
Morphable Surface Models ∗

Christian R. Shelton
Massachusetts Institute of Technology

February 23, 2000

Abstract. We describe a novel automatic technique for finding a dense corre-
spondence between a pair of n-dimensional surfaces with arbitrary topologies. This
method employs a different formulation than previous correspondence algorithms
(such as optical flow) and includes images as a special case. We use this correspon-
dence algorithm to build Morphable Surface Models (an extension of Morphable
Models) from examples. We present a method for matching the model to new surfaces
and demonstrate their use for analysis, synthesis, and clustering.

1. Introduction

The goal of this paper is to describe a general method for learning mod-
els of surface classes without user intervention. The technique works on
surfaces of any dimension embedded in a Euclidean space and is not
specific to any particular modality. The Morphable Surface Models of
this paper are a generalization of Morphable Models (described below).

The key problem in building such models is finding correspondences
between surfaces. We define a correspondence to be a relation from
points on one object to their matching points on the other object. In
images such relations are often called flow fields and have found a wide
variety of uses. Here we extend the notion from images to surfaces in
general1 and employ the correspondence algorithm to build Morphable
Surface Models.

The remainder of this introduction describes previous work in Mor-
phable Models and surface matching. Section 2 describes the correspon-
dence algorithm by first describing the minimization problem, then
the algorithm for performing the minimization, and finally the role
of surface simplification. In section 3, we describe how to use the

∗ This paper describes research done within the Center for Biological and Com-
putational Learning in the Department of Brain and Cognitive Sciences and at
the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology.
This research is sponsored by grants from the National Science Foundation, ONR
and Darpa. Additional support is provided by Eastman Kodak Company, Daimler-
Chrysler, Siemens, ATR, AT&T, Compaq, Honda R&D Co., Ltd., Merrill-Lynch,
NTT and Central Research Institute of Electric Power Industry.

1 A gray scale image can be described as a surface or height-field. Color images
can similarly be described (now in 5-dimensional space instead of 3-dimensional
space).
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2 Christian R. Shelton

correspondence algorithm to build models. To do so, we introduce a
method for matching the models to surfaces, an inner product on the
space of correspondences, and how to apply bootstrapping. Section 4
describes experimental results obtained by building models of various
types of surfaces and gives an illustration of the steps of the correspon-
dence algorithm. Lastly, section 5 gives some conclusions and possible
extensions.

1.1. Morphable Models

It is known that linear models in the image space are generally poor
models for classes of images. Such a model describes members of the
class as alpha-blendings of the examples. This in general produces poor
results. Unless the images align pixel-for-pixel, the alpha-blending of
two images will not produce a third image in the same class of images:
instead the synthesized image will be two “ghosts” of the combined
images.

The difficulty lies in the fact that every pixel of the new image is
a linear combination of the pixels at the same location in the other
images. These other pixels may not be related to each other and thus
taking a linear combination of them will produce nothing of worth.
However, if we can match “corresponding” pixels across the set of
example images, then linear combinations of these corresponding pixels
will work better as a model (Beymer and Poggio, 1996).

For this paper we define a correspondence to be a relation between
two objects that maps each of the points on one object to its “cor-
responding” point on the other object (where we appeal to intuition
for the definition of corresponding). For images, a correspondence is
simply a flow field from one image to another. Morphable Models are
constructed from a set of example images by finding flow fields from an
arbitrary base example image to all of the other example images. As
a generative model, the output is the base image warped by a linear
combination of the flow fields. The parameters of the model are the
weights of the linear combination. The pixel values aligned by the
correspondences may also be combined linearly to produce an image
that is not only a combination of the “shapes” of the examples (the
flow fields) but also the “texture” of the examples (the pixel values).

