
Neural Stochastic Differential Equations with
Bayesian Jumps for Marked Temporal Point Process

Kazi Islam
Department of Computer Science
University of California, Riverside

Riverside, CA 92507
kazi.islam@email.ucr.edu

Christian Shelton
Department of Computer Science
University of California, Riverside

Riverside, CA 92507
cshelton@cs.ucr.edu

Abstract

Many real-world systems evolve according to continuous dynamics and get in-
terrupted by stochastic events i.e. systems that both flow (often described by
a differential equation) and jump. If the equation of the continuous motion is
unknown, the stochastic event generation process can be modeled as samples gen-
erated from a marked temporal point process, in the form of event sequences with
non-uniform time intervals. Additionally, each event is marked with the type of the
event and a real-valued noisy measurement. The noisy measurements themselves
are the realizations of a stochastic process with an unknown stochastic differential
equation (SDE). We present a framework that simultaneously models the intensity
function of the temporal point process and learn stochastic process governing the
distribution of the observed noisy measurements. Similar to the underlying system
of interest, the latent dynamics of our framework evolves continuously according
to ordinary differential equations (ODEs) while, the jumps at the observations are
controlled by Gated Recurrent Units (GRUs) through a Bayesian update, which
accounts for the observation noise. We present preliminary data fitting results on a
real-world medical dataset.

1 Introduction and Related Work

The real world has many examples of systems that evolve continuously in time and are interrupted by
stochastic events, spaced by non-uniform time intervals. In many domains, such as social networks,
global politics, and computer systems, the “equations of motion” are unknown and the unknown
dynamics of the underlying system can only be estimated by records of the events and their real-valued
times. Data in the medical domain, for example, electronic health records (EHRs), can additionally
contain real-valued noisy physiological measurements of different variables including vital signs,
drugs, and lab tests. These observations are inherently noisy due to charting errors, calibration, or
device noise. Our goal is to model the dynamics of such systems where in addition to the real-valued
irregularly sampled times, each event is accompanied by the type of the event and also a real-valued
noisy measurement.

Given such event sequences with non-uniform time intervals, marked temporal point process and
intensity functions are a powerful mathematical framework to model the event generation process.
The measurement variables can be modeled by the Fokker-Plank equation [1] and the measurements
viewed as noisy observations of this underlying stochastic process. Recurrent Neural Networks
(RNNs) are not a natural fit for modeling such data, as they naturally assume the observations are
regularly spaced across the temporal dimension. Usual tricks to adapt RNNs for irregular time series
data divide the timeline into equally-spaced time-intervals [2–4], use the time difference between
the observations as an input to the model [5, 6], or decay the hidden state exponentially when no

Preprint. Under review.

observation is made [5,7]. However, these approaches either make the simplified “missing at random”
assumption, fail to capture the continuously evolving dynamics of the underlying system or use a
fixed form of evolution in between observations.

We present a framework based on the recently proposed neural ordinary differential equations (Neural
ODEs) [8] for jointly learning the two intertwined stochastic processes, that is the temporal point
process generating the stochastic events and the stochastic process generating the associated real-
valued noisy measurements. We encode the state of the underlying system in a latent state vector
h(t), which evolves piecewise-continuously according to a neural ODE. The jumps at the observation
times are controlled by GRUs [9], which changes the trajectory of h(t). Additionally, a Bayesian
update term accounts for the noise in the measurements to learn the true distribution of the underlying
multivariate stochastic process of the measurement variables. The intensity function of the point
process and the mark distributions are generated from h(t) with additional neural nets.

In a neural ordinary differential equation (Neural ODE) framework, the differential equation express-
ing the flow dynamics is parameterized by a neural network without considering potential jumps
of the latent state. Jia et al. [10] address the jumps using a neural net and also an adjoint-operator
formulation of the gradient for learning in constant memory and model the intensity of point processes
and distribution of real-valued features. However, they ignore the stochasticity of the underlying
process generating the noisy measurements. Brouwer et al. [11] proposes a Bayesian update network
using GRUs to regularize the neural ODE to better track a true belief state for the underlying system
without directly addressing the event generation process concerning event history. Rubanova et
al. [12] proposes an ODE-RNN hybrid where the hidden state dynamics flow according to a neural
ODE and the jumps according to a GRU unit. They applied their model for learning the intensity
function without accounting for the event history and did not address the noise in the measured
observations. We address all these issues in modeling noisy, irregularly-sample time series altogether
using a unified framework combining the above ideas.

