q(x) is chosen properly, our new estimate
has lower variance. It is always unbiased provided that
the support of p(x) and q(x) are the same. In this pa-
per we only consider stochastic policies that have a
non-zero probability of taking any action at any time.
Therefore, our sampling and target distributions will
always have the same support.

Instead of choosing q(x) to reduce variance, we will
be forced to use q(x) because of how our data was
collected. Unlike the traditional setting where an es-
timator is chosen and then a distribution is derived
which will achieve minimal variance, we have a distri-
bution chosen and we are trying to find an estimator

1It might be better to refer to this as a trajectory since
we will not limit h to represent only sequences that have
been observed; it can also stand for sequences that might
be observed. However, the symbol t is over used already.
Therefore, we have chosen to use h to represent state-
observation-action-reward sequences.

with low variance.

2.3 Sampling Ratios

We have accumulated a set of histories (h1 through
hn) each recorded by executing a (possibly different)
policy (π1 through πn). We would like to use this data
to find a guess at the best policy.

A key observation is that we can calculate one fac-
tor in the probability of a history given a policy. In
particular, that probability has the form

p(h|π) = p(s1)
T∏

t=1

p(xt|st)π(xt, at)p(st+1|st, at)

=

[
p(s1)

T∏

t=1

p(xt|st)p(st+1|st, at)
][

T∏

t=1

π(xt, at)

]

= W (h)A(h, π) .

A(h, π), the effect of the agent, is computable whereas
W (h), the effect of the world, is not because it depends
on knowledge of the underlying state sequence. How-
ever, W (h) does not depend on π. This implies that
the ratios necessary for importance sampling are ex-
actly the ratios that are computable without knowing
the state sequence. In particular, if a history h was
drawn according to the distribution induced by π and
we would like an unbiased estimate of the return of
π′, then we can use R(h) p(h|π

′)
p(h|π) and although neither

the numerator nor the denominator of the importance
sampling ratio can be computed, the W (h) term in
each cancels leaving a ratio of A(h, π′) to A(h, π) which
can be calculated. A different statement of the same
fact has been shown before in [Meuleau et al., 2001].
This fact will be exploited in each of the estimators in
this paper.

2.4 Importance Sampling as Function
Approximation

Because each πi is potentially different, each hi is
drawn according to a different distribution and so
while the data are drawn independently, they are not
identically distributed. This makes it difficult to apply
importance sampling directly. The most obvious thing
to do is to construct n estimators (one from each data
point) and then average them. This estimator has the
problem that its variance can be quite high. In par-
ticular, if only one of the sampled policies is close to
the target policy, then only one of the elements in the
sum will have a low variance. The other variances will
be very high and overwhelm the total estimate. We
might then only use the estimate from the policy that

is most similar to the target policy. Yet, we would
hope to do better by using all of the data.

To motivate the estimator of the next section,
we demonstrate how importance sampling can be
viewed in terms of function approximation. Im-
portance sampling in general seeks to estimate∫
f(x)p(x) dx. Consider estimating this integral by

evaluating
∫
f̂(x)p̂(x) dx where f̂ and p̂ are approxi-

mations of f and p derived from data. In particular,
with a bit of foresight we will choose f̂ and p̂ to be
nearest-neighbor estimates. Let i(x) be the index of
the data point nearest to x. Then,

f̂(x) = f(xi(x))

p̂(x) = p(xi(x)) .

We now must define the size of the “basin” near sample
xi. In particular we let αi be the size of the region of
the sampling space closest to xi. In the case where the
sampling space is discrete, this is the number of points
which are closer to sampled point xi than any other
sampled point. For continuous sampling spaces, αi is
the volume of space which is closest to xi. With this
definition,

∫
f̂(x)p̂(x) dx =

∑

i

αif(xi)p(xi) .

αi cannot be computed and thus we will need to ap-
proximate it. Let q(x) be the distribution from which
xi was sampled. On average, we expect the density
of points to be inversely proportional to the volume
nearest each point. For instance, if we have sampled
uniformly from a unit volume and the average den-
sity of points is d, then the average volume nearest
any given point is 1

d . Extending this principle, we will
take the estimate of αi to be inversely proportional to
the sampling density at xi. This yields the standard
importance sampling estimator

1

n

∑

i

f(xi)
p(xi)

q(xi)
.