In this paper, we consider a more general morphable model. Instead
of dealing only with images, we allow the objects to be surfaces of arbi-
trary dimension embedded in Euclidean space. Images are a particular
example of such a surface (a gray-scale image is a two-dimensional
manifold in three-dimensional space: one dimension for each image
axis and one dimension for intensity). Thus we will build a general
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Morphable Surface Models 3

correspondence technique for any pair of surfaces (replacing the flow
field algorithm for images) and, from that, a general technique for
building morphable models of arbitrary surfaces. At the end of this
paper, we will show some simple examples of the uses of Morphable
Surface Models.

1.2. Related Work

Morphable Models have been applied mainly to images. Jones and Pog-
gio (1998) has a good description of their image method and related
image-based techniques. We would refer to their introduction as the
best description of the Morphable Model literature. Briefly, the result
that new views of a 3D object can be synthesized linearly from three
sample views (Ullman and Basri, 1991; Shashua, 1992) spurred the
creation of models of image classes as linear combinations of examples
(Poggio and Vetter, 1992; Vetter and Poggio, 1995; Beymer et al.,
1993; Beymer and Poggio, 1996).

Since Jones and Poggio (1998), Vetter et al. (1997) developed a
bootstrapping technique (used and redescribed in this paper) for better
automatic construction of Morphable Models. Recently, Blanz and Vet-
ter (1999) extended Morphable Models to 3D shapes by describing the
shape as its projection onto a 2D surface (which can then be unrolled
and treated as an image). From there they were able to use Morphable
Models to reconstruct 3D shape from a single view. Kang and Jones
also have used such a projection technique to constrain reconstruction.

Active Appearance Models (Cootes et al., 1998) also try to match
images but require user specified correspondences. Deformable Inten-
sity Surfaces (Nastar et al., 1996) treat images as surfaces and use an
automatic matching technique not dissimilar to the one described here.
However, the topology of the surface is essentially limited to that of a
grid. Active Contour Models (or Snakes) (Kass et al., 1988; McInerney
and Terzopoulos, 1995) are also similar to the work in this paper. They
operate on surfaces of arbitrary dimensions and topologies. However,
they are used to match a surface to gradients in volumetric data instead
of to other surfaces.

In this paper we have used the term “n-dimensional surface” to mean
a surface with n orthogonal tangent vectors at every point. In Active
Contour Models this phrase is taken to imply that the surface lies in
an n-dimensional space (and the surface itself has a dimensionality less
than n). We have used the phrase “dimensionality of the embedded
space” to denote such a quantity.

The difficult part of building a morphable model and many other
modeling techniques is finding correspondences. We believe this is the
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first paper to propose an algorithm for automatically finding surface
correspondences between surfaces with arbitrary topologies directly.
The energy minimization method here is based on that described in
(Shelton, 1998), has certain similarities to elastic networks (Durbin
and Willshaw, 1987), and has energy terms related to the surface re-
construction work of Hoppe and others (Hoppe et al., 1992; Hoppe
et al., 1993).

2. Matching Surfaces

To build a Morphable Surface Model, we must first be able to find
the correspondences between the example surfaces. This will serve as
the foundation for model construction algorithm. We define an energy
function over all possible correspondence relations for which smaller
values indicate better correspondences. We will then give an algorithm
for finding a minimum of this energy function which will hopefully
correspond to a good match according to the metric encoded in the
energy function. Crucial to the practical success of this minimization
is the mesh simplification described in section 2.4.

2.1. Energy Function

Let C be a function which maps points on one surface, A, to arbitrary
points in space. In order for C to be a good correspondence from A to
B we propose it must satisfy three properties:

1. Similarity: For every point a on the surface A, C(a) should be near
or on the surface B.

2. Structure: C should distort the surface A as little as possible. Put
differently, C(A) should be as structurally similar to A as possible.