Finally, we present preliminary data fitting results on a real-world electronic health records from
the MIMIC-III (’Medical Information Mart for Intensive Care’) database [13], a publicly available
critical care database.

2 Preliminaries

We want to model the dynamics of a hybrid system whose samples contain a finite set of
events of unbounded random size; each event has a real-valued time and a mark consisting of
a discrete-valued label and a real-valued noisy measurement of that label. Formally, each sample
S = {(t1, k1), (t2, k2), . . . , (tI , kI)} is an event sequence with non-uniform time intervals, where ti
is the time and ki is the mark (the label of the event and the corresponding recorded noisy measure-
ment) associated with event i and ti < ti+1. We let I represent the total number of events and T be
the total length of time (T ≥ tI).

In many real-world systems, measurements of multiple types of labels are recorded at the same time
(for instance, vital signs like heart rate, blood pressure, and respiratory rate of a patient). Therefore,
we extend the mark ki to consist of a pair of vectors, (ei,vi), where ei ∈ {0, 1}|L| is a multi-hot
encoding of the set of all L types of event labels (heart rate, glucose, blood pH, etc.), and vi ∈ R|L|
is a vector of values with one element for each of the L types of event labels. Event labels that
co-occur have 1s in the multi-hot encoding representation and the corresponding elements in vi are
the associated noisy measurements. Elements of the vector vi corresponding to the event-types that
did not occur at time ti are represented with 0s.

We postulate that the measurements vi are observations of an L-dimensional continuous stochastic
process V(t), which is driven by an unknown stochastic differential equation (SDE):

dV(t) = M(V(t))dt+ Σ(V(t))dW (t), (1)

where dW (t) is a Wiener process. The distribution of V(t) evolves according to the Fokker-Planck
equation. The continuous mean and the covariance function for the probability density function
(PDF) of V(t) is denoted by M(t) and Σ(t) in equation 1. From the noisy measurements observed at
irregular times, we need to model the two unknown mean and the covariance function. Note that,
observations from all dimensions are not sampled at the same time, which results in the missing values

2

time

(ei, vi) (ei+1, vi+1)

ti ti+1

h(t)

h(t) h(t)

tI

− log λ(ti)

∫
λ(t)

− log p(ei, vi) − log λ(ti+1)− log p(ei+1, vi+1) − log λ(tI)− log p(eI , vI)

(eI , vI)

KLloss(ti, ei, vi)
KLloss(ti+1, ei+1, vi+1)

KLloss(tI , eI , vI)

Figure 1: Illustration of our proposed framework. Just before processing input observation (ei, vi),
the negative log-likelihood loss for the intensity and the mark distribution is calculated from the
continuous hidden state, obtained from the solution of the ODE solver at ti. After the GRU (shown
by the gray box) processes the observation, the hidden state jumps to the new state (indicated by the
brown dots) and the KL divergence loss (shown by the green arrows) is computed (equation 13).

in vi. Additionally, we assume the observation noise in the sampled measurement for dimension l is
drawn from a Gaussian distribution with zero mean and standard deviation of σobsl .

We postulate that the observation times are drawn from a general continuous-time point process, whose
intensity may depend on the history of both V and the previous observation times. Its conditional
intensity function, λ(t,H), may depend on both the raw time t, and the history up through time t,H. If
we letHi be the observed history up to but not including event i,Hi = {(t, k) | (t, k) ∈ S ∧ t < ti},
the density of the distribution over the time of event i, given the history is:

P (ti | Hi) = λ(ti,Hi)e
−

∫ ti
ti−1

λ(s,Hi) ds . (2)

For a marked point process observed within a time interval [0, T), the number of observed events I is
finite, and the continuous log-likelihood of such a finite event-stream is given by,