More importantly, this derivation gives insight into
how to merge samples from different distributions,
q1(x) through qn(x). Not until the estimation of αi did
we require knowledge about the sampling density. We
can use the same approximations for f̂ and p̂. When
estimating αi we need only an estimate of the den-
sity of points at αi to estimate the volume near xi.
We therefore take the mixture density, 1

n

∑
i q
i(x) (the

average of all of the sampling densities) as the distri-
bution of points in sample space. Applying this change
results in the estimator

∑

i

f(xi)
p(xi)∑
j q

j(xi)
.

� � �

� � �

� �

� �
� �

� � �

� �

a1 a2 a3

m1 m2 m3

x1 x2 x3

s1 s2 s3

�time

Figure 1: Dependency graph for agent-world interac-
tion with memory model

which, when translated to the POMDP estimation
problem, becomes

n∑

i=1

Ri
p(hi|π)∑n
j=1 p(h

i|πj) . (1)

This estimator is unbiased (shown in the full version
of this paper [Shelton, 2001]) and has a lower variance
than the sum of n single sample estimators because
if one of the sampling distributions is near the target
distribution, then all elements in the sum share the
benefit.

2.5 Normalized Estimates

We can normalize the importance sampling esti-
mate to obtain a lower variance estimate at the
cost of adding bias. Previous work has used a
variety of names for this including weighted uni-
form sampling [Rubinstein, 1981], weighted impor-
tance sampling [Precup et al., 2000], and ratio esti-
mate [Hesterberg, 1995]. In general, such an estimator
has the form ∑

i f(xi)p(x
i)

q(xi)∑
i
p(xi)
q(xi)

.

The problem with the previous estimator can be seen
by noting that the function approximator p̂(h) does
not integrate (or sum) to 1. Instead of p̂ = p(xi(x)), we
make sure p̂ integrates (or sums) to 1: p̂ = p(xi(x))/Z
where Z =

∑
i α

ip(xi). When recast in terms of our
POMDP problem the estimator is

∑n
i=1 R

i p(hi|π)� n
j=1 p(h

i|πj)
∑n
i=1

p(hi|π)�
n
j=1 p(h

i|πj)
. (2)

2.6 Adding Memory

So far we have only discussed estimators for reactive
policies (policies that map the immediate observation

to an action). We would like to be able to also estimate
the return for policies with memory. Consider adding
memory in the style of a finite-state controller. At
each time step, the agent reads the value of the mem-
ory along with the observation and makes a choice
about which action to take and the new setting for
the memory. The policy now expands to the form
π(x,m, a,m′) = p(a,m′|x,m), the probability of pick-
ing action a and new memory state m′ given obser-
vation x and old memory state m. Now let us factor
this distribution, thereby slightly limiting the class of
policies realizable by a given memory size but mak-
ing the model simpler. In particular we consider an
agent model where the agent’s policy has two parts:
πa(x,m, a) and πm(x,m,m′). The former is the proba-
bility of choosing action a given that the observation is
x and the internal memory ism. The latter is the prob-
ability of changing the internal memory tom′ given the
observation is x and the internal memory is m. Thus
p(a,m′|x,m) = πa(x,m, a)πm(x,m,m′). By this fac-
toring of the probability distribution of action-memory
choices, we induce the dependency graph shown in fig-
ure 1.

If we let M be the sequence m1,m2, . . . ,mT , p(h|π)
can be written as
∑

M

p(h,M |π)

=
∑

M

p(s1)p(m1)
T∏

t=1

p(xt|st)πa(xt,mt, at)

πm(xt,mt,mt+1)p(st+1|st, at)

=

[
p(s1)

T∏

t=1

p(xt|st)p(st+1|st, at)
]

[∑

M

p(m1)
T∏

t=1

πa(xt,mt, at)πm(xt,mt,mt+1)

]

= W (h)A(h, π) ,

once again splitting the probability into two factors:
one for the world dynamics and one for the agent dy-
namics. The A(h, π) term involves a sum over all pos-
sible memory sequences. This can easily be computed
by noting that A(h, π) is the probability of the ac-
tion sequence given the observation sequence where
the memory sequence is unobserved. This is a (slight)
variation of a hidden Markov model: an input-output
HMM. The difference is that the HMM transition and
observation probabilities for a time step (the memory
policy and the action policy respectively) depend on
the value of x at that time step. Yet, the x’s are visible
making it possible to compute the probability and its
derivative by using the forward-backward algorithm.

unnormalized normalized

m
ea

n

10 20 30 40 50

−20

−10

0

10

20

30

10 20 30 40 50
0

5

10

15

20

25

30

35

st
d
.

d
ev

.

