
Modeling Stock Order Flows and
Learning Market-Making from Data

Adlar J. Kim, Christian R. Shelton, and Tomaso Poggio

Abstract

Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly sup-
plying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a
reinforcement learning algorithm that learns profitable market-making strategies when run on this model.
The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to
historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our
reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning
results for two separate real stocks.

Copyright c
�

Massachusetts Institute of Technology, 2002

This report describes research done at the Center for Biological & Computational Learning, which is affiliated with the McGovern Institute
of Brain Research and with the Artificial Intelligence Laboratory, and which is in the Department of Brain & Cognitive Sciences at MIT.

This research was sponsored by grants from: Office of Naval Research (DARPA) under contract No. N00014-00-1-0907, National Science
Foundation (ITR) under contract No. IIS-0085836, National Science Foundation (KDI) under contract No. DMS-9872936, and National
Science Foundation under contract No. IIS-9800032.

Additional support was provided by: AT&T, Central Research Institute of Electric Power Industry, Center for e-Business (MIT), Daimler-
Chrysler AG, Compaq/Digital Equipment Corporation, Eastman Kodak Company, Honda R&D Co., Ltd., ITRI, Komatsu Ltd., Merrill-Lynch,
Mitsubishi Corporation, NEC Fund, Nippon Telegraph & Telephone, Oxygen, Siemens Corporate Research, Inc., Sumitomo Metal Industries,
Toyota Motor Corporation, WatchVision Co., Ltd., and The Whitaker Foundation.

C.S. was supported by ONR contract N00014-00-1-0637 under the MURI program “Decision Making under Uncertainty” while at Stanford.

Introduction
Many economic markets, including most major stock ex-
changes, employ market-makers to aid in the transactions
and provide a better quality market. Each commodity has
one or more market-makers assigned to it. The market-
maker’s responsibility is to set prices and volumes for buy-
ing and selling. In particular, a market-maker will con-
stantly quote a bid price and an ask price (the prices at which
the market-maker is willing to buy or sell respectively) as
well as associated sizes (the maximum volume to which the
market-maker is committed at that price).

Market-makers supply an advantage to the market. By
consolidating the trading in a few agents, the market be-
comes more efficient. Traders wishing to buy or sell do not
need to find each other or wait for each other’s arrival. Addi-
tionally, by quoting a single price which is guaranteed for all
traders, market-makers can help to smooth price fluctuations
due to spurious supplies or demands.

Market-makers benefit themselves from their position.
They have an informational advantage over because they see
more of the orders than an average trader. This is offset ei-
ther by institutional regulations or by competition from other
market-makers. Although they serve as a clearing house for
orders, they make trades against their personal cash and in-
ventory to cover their own quotes. Such a position carries
risk.

Many major markets are now electronic. The NASDAQ
is a distributed trading system completely run through net-
worked computers. It uses competing market-makers to
maintain a high quality market. However, the demands on
human market-makers are high. A typical market-maker is
responsible for 10 to 20 securities. At any given moment,
it is only feasible for the human to be actively attentive to
2 to 3 of them. The market-maker is generally losing po-
tential profit or volume on the other securities. Many other
smaller markets (on-line and off-hour trading systems) have
emerged as a result of the recent increases in computer net-
working. These systems are usually too small to employ
human market-makers. Instead, orders are crossed against
other orders that happen to be present at the time of the trade.
This results in many unfilled orders and the loss of potential
customers.

The goal of this paper is to explore the potential for auto-
mated electronic market-making. For the case of established
systems like the NASDAQ, such a system could fill the role
of an “autopilot” by taking care of stocks in an intelligent
manner while being supervised by a human. This would al-
low a single human to more successfully manage a large set
of securities. For the case of small on-line trading systems,
such an automated system could replace the existing naive
order crossing mechanism to provide a better market to its
traders.

Previous Work

There has been much work on understand both the price for-
mation process and market-making strategies. There are two
main approaches from the economics literature. One focuses
on the uncertainties in the order flow (the time series of or-

ders placed) and the inventory of the market-maker (Gar-
man 1976; Amihud & Mendelson 1980; Ho & Stoll 1981;
O’Hara & Oldfield 1986). The other tries to explain the
the price setting dynamics using information-based mod-
els (Glosten & Milgrom 1985). Most of these studies
have developed conditions for optimally but provided no
explicit price adjustment policies. For example, in Ami-
hud & Mendelson (1980), bid and ask prices are shown
to relate to inventory, but the exact dependence is unavail-
able. Some analyses do provide functional forms for market-
making policies (O’Hara & Oldfield 1986), but the practical
application of the results is limited due to stringent assump-
tions made in the models.