3. Prior Information: C should represent a plausible deformation of
the surface.

The first property states that C should be a correspondence and actu-
ally match points on A to points on B. The second says that such a
matching should not be arbitrary, but rather should attempt to keep
the structure of the first surface. This will hopefully force matching of
similar substructures from A to those of B and preserve our intuitive
notion of correspondence. The last term serves to enforce prior knowl-
edge about valid shapes (for example, we may wish to penalize surfaces
which cross a lot and are very unsmooth as being unlikely results from
any correspondence).
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Morphable Surface Models 5

Our energy function will therefore have the following form:

E(C) = Esim(C) + αEstr(C) + βEpri(C) (1)

Esim measures how closely C matches points on A to points on B.
To ease notation, let us define PX (q) to be the point on the surface X
closest to the point q. We will then define Esim as

Esim(C) =

∫

C(A)
‖c− PB(c)‖2 dc+

∫

B

∥∥b− PC(A)(b)
∥∥2

db (2)

This is the sum of the integrals over each surface of the squared distance
from points on that surface to the other surface.

The definitions of the remaining two terms of the energy function
will depend on prior information we have about surfaces. More sophis-
ticated methods of measuring the distortion of the surface could be
developed and used. However, we have found that connecting springs
between points on the surface to be sufficient. In particular we will
use “directional” springs that prefer their original orientation (not just
their original length). There are two reasons for this choice: First, they
tend to minimize buckling of the surface more than “regular” springs
(which actually encourage it) and second, they lead to a nice form for
the minimization algorithm since they are quadratic. For a directional
spring connecting the two points p and q, the energy of that spring
under the correspondence C is

Eds(p, q, C) =
‖(p− q)− (C(p)−C(q))‖2

‖p− q‖ (3)

To create a tight surface and an energy function which does not depend
on the parameterization of the surface, we let

Estr(C) =

∫

A
Eds(a, a+ da,C) (4)

This corresponds to placing directional springs continuously over the
entire surface.

If we let Es(p, q, C) be similarly defined for a normal spring of rest
length 0,

Es(p, q, C) =
‖C(p)− C(q)‖2
‖p− q‖ (5)

in order to penalize discontinuous surfaces, we define Epri to be

Epri(C) =

∫

A
Es(a, a+ da,C) (6)

main.tex; 23/02/2000; 19:01; p.5



6 Christian R. Shelton

The three terms of E(C) do not play equal roles. The first, Esim,
must be zero for C to be a true correspondence. The second, Estr,
exists to guide and select among C functions which set the first term
to zero. The last term, Epri, serves to smooth out any noise which
may arise due to inaccurate models or an inability to find the true
correspondence; as a prior over surfaces, it models the fact that very
unlikely correspondences should be discarded in favor of more likely
ones which perhaps do not satisfy the other requirements as well.

Thus, the weighting of the various terms in E(C) will be set as
follows: α will be initially large to enforce a good correspondence.
Over time, it will be reduced to allow the algorithm to drive Esim
to zero. β will be set to a small constant value which is inversely
proportional to our confidence in our model and ability to find the
correct correspondence.

2.2. Practical Instantiation of the Energy Function

The energy function as described in the previous section is not practical
to use. The integrals, for most surfaces, are intractable to compute. In
this paper, we consider only piece-wise linear surfaces and can therefore
make a number of useful simplifications. For a d-dimensional surface
(meaning that there are d orthogonal tangent vectors at every point
on the surface), the surface can be defined as an ordered collection of
vectors (the positions of the vertices of the surface) and a set of linear
patches connecting d+1 vectors from the collection. Hoppe et al. (1993)
gives a more mathematically concrete definition of such a structure (a
tuple of the vertex positions and a simplicial complex). A triangulated
mesh is an example of such a 2-dimensional surface.

The integrals in Esim are easily and well approximated by a uniform
stochastic sampling of their respective surfaces. Thus, we have

Êsim =
1

n

∑

c∈Sn(C(A))

‖c− PB(c)‖2 +
1

n

∑

b∈Sn(B)

∥∥b− PC(A)(b)
∥∥2

(7)

where Sn(X ) is a set of n points sampled from the surface X .