10 20 30 40 50
0

100

200

300

400

500

10 20 30 40 50
0

2

4

6

8

10

12

Figure 2: Empirical estimates of the means and stan-
dard deviations for the unnormalized and normalized
estimates of the return differences as a function of the
number of data points. The data were collected by ex-
ecuting the policy corresponding to the point (0.4, 0.6)
in figure 3. The estimators were evaluated at the poli-
cies (0.3, 0.9) and (0.4, 0.5). Plotted above are the
means and standard deviations of these estimates av-
eraged over 600 experiments. The horizontal line on
the plots of the mean represent the true difference in
returns. The normalized plots fit the theoretical values
well. The unnormalized plots demonstrate that even
600 trials are not enough to get a good estimate of the
bias or variance. The unnormalized mean should be
constant at the true return difference and the standard
deviation should decay as 1√

n
. However, because the

unnormalized estimator is much more asymmetric (it
relies on a few very heavily weighted unlikely events to
offset the more common events), the graph does not
correspond well to the theoretical values. This is in-
dicative of the general problem with the high variance
unnormalized estimates.

As such, we can now use the same estimators and al-
low for policies with memory. In particular, the esti-
mator has explicit knowledge of the working of the
memory. This is in direct contrast to the method
of adding the memory to the action and observation
spaces and running a standard reinforcement learning
algorithm where the agent must learn dynamics of its
own memory. With our explicit memory model, the
learning algorithm understands that the goal is to pro-
duce the correct action sequence and uses the memory
state to do so by coordinating the actions in different
time steps.

3 Estimator Properties

It is well known that importance sampling es-
timates (both normalized and unnormalized)
are consistent [Hesterberg, 1995, Geweke, 1989,

Kloek and van Dijk, 1978]. Additionally, normalized
estimators have smaller asymptotic variance if the
sampling distribution does not exactly match the
distribution to estimate [Hesterberg, 1995]. However,
we are more interested in the case of finite sample
sizes.

The estimator of equation 1 is unbiased. That is, for a
set of chosen policies, {π1, π2, . . . , πn}, the expectation
over experiences of the estimator evaluated at π is the
true expected return for executing policy π. Similarly,
the estimator of section 2.5 (equation 2) is biased. In
specific, it is biased towards the expected returns of
{π1, π2, . . . , πn}.
The goal of constructing these estimators is to use
them to choose a good policy. This involves compar-
ing the estimates for different values of π. Therefore
instead of considering a single point we will consider
the difference of the estimator evaluated at two differ-
ent points, πA and πB . In other words, we will use the
estimators to calculate an estimate of the difference in
expected returns between two policies. The appendix
of the full version of this paper [Shelton, 2001] details
the derivation of the biases and variances. We only
quote the results here. These results are for using the
same data for both the estimates at πA and πB .

We denote the difference in returns for the unnormal-
ized estimator asDU and the difference for the normal-
ized estimator as DN . First, a few useful definitions
(allowing RX = E[R|πX]):

p(h) =
1

n

∑

i

p(h|πi)

p̃(h, g) =
1

n

∑

i

p(h|πi)p(g|πi)

bA,B =

∫∫
[R(h)−R(g)]

p(h|πA)p(g|πB)

p(h)p(g)
p̃(h, g) dh dg

s2
X,Y =

∫
R2(h)

p(h|πX)p(h|πY)

p(h)
dh

s2
X,Y =

∫
(R(h)−RX)(R(h)−RY)

p(h|πX)p(h|πY)

p(h)
dh

η2
X,Y =

∫∫
R(h)R(g)

p(h|πX)p(g|πY)

p(h)p(g)
p̃(h, g) dh dg

η2
X,Y =

∫∫
(R(h)−RX)(R(g)−RY)

p(h|πX)p(g|πY)

p(h)p(g)
p̃(h, g) dh dg

Note that all of these quantities are invariant to the
number of samples provided that the relative frequen-
cies of the sampling policies remains fixed. p and p̃
are measures of the average distribution over histo-
ries. s2

X,Y and η2
X,Y are measures of second moments

and s2
X,Y and η2

X,Y are measures of (approximately)
centralized second moments. bA,B is the bias of the
normalized estimate of the return difference.