In previous work (Chan 2001; Chan & Shelton 2001;
Shelton 2001a), we developed a simple information-based
market model (similar to that of Glosten & Milgrom) and
employed reinforcement learning to derive explicit market-
making policies. The reinforcement learning algorithm
knew nothing of the underlying assumed model and there-
fore its application was general. By using a flexible method
based on experience, we hoped that we could apply the same
algorithm to more complex models with differing dynamics
without change.

Contribution
In this paper, we continue this research by building a more
complex market model based on real market data. We em-
ploy the same reinforcement learning algorithm that we used
in previous information-based models to derive a profitable
market-making strategy. This strengthens our statement that
by using a learning strategy we are assuring that the algo-
rithm’s success is not predicated on the exact details of our
market model.

Modeling the Stock Order Flow
In order to argue how well the market-making model will
perform in the real market, it is important to test under a
realistic market environment. Previously, we tested under
a simple environment where number of unrealistic assump-
tions were involved. Although the algorithm performed well
in such market, the market assumption (i.e. the existence of a
true price process and differentiation of the informed and un-
informed traders) over-simplified the model. Additionally,
the trading crowd did not react to any of the market-maker’s
actions nor their previous actions.

In this paper, we propose a new approach to empirically
model the aggregated behavior of the trading crowd. Prac-
tically, this involves modeling the time sequence of orders
placed on the market, called the order flow. Our new ap-
proach is more realistic than the previous model for two rea-
sons. First, the new model does not assume any “true” pric-
ing process. In the real market, the true price of a stock is
generally unknown; the price emerges from the aggregated
behaviors of the trading crowd. Each trader has a different
preference toward the stock and their behavior can change
based on their private or public information. Such informa-
tion is disseminated or aggregated by the trading process.
The trading process is the source of information to traders

(Easley, Kiefer, & O’Hara 1997). Second, the new model
will react to the market-maker’s quotes. The quoted bid
and ask prices and the corresponding bid/ask spread (the
difference between the two values) are relevant to trading
crowd’s decision making process. Therefore, in this pa-
per we will generate orders based on probability distribution
conditioned by the trading process and the market-maker’s
quotes.

TORQ Dataset
We fit our model to the transaction-level historical dataset -
Trade, Order, and Quote (TORQ) database from New York
Stock Exchange (NYSE). The TORQ dataset consists of
trade, order, and quote information for 144 stocks traded at
NYSE from November 1990 to January 1991. The trade
and quote data show the transactions and changes of price
and size of bid/ask in the market. Although TORQ contains
100% of trade and quote data, full order data are not avail-
able in the dataset. The order data covers only the orders that
entered through the NYSE’s electronic order routing system
(SuperDot system). Other orders, which are usually larger,
are assisted by floor brokers. In 1992, 75% of orders en-
tered the market via SuperDot but only accounted for 28%
of the executed share volume (Hassbrouk, Sofianos, & Sose-
bee 1993). Due to such limitation in our dataset, several as-
sumptions are needed to be made in our order flow model.
We will discuss this more in the later section.

Variables and Assumptions
Orders. The order flow model generates 4 types of orders:
market � buy, market sell, limit

�
buy and limit sell. To define

such orders, we introduce 4 variables:� Arrival Time: The time difference between current order
and preceding order.� Size: The number of shares of an order.� Side: Defines whether an order is buy or sell.� Price: The price of an order. This only applies to limit
orders.

We assume that the orders are stochastically generated con-
ditioned on the market conditions. If the same market condi-
tions are given as the training data, the generated orders will
form a similar trading process. If different market conditions
are given, the system will generate a sequence of orders that
react to the new conditions.