I∑
i=1

[logP (ti | Hi) + logP (ki | Hi, ti)] + logP (tI+1 > T | H) . (3)

The middle P (ki | Hi, ti) term is a combination of the distribution for the event label, ei, and
the complex marginal distribution over V(ti) conditioned on Hi, as implied by the Fokker-Planck
equation. We assume, the distribution for the event label, ei, is drawn from its own distribution
conditioned on history: P (ei | Hi, ti). As the labels are discrete-valued, this distribution could be
folded in to the intensity, to create a separate intensity for each event label possibility (with the total
intensity being the sum of the intensities over all possible labels). However, for our model, a global
intensity and a multinomial distribution over labels is more natural.

If the SDE (Equation 1) were known, the inference would depend on tracking the belief state of V:
P (V(t) | H). Rather than parameterizing and estimating the SDE and then developing an (almost
assuredly approximate) belief-state filtering method for V , we propose to learn the belief-state filter
directly, never explicitly modeling the underlying SDE. To this end, we next describe a continuous-
time neural ODE process with jumps that we train to track both the SDE and the point process. Thus,
its hidden state, h, serves as a sufficient summary of the history to model the belief state of V and the
history,H, as necessary for the conditional intensity, λ(t,H).

3 Proposed Framework

Figure 1 schematically shows the components of our framework. We describe each component in the
sections below.

3.1 ODE-GRU

Recently proposed Neural ODEs [8] are a family of continuous-time models where the hidden state
h(t) is defined as a solution to an ODE initial-value problem (IVP):

˙h(t) = fθ(h(t), t), (4)

3

where h(t0) = h0 and fθ(h(t), t) is a multi-layer perception (MLP) with parameters θ.

The continuous hidden state h(t) can be evaluated at any set of times using a numerical ODE solver:

h0, ..., hI = ODESolve(fθ, h0, (t0, ..., tI)). (5)

Similar to the ODE-RNN model [12], the hidden state in our framework evolves according to an
ODE in between the noisy observations, and the solution to the ODE at time t is the input to an RNN
unit that provides the jump at observations. For the RNN unit, we choose the Gated Recurrent Unit
(GRU) [9]. This jump allows the hidden state to incorporate the observation and track the belief state
of the underlying system. Formally,

hi = ODESolve(fθ, h
′
i−1, (ti−1, ti)), (6)

where h′i = GRU(hi, ki). That is, hi is the hidden state before the observation at time ti, and h′i is
the hidden state after the observation at time ti.

The hidden state is coupled with the processes through four MLPs, gλ, ge, gµ, and gvar:

λ(t) = gλ(h(t)) (7)
p(ei | ti, h(ti)) = B (ei; g

e(h(ti))) (8)
p(vi | ti, h(ti)) = N (vi; g

µ(h(ti)), g
var(h(ti))) (9)

where gλ maps h to the intensity of an observation event (a non-negative scalar), ge maps h to |L|
independent Bernoulli distributions (that is, the |L| independent probabilities that each label appears
at an observation), gµ maps h to |L| means, and gvar maps h to |L| variances. For vi, we assume
that, conditioned on the hidden state h, each observed label’s value is drawn independently from
a normal distribution. Thus, gel (hi) is the model’s predicted probability that label l appears in the
observation at time ti. Similarly, gµl (hi) and gvar

l (hi) are the mean and variance of the predicted
normal distribution over the value associated with label i, if it appears in the ith observation.

3.2 Maximizing the Log-likelihood

We train the model using maximum likelihood estimation. The log-likelihood of the event stream S
over the finite time interval T is derived from equation 2 and 3 as:

log(p(S|W)) =
∑
i

[log λ(ti | h(ti);W) + log p(ki | h(ti), ti;W)]−
∫ T

t=0

λ(t) dt, (10)

whereW is the set of all parameters including the ODE-GRU parameters and the MLP parameters
controlling the dynamics, such as the event intensities, and the joint density of the events and their
values. The −

∫ T
t=0

λ(t) dt term integrates the log-probability of the infinitely many non-events that
did not occur within the the time interval T .