Êsim is therefore independent of the parameterization of the surface.
In other words, given two different tessellations of the same surface,
Êsim will not change. We have not yet found similarly parameter-
independent approximations of Estr and Epri which yield simple algo-
rithms. Instead we approximate both by connecting adjacent vertices in
the surface description with the appropriate springs. Since the springs
defined above are normalized by length, a given straight length of spring
will be independent of how it is cut (i.e. how many sections are used
to describe it). Yet, past 1-dimensional surfaces, the energy terms as
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a whole will not be independent of the tessellation used. However, we
have found it to work well in practice.

Êstr =
1

|Ad(A)|
∑

(p,q)∈Ad(A)

Eds(p, q, C) (8)

Êpri =
1

|Ad(A)|
∑

(p,q)∈Ad(A)

Es(p, q, C) (9)

where Ad(A) is the set of all pairs of adjacent vertices in the surface
tessellation A.

2.3. Energy Minimization

Just as we limited the surface to be piece-wise linear, we will limit the
correspondence function to be piece-wise linear. In particular, we will
allow C to take arbitrary values at the vertices of A and require it to
be a linear interpolation of the vertex values along the faces of A. This
means that applying C to A simply involves applying the elements of
C to their respective vertices of A: no structural or topological changes
need be made to A.

With this parameterization of C, Êstr and Êpri are clearly quadratic

in the elements of C. However, Êsim is not so well behaved due to the
unsmooth nature of the function P (whose first derivative is discontin-
uous). We therefore turn the algorithm into a dual optimization. First,
we compute PB(c) and PC(A)(b) for all of the a and b samples. We then

fix them at which point Êsim becomes quadratic (and thus Ê(C) is
quadratic) and we can solve this minimization for C in closed form.
This gives a new set of positions for the vertices from which we can
repeat the sampling, calculation of the closest points, and values of C.

To be more concrete about the algorithm, let us first note that any
point on the surface of X can be described as a convex combination
of the positions of the vertices of X . For vertices (such as p and q

in Êstr and Êpri), the combination coefficients are all 0 except for a

single 1. For points internal to a face (such as c or PC(A)(b) in Êsim),
the coefficients are all zero except for d + 1 non-zero elements (which
sum to 1 due to convexity) corresponding to the d + 1 vertices of the
face on which the point is located. These coefficients are sometimes
called the barycentric coordinates of the point (Hoppe et al., 1993).
The barycentric coordinates are invariant to the transformations we
are allowing for C. That is, the barycentric coordinates of a in A are
the same as the barycentric coordinates of C(a) in C(A).

We will now add the notation that any variable with an overscore
is not a Euclidean vector in the embedded space of the surface, but a
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barycentric coordinate vector (a vector of the coefficients of the previ-
ous paragraph) with respect to the appropriate surface. Furthermore,
we will let the matrix A be the matrix whose columns are the vectors of
the positions of the vertices of A. B will be similarly defined for B and
C will be the matrix whose columns are the positions of the vertices
of A under the correspondence. Thus if A has vA vertices, B has vB
vertices, and they are embedded in a D-dimensional space, A and C
are D × vA and B is D × vB.

By expanding Ê(C) by using the relationships b = Bb, a = Aa, and
C(a) = Ca, we can then write the whole energy function as

Ê(C) =
1

n

∑

c∈Sn(C(A))

∥∥Cc−BPB(Cc)
∥∥2

+
1

n

∑

b∈Sn(B)

∥∥Bb− CPC(A)(Bb)
∥∥2

+
α

|Ad(A)|
∑

(p,q)∈Ad(A)

1

‖A(p− q)‖ ‖(C −A)(p− q)‖2

+
β

|Ad(A)|
∑

(p,q)∈Ad(A)

1

‖A(p− q)‖ ‖C(p− q)‖2

(10)

where, to carry the overscore notation further, S is a set of barycentric
coordinate vectors (of points sampled uniformly over the surface as
before) and P is the barycentric coordinate vector of the closest point
on the surface. Note that if we fix a sampling over each surface and we
fix the values of P (they actually depend on C, but we are fixing them),

then every term of Ê is of the form wi ‖Cci − di‖2 (wi is a scalar, C is
a matrix of vertex positions, ci is the barycentric coordinate vector for
the constraint, and di is the target position).