Market condition. The market conditions will be deter-
mined by the orders that are already generated and by the
market-maker’s actions. We will introduce 5 variables,
which represent the market conditions at time � :� Difference between bid and ask price (bid/ask spread):�����
	�� ������������

.� Difference between bid and ask size: � ����	�� � � ������� .� Return of transaction price:
�����! �"�#!$ ��%���! �"�#�$ �'&)(�+*

,
An order to buy or sell a security at the current market price.-
An order to buy or sell a security at a specific price

� Price moving average of 4 successive bids:./ 0 ��132�4 $ �� 132�4 $ �5&)(76 ��132�4 $ �'&)(� 132�4 $ �'&%896 �)132�4 $ �5&%8� 132�4 $ �5&%:;6 ��132�4 $ �'&%:� 132�4 $ �'&=< �?>%@� Price moving average of 4 successive asks:./ 0 ��
#�AB$ ��
#�AB$ �5&)(6 �)
#�AB$ �5&)(�
#�AB$ �5&%8 6 ��
#�AB$ �5&%8�
#�AB$ �5&%: 6 ��
#�AB$ �5&%:�
#�AB$ �5&=< ��>=@
The bid and ask prices and sizes are the best buy and sell
quotes (and respective sizes) currently available on the mar-
ket. We describe this in more detail in our discussion of
generating order from the model below.

Assumptions To create a trainable order flow architecture,
the following assumptions were made.� The arrival times and sizes of orders are distributed in ac-

cordance with fixed gamma distributions.� The side and price of orders are normally distributed given
market conditions.� The side and price of an order at time � and side and price
of an order at time � �C*

are dependent given the market
conditions.� The arrival time and size of orders are independent from
the side and price of orders.� At every time step, the floor orders and electronic orders
are similar in the sense that both can represent the current
market state.

The last assumption was made to overcome the limitation of
incomplete order data in TORQ dataset. It is safe to assume
that both electronic and floor orders have similar character-
istics in reacting to current market conditions.

Order Flow Model - Arrival Time and Size
For the arrival time and size, we fit the gamma distributions
using the maximum likelihood estimators.DFEHGJI gamma distribution parameters.

The gamma probability density function:K�L5M�N DOEBGQPOI *R L D�P GTS M SVU .�W UYX�Z
By taking derivatives of the log-likelihood function with re-
spect to each parameter, we can calculate the maximum like-
lihood estimators. [[GF\ L'M�N DFEHGTP]I D G � M

I ^
G I D M[[D_\ L5M�N DOEBGQP`I a�b%c D M 6 a�b%c M �ed L D�P
I ^

where
d L D�PfI Rhg L D�PR L D�Pji

The above equation cannot be solved in closed form since
it is a nonlinear equation. Therefore, we used bisection
method to find the root.

Order Flow Model - Buy/Sell and Price
In modeling the side and price of orders, we used In-
put/Output Hidden Markov Models (IOHMMs) (Rabiner
1989; Bengio 1999). IOHMMs are well suited model to
generate orders sequentially over time. At each time step,
the different order will be generated based on current mar-
ket state (hidden) and the current market condition, which
can partly be controlled by the market-maker.

Input/Output Hidden Markov Models (IOHMMs).
Like regular Hidden Markov Models (HMMs), the
IOHMMs are a probabilistic model with a certain fixed num-
ber of hidden states. Unlike HMMs, the output distribution
and transition distribution are not only conditioned on the
current state, but they are also conditioned on an observed
input value. The IOHMM is formally defined by� Number of states � .� Initial state distribution

��� L � � P .� State transition probabilities
� . L � �� . N � E�� P .� Output probabilities

��� L
	 N � E�� P .
where additional � denotes an input variable at time � .
In our model, the output will be a two dimensional vector,
which will represent side and price of the order. The input �
will be a discrete variable, which will represent one of two
different market conditions. In the training data, we used the�

-means algorithm to cluster the market conditions into two
sets. Then we labeled each order data with corresponding
market condition. Finally, we used two hidden states in our
model to represent market states.

EM for IOHMM Training IOHMMs using EM algorithm
is somewhat similar to HMMs, but it incorporates input vari-
ables. The forward-backward probabilities areD L� PfI � L�	 � E i�i�i E 	 E � I ��N � PI ������D U . L�� P � . L � I � N � U . I � E�� U . P����� � L�	 N � I � E�� P� L� PfI � L�	 �� . E i�i�i E 	�� N � I � E�� PI ��� � . L � �� . I �TN � I � E�� P����� L�	 �� . N � �� . I � E�� �� . P � �� . L�� P
� L� PfI � L � I ��N 	 � E i�i�i E 	 � E�� � E i�i�i E�� � PI D L� P � L�� P

� � D L!� P � L!� P
" L� E � PfI � L � I � E � �� . I �YN 	 � E i�i�i E 	 E�� � E i�i�i E�� � PI � D L� P � � L
	 �� . N � �� . I � E�� �� . P� . L � �� . I �YN � I � E�� P � �� . L�� P��# L ����D L�� P � L�� P
P i