The means and variances are2

E[DU] = RA −RB
E[DN] = RA −RB −

1

n
bA,B

var[DU] =
1

n
(s2
A,A − 2s2

A,B + s2
B,B)

− 1

n
(η2
A,A − 2η2

A,B + η2
B,B)

var[DN] =
1

n
(s2
A,A − 2s2

A,B + s2
B,B)

− 1

n
(η2
A,A − 2η2

A,B + η2
B,B)

− 3
1

n
(RA −RB)bA,B +O(

1

n2
) .

The bias of the normalized return difference estimator
and the variance of both return differences estimators
decrease as 1

n . It is useful to note that if all of the
πi’s are the same, then p̃(h, g) = p(h)p(g) and thus
bA,B = RA−RB. In this case E[DN] = n−1

n (RA−RB).
If the estimator is only used for comparisons, this value
is just as good as the true return difference (of course,
for small n, the same variance would cause greater
relative fluctuations).

In general we expect bA,B to be of the same sign as

RA − RB . We would also expect s2
X,Y to be less

than s2
X,Y (and similarly η2

X,Y to be less than η2
X,Y).

s2
X,Y and η2

X,Y depend on the difference of the returns

from the expected return under πX and πY . s2
X,Y

and η2
X,Y depend on the difference of the returns from

zero. Without any other knowledge of the underlying
POMDP, we expect that the return from an arbitrary
history be closer to RA or RB than the arbitrarily cho-
sen value 0. If bA,B is the same sign as the true differ-
ence in returns and the overlined values are less than
their counterparts, then the variance of the normalized
estimator is less than the variance of the unnormalized
estimator. These results are demonstrated empirically
in figure 2 where we compared the estimates for the
problem described in section 4.2.

2For the normalized difference estimator, the expecta-
tions shown are for the numerator of the difference. The
denominator is a positive quantity and can be scaled to be
approximately 1. Because the difference is only used for
comparisons, this scaling makes no difference in its perfor-
mance. See the full version [Shelton, 2001] for more details.

4 Experiments

4.1 Reinforcement Learning Algorithm

We can turn either of these estimators into a greedy
learning algorithm. To find a policy by which to act,
the agent maximizes the value of the estimator by hill-
climbing in the space of policies (using the previous
policy as a starting point) until it reaches a maximum.
The agent uses this new policy for the next trial. After
the trial, it adds the new policy-history-return triple
to its data and repeats.

The hill-climbing algorithm must be carefully chosen.
For many estimates, the derivative of the estimate
varies greatly in magnitude (as shown below). There-
fore, we have found it best to use the direction of the
gradient, but not its magnitude to determine the di-
rection in which to climb. In particular, we employ a
conjugate gradient descent algorithm using a golden-
ratio line search [Press et al., 1992].

4.2 Two-dimensional Problem

Figure 3 shows a simple world for which the policy
can be described by two numbers (the probability of
going left when in the left half and the probability
of going left when in the right half) and the true ex-
pected return as a function of the policy. Figure 4
compares the normalized (equation 1) and unnormal-
ized (equation 2) estimators both with the greedy pol-
icy improvement algorithm and under random policy
choices. We feel this example is illustrative of the rea-
sons that the normalized estimate works much better
on the problems we have tried. Its bias to observed
returns works well to smooth out the space. The
estimator is willing to extrapolate to unseen regions
where the unnormalized estimator is not. This also
causes the greedy algorithm to explore new areas of
the policy space whereas the unnormalized estimator
gets trapped in the visited area under greedy explo-
ration and does not successfully maximize the return
function.