This optimization can be solved by converting it to a sparse linear-
least squares problem separately for each dimension (Hoppe et al.,
1993). However, we have found that an improvement can be made at
this stage before conversion to a linear system. At each step of the
minimization, points are sampled from each surface and for each point,
the closest point on the other surface is found. Then, Ê is minimized
assuming that the goal is to minimize the distance from each sampled
point to the found closest point. However, a better match might be
found if, instead of insisting that the point match the closest point, we
relax and allow the point to match any position on the closest face. This
is closer to our goal of allowing the point to match anywhere on the
surface. Since the closest face is bounded, we have to approximate this
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by minimizing the distance from the point to the plane of the closest
face.

Thus, instead of minimizing wi
∥∥Cai −BP i

∥∥2
for points sampled

from A or wi
∥∥CP i −Bbi

∥∥2
for points sampled from B, we are min-

imizing wi
∥∥TiCai − TiBP i

∥∥2
and wi

∥∥TiCP i − TiBbi
∥∥2

where Ti is a
matrix which projects out the tangent directions for the face on B
involved in the ith constraint. Depending on whether the sampled or
projected point on B falls on a vertex, edge, or face, there could be from
0 to d orthogonal tangent vectors at that point on B. If we enumerate
them as the unit length vectors ti,1, . . . , ti,m,

Ti = I −
∑

m

ti,mt
T
i,m (11)

(If instead of allowing the point to be anywhere on the plane of the
face, we wish to penalize moving from the closest point slightly, we can
place a coefficient between 0 and 1 in front of the sum in the above
equation thus resulting in a slightly different distance metric.)

Since the constraints now have terms of the form (TiCai)
T (TiCai),

they cannot be converted into a sparse linear least-squares system inde-
pendently for each dimension. Instead, we must solve for all dimensions
simultaneously (unless all Ti matrices are diagonal). However, with a
bit of careful manipulation, we can derive a different sparse system to
solve.

Our energy function now has the form

Ê =
∑

i

wi(TiCai − qi)2 (12)

where wi, Ti, ai, and qi are different depending on the constraint: for
the first n constraints, wi = 1

n , ai is the barycentric coordinate vector
of a point sampled from A, qi is the closest point on B to this sampled
point, and Ti is the tangent matrix at the point qi. For the second n
constraints, wi = 1

n , qi is a sampled point on B, Ti is the tangent matrix
to this point, and ai is the barycentric coordinate vector of the point on
A closest to qi. For the next |Ad(A)| constraints, wi = α

|Ad(A)|‖A(p−q)‖ ,
Ti = I, qi is the difference between the positions of the two vertices in
A, and ai is the difference between the barycentric coordinate vectors
of the two vertices (a vector with one 1 and one −1). Finally, the last
|Ad(A)| constraints are exactly the same as the previous |Ad(A)| except
the α is replaced by β in wi and qi = 0.

For the proper definition of the matrix Ri (a function of Ti and
ai) and the vector c (a function of C) as derived below, this can be
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converted into

Ê =
∑

i

(Ric− qi)2 (13)

which is a classic least-squares problem with the solution

c =

(∑

i

RTi Ri

)−1∑

i

RTi qi (14)

First we will define c as shown pictorially below to be the vector of
the components of the matrix C:

cT =
[
C1,1 · · · CD,1 C1,2 · · · CD,2 · · · · · · C1,N · · · CD,N

]
(15)

where N is the total number of constraints.
We now define Ri as:

(Ri)j,D(k−1)+l = (Ti)j,l(ai)k (16)

which means that Ri has the block form:

Ri =
[
(ai)1Ti (ai)2Ti · · · (ai)NTi

]
(17)

(remember that (ai)k is the kth element of the vector ai and thus a
scalar). It can easily be shown from here that Ric = TiCai. We now
have a simple linear least-squares problem with the solution shown in
equation 14.