Using above probabilities, we can run EM.� E-step: Compute the posterior probabilities � L�� P and" L�� E � P for all states
�

and time � .� M-step: Update the transition probabilities using
" L�� E � P

for each input value. Solve the maximum likelihood esti-
mation problem. For each input value and state, we max-
imize: � ��$ � � L�� P a�b%c � L
	 N � I � E�� P

t

U1 U2 U3

S1 S2 S3

O3O2O1

and Trade Info
EMM’s Quote

Figure 1: Side and Price Generation

Generating Orders from Order Flow Model

For each new order, the arrival time and size are sampled
from the estimated gamma distributions. For the side and
price of the order, more work has to be done. First, the cur-
rent input values are calculated by taking current values of
the market condition (a five dimensional vector) and mea-
suring the Euclidean distances to the means of the clusters
of market condition vectors in training data. The nearest
cluster is used as the input for the time step of the IOHMM.
The output (order) of IOHMM is sampled from the output
distribution Gaussian conditioned on the input and the state.
If the price is less than the current best selling price (for buy
orders) or greater than the current best buying price (for ask
orders), the order is assumed to be a market order. Other-
wise, it is treated as a limit order. Finally, the next state is
generated from the transition probabilities given the current
state and the input. Figure 1 illustrates the side and price
generation process.

Order Book We keep an order book of all previous limit
orders that have not been completely filled. If the order can
be satisfied by a corresponding order on the opposite side of
the book, the two orders are crossed and executed against
each other to the extend allowed by their volumes. The new
order is crossed against as many orders in the book as pos-
sible until it no longer matches or the entire volume of the
order has been filled. Orders on the book of the same price
are matched in the order in which they were received. If the
new order still has remaining volume unfilled, it is placed on
the book (with the potentially reduced volume).

The ask price is the smallest sell price in the book. The bid
price is the largest buy price in the book. The corresponding
volumes are the sum of the volumes in the book with these
prices. The ask price is always greater than the bid price
(or the two orders would have been executed against each
other). The book can be thought of as two lists (on for each

side: the buy side and the ask side). The order book can be
viewed as two lists (one for each side: the buy side and the
sell side) that are sorted by price in opposite directions. The
top (best) order on each list is the first order against which
incoming transactions are matched. The market-maker’s po-
sition (bids and asks) are also entered in the book along with
the other orders. The market-maker affects the model by
changing the market situation with its bids and asks (which
affect the book) and they corresponding transactions (which
remove orders from the book).

Experimental Results
We compared the market model’s reaction when market
maker’s quotes are significantly different. The Figure 2
shows the traded price over time when market maker was
forced to quote bid and ask prices with spread of $1 and $10
respectively. We trained the market model based on the data
from the stock symbol IBM for November 1, 1990.

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300

400

500

600

Time

P
ric

e

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300

400

500

600

Time

P
ric

e

Figure 2: The price changes over time when the market
maker was forced to quote with bid/ask spread of $1 and
$10 respectively.

The result shows that when the market maker is forced to
quote prices with larger spread, the market’s volatility is sig-
nificantly increased. The average bid/ask spread of above
cases are $0.0906 and $7.7768. However, since the same
market model were used for both cases, the volume weighted
average prices were similar ($227.51 and $237.52).

Reinforcement Learning
The goal of reinforcement learning is to find a strategy for
acting in an unknown environment that will maximize the
long-term return of the agent. Because the dynamics of the
environment are unknown, experience is used to guide the
search for better strategies.

The goals of a market-makers can be many-fold. In par-
ticular, they are interested in maximizing their profit, mini-
mizing their risk, maximizing the volume traded, and mini-
mizing the resources (cash, inventory) necessary. In (Shel-
ton 2001a) we discuss methods for balancing various goals
in the context of reinforcement learning in detail. For this
paper, we will assume the only goal of the market-maker is
to maximize profits.

Reinforcement Learning for Markets
The profits of a market-making system can only be realized
once the inventory has been liquidated. The reinforcement

learning algorithm needs a return (profit in this case) at the
end of each episode by which to judge it ability. Therefore,
at the end of an episode, we force the market-maker to zero
out its inventory by quoting bids or asks to sell or buy as
much stock as needed to reset the inventory. This may take
a number of model time steps. During this time, the rein-
forcement learning strategy has no control over the agent.
The return is for the episode is set to be the resulting profit
after the inventory has been liquidated.