4.3 Twenty-dimensional Problem

Although the left-right problem was nice because the
estimators could be plotted, it is very simple. The
load-unload problem of figure 5 is more challenging.
To achieve reasonable performance, the actions must
depend on the history. We give the agent one memory
bit as in section 2.6; this results in twenty independent
policy parameters. REINFORCE [Williams, 1992]
has also been used to attack a very similar problem
[Peshkin et al., 1999]. We compare the results of the
normalized estimator with greedy search to REIN-

� � �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

Figure 5: Diagram of the “load-unload” world. This
world has nine states. The horizontal axis corresponds
to the positioning of a cart. The vertical axis indicates
whether the cart is loaded. The agent only observes
the position of the cart (five observations denoted by
boxes). The cart is loaded when it reaches the left-
most state and if it reaches the right-most position
while loaded, it is unloaded and the agent receives a
single unit of reward. The agent has two actions at
each point: move left or move right. Moving left or
right off the end leaves the cart unmoved. Each trial
begins in the left-most state and lasts 100 time steps.

20 40 60 80 100
0

2

4

6

8

10

12

normalized greedy algorithm

500 1000 1500 2000
0

2

4

6

8

10

12

REINFORCE

Figure 6: Comparison of the greedy algorithm with
a normalized estimator to standard REINFORCE on
the load-unload problem. Plotted are the returns as a
function of trial number for ten runs of the algorithm.
In the case of REINFORCE, the returns have been
smoothed over ten trials. The center line is the median
of the returns. The lines on either side are the first
and third quartiles. The top and bottom lines are the
minimum and maximum values.

� � � � � � �

� � � � � � �
� �

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

ex
pe

ct
ed

 r
et

ur
n

Figure 3: Left: Diagram of the “left-right” world. This world has eight states. The agent receives no reward in
the outlined states and one unit of reward each time it enters one of the solid states. The agent only observes
whether it is in the left or right set of boxed states (a single bit of information). Each trial begins in the fourth
state from the left and lasts 100 time steps. Right: The true expected return as a function of policy for this
world.

normalized unnormalized
greedy random greedy random

re
tu

rn
s

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

trial number

re
tu

rn

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

trial number

re
tu

rn

p
o
li
ci

es

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p(left | left)

p(
le

ft
| r

ig
ht

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p(left | left)

p(
le

ft
| r

ig
ht

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p(left | left)

p(
le

ft
| r

ig
ht

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p(left | left)

p(
le

ft
| r

ig
ht

)

5
it

er
a
ti

o
n
s

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

10

20

30

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

50

100

150

p(left | left)p(left | right)

re
tu

rn

1
0

it
er

a
ti

o
n
s

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

10

20

30

40

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

5
0

it
er

a
ti

o
n
s

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

20

40

60

80

p(left | left)p(left | right)

re
tu

rn

0

0.5

1

0

0.5

1
0

100

200

300

400

p(left | left)p(left | right)

re
tu

rn

Figure 4: A comparison of the normalized and unnormalized estimators for single set of observations. For each
estimator, the return estimates are shown plotted after 5, 10, and 50 iterations (samples). The left column is
for the greedy policy improvement algorithm and the right column is for uniformly sampled policies. The first
row shows the returns as a function of trial number. The second shows the path taken in policy space (or,
for right columns, the random samples taken). Both estimators were given the same sequence of data for the
random case. The random sampling of policies produces a better return surface in general, whereas the greedy
algorithm quickly maximizes the return (within 10 episodes) and provides a better estimate of the surface near
the maximum.

FORCE in figure 6. The REINFORCE algorithm fre-
quently gets stuck in local minima. The graph shown
is for the best settings for the step size schedule and
bias term of REINFORCE. In the best case, REIN-
FORCE converges to a near optimal policy in around
500 trials The greedy algorithm run with the normal-
ized estimate makes much better use of the data. Not
only does it reuse old experience, it has an explicit
model of the memory bit and therefore does not need
to learn the “dynamics” of the memory. Most runs
converge to the optimal policy in about 50 trials. One
trial took about twice as long to converge to a slightly
suboptimal policy. Although not shown here, if we re-
move REINFORCE’s memory model disadvantage by
requiring both algorithms to use “external” memory,
the importance sampling algorithm’s performance de-
grades by approximately a factor of 2.