The model evolves according to equation 6 where hi is equivalent to h(ti), the history,Hi, prior to
event i. The intensity for event i and the mark distribution p(ki|h(ti), ti) in equation 10 therefore
is obtained from hi, which is the solution of the ODE-solver with initial value h′i−1 (state after the
GRU processes event i− 1), at time ti−1.

3.3 Bayesian Jump

We add the Bayesian Jump framework [11] to regularize the system by encouraging its output to track
the Bayes filter and account for the noise in the observed measurements. Consider the observation of
the lth label’s value at time ti. Just before the observation event, the model’s belief over its value has
a mean and variance of gµl (hi) and gvar

l (hi). After making the observation, the hidden state jumps to
h′i. The new belief has a mean and variance of gµl (h′i) and gvar

l (h′i). We would like these beliefs to be
consistent with a Bayesian update of a belief state, assuming a known zero-mean observation noise
with variance σ2

obs.

4

Assuming we observe value vi,l, the posterior distribution over the value of event type l should have
mean and variance

µBayes,l =
σ2

obs · g
µ
l (hi)

gvar
l (hi) + σ2

obs
+

gvar
l (hi) · vi,l

gvar
l (hi) + σ2

obs
(11)

σ2
Bayes,l =

gvar
l (hi) · σ2

obs

gvar
l (hi) + σ2

obs
. (12)

If we let pBayes,l be this Bayesian update normal distribution (with mean µBayes,l and variance σ2
Bayes,l)

and let p′i,l be the normal distribution predicted by the model after the GRU update (with mean gµ(h′i)

and variance gvar(h′i)), we add a KL-divergence loss to encourage the two distributions to be the
same:

KLLoss(ti, ei,vi) =
∑
l

ei,lDKL(pBayes,l ‖ p′i,l) , (13)

which sums over the individual event type observations, because the model assumes that each
component is independent given h.

The joint loss to optimize then becomes:

− log(p(S|W)) +
∑
i

KLLoss(ti, ei,vi) , (14)

which can be optimized using gradient descent.

To aid the network in making the correct update, we augment its input. For the ith event, instead of
directly feeding the mark ki to the GRU, vi is appended with the means and variances of the predicted
outputs (gµl (hi) and gvar

l (hi) for all l) and the normalized error terms (vi,l − gµl (hi))/
√
gvar
l (hi) (for

all l), which are then multiplied by a dimension specific weight vector Wl and passed through a
ReLU non-linearity to produce qi. Non-observed dimensions in qi is zeroed out and is appended
with ei to be passed as input to the GRU. While this extra information is already available in hi, the
prevents the GRU from needing to learn to recalculate it.

4 Experiments

One of the prominent use-cases of irregular time series modeling is patient time series data observed
in an Intensive Care Unit (ICU) setting, which are highly noisy, sparse, and irregularly sampled.
We perform our experiments on a subset of the publicly available MIMIC-III database curated
as a benchmark for evaluating machine learning models in healthcare settings [3], containing 17
physiological time-series variables. Unlike the proposed methods in the corresponding paper [3], we
do not discretize the data, instead, take into account each time where at least one variable is measured,
and represent the measurement variables and their values as ei and vi (section: 2).

We fit our models on the first 24 hours of data on a training set containing 5000 samples. We report the
data-fitting performance on a separate hold-out set with 1000 samples. To properly use batching and
achieve speedup in training, we rounded the observation times into the nearest minute and took the
aggregate of measurements taking place in the same rounded minute. This results in (24 ∗ 60 + 1) or
1441 possible measurement times. Note that, rounding to the minute results in very little information
loss compared to hourly aggregation. All the ODEs in a minibatch are solved continuously for each
1441 measurement times, however, the jumps using the RNN occur only at the observation times for
each sample. A separate boolean mask matrix indicates the times where an observation occurred for
each sample in the minibatch.