During the market simulation, the market-maker may
quote a price that is worse than the current best price in the
book (on either the buy or sell side). In this case, the best bid
or ask from the book are used as input to the market model.
The market-maker’s bids and asks sit like any other orders
on the book. This can be viewed as either the market-maker
is competing to buy and sell like any other agent (possibly
against other market-makers) or that the market-maker can
quote the better price and volume and make the trade without
resorting to personal inventory and does not need to change
its internal position do to so.

Importance Sampling Algorithm

In (Shelton 2001b) we developed a reinforcement learning
algorithm for partially-observable environments based on an
episodic learning framework. It uses importance sampling
estimates to calculate the expected return for untried strate-
gies. Although there is not space in this paper to fully detail
the algorithm, we will describe its basics and refer the reader
to our previous paper for more details.

We assume that after � episodes, the market-maker has
tried strategies � . through � � and observed as a conse-
quence histories ��� . through � � and returns � . through � � .
The estimated return for a new strategy � is

�
� L � POI

� � � �	��
� 2�� ������ ��
� 2�� � � �
� � ��
� 2�� ������ ��
� 2 � � � �

where � L � � N � P is the probability of history � � happening
when the agent is executing strategy � . � L � � N � P is not com-
putable because it depends on the hidden dynamics of the
environment. However, the ratio of � L � � N � P to � L � � N � g P for
any other strategy � g is, because the histories in question are
the same and therefore the probability of the realized world
dynamics are equal and they cancel out of the ratio.

This estimator is an weighted importance sampling esti-
mate (Rubinstein 1981; Hesterberg 1995). The samples are
reweighted according to the ratio of their likelihood under
the target strategy to their likelihood under the sampling dis-
tribution. Shelton(2001b; 2001a) and Peshkin & Mukher-
jee(2001) detail more of the theoretical properties of this es-
timator in the context of reinforcement learning.

Based on this estimator, we build a greedy search algo-
rithm that selects a new strategy by maximizing the estimate�
� L � P with respect to the strategy � . This new strategy is

�
A history denotes the sequence of observations that the agent

made and the actions the agent took in response.

then tried resulting in a new history and return. The strat-
egy, history, and return are all added to the dataset and the
process repeats.

Strategy Space
In order to employ the algorithm from above, we must select
a parameterized class of strategies. We selected eight input
values on which the market-maker can base its decisions.� The difference between the market-maker’s ask price and

the best ask price (zero if the market-maker’s ask price is
the best price).� The spread between the best bid and ask prices.� The difference between the market-maker’s bid price and
the best bid price (zero if the market-maker’s bid price is
the best price).� The market-maker’s ask size.� The market-maker’s bid size.� The total volume of sell orders of price less than or equal
to the market-maker’s ask price.� the total volume of buy orders of price greater than or
equal to the market-maker’s bid price.� The market-maker’s inventory.

These values have some overlap with the values used as
inputs to the market model, but there is additional infor-
mation that affects the market that is not available to the
market-maker including trend data and the hidden state of
the IOHMM.

We give the market-maker the ability on each time step
to increase by a unit, decrease by a unit, or keep constant
its bid price, ask price, bid size, and ask size. It is forced to
maintain both a bid and ask price (with positive size) that are
separated by at least

* # *�� � (one unit). This makes a total
of � * I�� / actions. We divide these sets of actions into four
groups of three subactions and specify a neural-network for
each with eight inputs (from above), five hidden units, and
three output units (one for each action). The middle layer is
of sigmoid units and the output layer is of softmax functions
(to produce a probability distribution over the outputs) and
are combined to form a complete action from the set of 81.

Thus a strategy consists of four networks. To calculate
an action, the same input is fed into each network. The
output of each represents the probability distribution of in-
creasing, decreasing, or keeping constant the corresponding
value. The subactions are sampled independently from these
output distributions.

Market-Making Experiments
We trained two different market models. One (denoted GE)
is based on the data from the stock symbol GE for Novem-
ber 1, 1990. The second (denoted IBM) is based on the data
from the stock symbol IBM for the same day. Each train-
ing day we broke into six one-hour increments. The market
simulation and the order book had no knowledge of the arti-
ficial division and kept running as normal across the division
boundaries. The market-maker was forced to liquidate its in-
ventory at the end of each segment by interacting with the

0 10 20 30 40 50 60
−1000

−800

−600

−400

−200

0

200

training time (days)

ex
pe

ct
ed

 p
ro

fit
 (

$1
00

0/
da

y)

Figure 3: The expected profit for the strategies produced as
a function of the number of days of training for the stock
GE.

market using a strict strategy of buying or selling. Thus each
day contained six episodes. After a day, the market-maker
was allowed to change strategies greedily as above.