5 Conclusion

We think this normalized estimator shows promise. It
makes good use of the data and when combined with a
greedy algorithm produces quick learning. We would
like to extend it in two immediate ways. The first is
to provide error estimates or bounds on the return es-
timate. Although we have a formula for the variance
of the estimator, we still need a good estimate of this
variance from the samples (the formula requires full
knowledge of the POMDP). Such an estimate would
allow for exploration to be incorporated into the al-
gorithm. Second, the estimate needs to be “sparsi-
fied.” After n trials, computing the estimate (or its
derivative) for a given policy takes O(n) work. This
makes the entire algorithm quadratic in the number
of trails. However, a similar estimate could probably
be achieved with fewer points. Remembering only the
important trials would produce a simpler estimate.

Finally, it may seem disturbing that we must remem-
ber which policies were used on each trail. The re-
turn doesn’t really depend on the policy that the agent
wants to execute; it only depends on how the agent ac-
tually does act. In theory we should be able to forget
which policies were tried; doing so would allow us to
use data which was not gathered with a specified pol-
icy. The policies are necessary in this paper as proxies
for the unobserved state sequences. We hope in future
work to remove this dependence.

Acknowledgements

This report describes research done within CBCL in
the Department of Brain and Cognitive Sciences and
in the AI Lab at MIT. This research is sponsored by
a grants from ONR contracts Nos. N00014-93-1-3085 &
N00014-95-1-0600, and NSF contracts Nos. IIS-9800032
& DMS-9872936. Additional support was provided by:

AT&T, Central Research Institute of Electric Power In-
dustry, Eastman Kodak Company, Daimler-Chrysler, Dig-
ital Equipment Corporation, Honda R&D Co., Ltd., NEC
Fund, Nippon Telegraph & Telephone, and Siemens Cor-
porate Research, Inc.

References

[Geweke, 1989] Geweke, J. (1989). Bayesian inference
in econometric models using monte carlo integration.
Econometrica, 57(6):1317–1339.

[Hesterberg, 1995] Hesterberg, T. (1995). Weighted aver-
age importance sampling and defensive mixture distri-
butions. Technometrics, 37(2):185–194.

[Kearns et al., 1999] Kearns, M., Mansour, Y., and Ng, A.
(1999). Approximate planning in large POMDPs via
reusable trajectories. In Advances in Neural Information
Processing Systems, pages 1001–1007.

[Kloek and van Dijk, 1978] Kloek, T. and van Dijk, H. K.
(1978). Bayesian estimates of equation system param-
eters: An application of integration by monte carlo.
Econometrica, 46(1):1–19.

[Meuleau et al., 2001] Meuleau, N., Peshkin, L., and Kim,
K.-E. (2001). Exploration in gradient-based reinforce-
ment learning. Technical Report AI-MEMO 2001-003,
MIT, AI Lab.

[Peshkin et al., 1999] Peshkin, L., Meuleau, N., and Kael-
bling, L. P. (1999). Learning policies with external mem-
ory. In Proceedings of the Sixteenth International Con-
ference on Machine Learning.

[Peshkin and Mukherjee, 2001] Peshkin, L. and Mukher-
jee, S. (2001). Bounds on sample size for policy eval-
uation in markov environments. In Fourteenth Annual
Conference on Computational Learning Theory.

[Precup et al., 2001] Precup, D., Sutton, R. S., and Das-
gupta, S. (2001). Off-policy temporal-difference learning
with function approximation. In Proceedings of the Eigh-
teenth International Conference on Machine Learning.

[Precup et al., 2000] Precup, D., Sutton, R. S., and Singh,
S. (2000). Eligibility traces for off-polcy policy evalua-
tion. In Proceedings of the Seventeenth International
Conference on Machine Learning.

[Press et al., 1992] Press, W. H., Teukolsky, S. A., Vet-
terling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C. Cambridge University Press, second edi-
tion.

[Rubinstein, 1981] Rubinstein, R. Y. (1981). Simulation
and the Monte Carlo Method. John Wiley & Sons.

[Shelton, 2001] Shelton, C. R. (2001). Policy improvement
for POMDPs using normalized importance sampling.
Technical Report AI-MEMO 2001-002, MIT, AI Lab.

[Williams, 1992] Williams, R. J. (1992). Simple statisti-
cal gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8:229–256.