We used ODE Solvers from torchdiffeq python package [8], particularly the fifth-order ”dopri5” solver
with adaptive step size. The relative and absolute tolerances were set as 1e-3 and 1e-4 respectively.
The adjoint method described in [8] and [10] can be used to reduce the memory use, with the cost of
added computational time. We used Adam optimizer [14] for learning the parameters of all the MLPs
and the RNN. The integral term in equation 10 can be directly obtained by augmenting the ODE with
an integral over λ(t), which is obtained from the hidden state using gλ.

We refer to our model as ODE-RMTPP and compare the performance between the two versions of it:
with and without the Bayesian Jump framework. We report the total negative log-likelihood (NLLH)
loss and also the individual losses: the intensity loss, event loss, and the value loss.

5

Table 1: MIMIC-III Results

Model Sequence NLLH Intensity NLLH Event NLLH Value NLLH

ODE-RMTPP 390424.3438 75319.7109 146406.2812 146339.5938
ODE-RMTPP + BAYES 383080.7500 75302.3359 145825.2656 139586.7969

Results (Table: 1) show that adding the Bayes filter improves the data-fitting performance, as the
NLLH in the test set reduces for each distribution. The most significant reduction in the NLLH loss
occurs for the value distribution. This makes sense, as the Bayes Filter is particularly tracking the
belief state for the values. However, the KL divergence loss also implicitly acts as a regularizer,
which results in loss reduction for both the intensity and the event distribution.

5 Discussion and Future Work

We have developed a framework based on Neural Ordinary Differential Equations, with a Bayesian
Jump Framework to simultaneously capture the irregularity and noise in time-series data. Our model
is best suited for temporal point process modeling in time-series data where, the irregularly sampled
temporal event-sequences are marked with a real-valued noisy measurement, in addition to the type
of the event e.g. medical time series. Currently, in our framework, only the jump of the hidden state
at the observation times is Bayesian. One of the possible future directions is to make the network
fully Bayesian by imposing priors on the parameters of the MLPs and the RNN.

References
[1] H. Risken and H. Haken, The Fokker-Planck Equation: Methods of Solution and Applications Second

Edition. Springer, 1989.

[2] Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling missing data in clinical time series with rnns,” Machine
Learning for Healthcare, 2016.

[3] H. Harutyunyan, H. Khachatrian, D. C. Kale, and A. Galstyan, “Multitask learning and benchmarking with
clinical time series data,” arXiv preprint arXiv:1703.07771, 2017.

[4] H. Suresh, N. Hunt, A. E. W. Johnson, L. A. Celi, P. Szolovits, and M. Ghassemi, “Clinical intervention
prediction and understanding using deep networks,” CoRR, vol. abs/1705.08498, 2017.

[5] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks for multivariate time
series with missing values,” arXiv preprint arXiv:1606.01865, 2016.

[6] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song, “Recurrent marked tem-
poral point processes: Embedding event history to vector,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564, ACM, 2016.

[7] H. Mei and J. Eisner, “The neural Hawkes process: A neurally self-modulating multivariate point process,”
in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
(USA), pp. 6757–6767, Curran Associates Inc., 2017.

[8] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” in
NeurIPS, 2018.

[9] K. Cho, B. van Merrienboer, Çaglar Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder-decoder for statistical machine translation,” ArXiv, vol. abs/1406.1078,
2014.

[10] J. Jia and A. R. Benson, “Neural jump stochastic differential equations,” CoRR, vol. abs/1905.10403, 2019.

[11] E. D. Brouwer, J. Simm, A. Arany, and Y. Moreau, “Gru-ode-bayes: Continuous modeling of sporadically-
observed time series,” CoRR, vol. abs/1905.12374, 2019.

[12] Y. Rubanova, R. T. Q. Chen, and D. Duvenaud, “Latent odes for irregularly-sampled time series.,” CoRR,
vol. abs/1907.03907, 2019.

[13] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits,
L. A. Celi, and R. G. Mark, “MIMIC-III, a freely accessible critical care database,” Scientific data, vol. 3,
2016.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

6

	Introduction and Related Work
	Preliminaries
	Proposed Framework
	ODE-GRU
	Maximizing the Log-likelihood
	Bayesian Jump

	Experiments
	Discussion and Future Work