For each strategy tried, we calculated its expected profit
by separately (unknown to the learning algorithm) averaging
the profits from 10000 full day simulations where we only
enforced liquidation at the end of the day. Figure 3 demon-
strates a typical learning run for the GE model. The algo-
rithm was run for 60 days and after each day the value of the
strategy was calculated and plotted. As we can see, it takes
roughly 40 days (or 2 months) of training to converge to a
stable profitable strategy. The IBM model is more volitile.
However, our algorithm still performs well as demonstrated
in figure 4.

Discussion

We believe these results to be encouraging in two respects.
First, the market-model represents the true order flow well
using the understood statistical model of the IOHMM. This
should allow in the future a better understanding of market-
making by analysis of the model. Second, the same learn-
ing framework which we used for our previous papers also
successfully finds profitable solutions in this framework and
adapts well to the new circumstances. This implies the learn-
ing algorithm is general and has a good chance of working
in a real market.

Although there have been previous market models and as-
sociated market-making strategies, we feel this is the most
flexible model and market-maker. The dynamics of the com-
bination of the market model and the order book are difficult
to analyze in closed form. However, by employing learning
both at the stage of order-flow modeling and at the stage of
finding market-making strategies, we did not need to find a
closed-form solution to our problem and we insured that the
resulting system is flexible and adaptive.

0 10 20 30 40 50 60
10

20

30

40

50

60

70

80

training time (days)

ex
pe

ct
ed

 p
ro

fit
 (

$1
00

0/
da

y)

Figure 4: The expected profit for the strategies produced as
a function of the number of days of training for the stock
IBM.

References
Amihud, Y., and Mendelson, H. 1980. Dealership mar-
ket: Market-making with inventory. Journal of Financial
Economics 8:31–53.

Bengio, Y. 1999. Markovian models for sequential data.
Neural Computing Surveys 2:129–162.

Chan, N. T., and Shelton, C. 2001. An electronic market-
maker. Technical Report AI-MEMO 2001-005, MIT, AI
Lab. appeared in the Seventh International Conference of
the Society for Computational Economics.

Chan, N. 2001. Artifical Markets and Intelligent Agents.
Ph.D. Dissertation, Massachusetts Institute of Technology.

Easley, D.; Kiefer, N. M.; and O’Hara, M. 1997. The infor-
mation content of the trading process. Journal of Emprical
Finance 4:159–186.

Garman, M. 1976. Market microstructure. Journal of
Financial Economics 3:257–275.

Glosten, L. R., and Milgrom, P. R. 1985. Bid, ask and
transaction prices in a specialist market with heteroge-
neously informed traders. Journal of Financial Economics
14:71–100.

Hassbrouk, J.; Sofianos, G.; and Sosebee, D. 1993. New
York Stock Exchange: Systems and trading procedures.
Technical report, NYSE Working Paper.

Hesterberg, T. 1995. Weighted average importance sam-
pling and defensive mixture distributions. Technometrics
37(2):185–194.

Ho, T., and Stoll, H. R. 1981. Optimal dealer pricing under
transactions and return uncertainty. Journal of Financial
Economics (9):37–73.

O’Hara, M., and Oldfield, G. 1986. The microeconomics
of market making. Journal of Financial and Quantitative
Analysis 21:361–376.

Peshkin, L., and Mukherjee, S. 2001. Bounds on sam-
ple size for policy evaluation in markov environments. In
Fourteenth Annual Conference on Computational Learning
Theory.
Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE 77(2):257–286.
Rubinstein, R. Y. 1981. Simulation and the Monte Carlo
Method. John Wiley & Sons.
Shelton, C. R. 2001a. Importance Sampling for Reinforce-
ment Learning with Multiple Objectives. Ph.D. Disserta-
tion, Massachusetts Institute of Technology.
Shelton, C. R. 2001b. Policy improvement for POMDPs
using normalized importance sampling. In Proceedings of
the Seventeenth International Conference on Uncertainty
in Artificial Intelligence, 496–503.