A nice property of this formulation is that Ri is sparse. Only up
to d + 1 elements of ai may be non-zero and thus only a maximum of
d+ 1 of the blocks of Ri are non-zero. Many of the Ti matrices are the
identity matrix (for all of the spring constraints) and thus many more
of the elements of Ri will be zero for these constraints. So, while RTi Ri
is a DN ×DN matrix, only a maximum of D2(d + 1)2 elements of it
will be non-zero. Furthermore, these D×D blocks that make up RT

i Ri
can only be non-zero for blocks that correspond to adjacent vertices in
A. Thus the matrix

∑
iR

T
i Ri that needs to be inverted (or at least for

which an LU-decomposition needs to be found) in equation 14 is very
sparse. It is symmetric and on every row, a maximum of Dg elements
are non-zero (where g is the maximum outgoing degree of any vertex
in A). The solution therefore can be computed efficiently using sparse
inversion techniques such as conjugate gradient descent (Press et al.,
1992).
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2.4. Surface Simplification

A vital component in our minimization algorithm is the simplification
of the surface descriptions. Attempting to minimize the energy function
as described in the previous section directly on the original models A
and B can result in severely suboptimal local minima and long running
times. To combat both of these problems, we first perform a sequence
of surface simplifications. For A we produce the sequence of surfaces
{A0,A1, . . . ,AlA} and for B we produce the sequence {B0,B1, . . . ,BlB}
where A0 and B0 are the original input surfaces and X i+1 is a mesh
approximating X with half the complexity of X i. Complexity can be
any measure; in this case we use the number of vertices. lA and lB are
determined by setting a threshold on the maximum distance from the
simplified surface to the original surface. A single threshold works well
for all similar models.

The computer graphics literature has a number of algorithms that
can be used to produce simpler meshes approximating an input mesh.
Heckbert and Garland (1997) gives a good review of the major algo-
rithms of the field. We have implemented and used progressive meshes
(Hoppe, 1996) and quadric error metrics (Garland and Heckbert, 1997)
and both provide qualitatively the same performance when used in
our algorithm on the types of surfaces described in the experimental
section of this paper. However, our implementation of Garland’s and
Heckbert’s quadric error metrics runs faster and so the results reported
in this paper use that algorithm.

Once we have the sequence of simplified surfaces, we begin with the
two simplest surfaces (AlA and BlB ) and use the energy minimization
technique from the previous section to find a correspondence between
the two surfaces. We then use the found correspondence to initialize
the starting position for finding the correspondence between the next
two surfaces in each sequence (i.e. AlA−1 and BlB−1). We continue in
this manner until we finally compute the correspondence between A0

and B0 (the original input surfaces). If lA 6= lB, then at some point
one of the two sequences will run out of more complex surfaces. At
that point, we just continue to use the most complex surface for the
shorter sequence until the algorithm has matched all of the surfaces in
the other sequence and finished.

At the base level, the correspondence is initialized to be the ver-
tex positions of AlA : no movement of A. At each new step when a
more complex model is introduced for A, we must find a position
of the vertices of Ai based on the correspondence found for Ai+1.
Because Ai and Ai+1 could have arbitrarily different geometries or
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even topologies2, for every vertex a of the surface Ai, we let CAi(a) =
a+CAi+1(PAi+1(a))−PAi+1(a). More informally, we take every vertex
of the new, more complex surface, and project it to the simpler surface.
We compute the corresponding point to that projection point based on
the old coarse correspondence. We then take the implied motion of that
point (the difference between the projected point the correspondence
at the projected point) and add that to the vertex to give the initial
correspondence at the vertex of the more complex surface.

2.5. Polygon Reduction verses Image Pyramids

In some optical flow and other image matching algorithms, a similar
simplification is used on the images to produce a pyramid of images
from which the correspondence can be computed in a coarse-to-fine
manner. Gaussian or Laplacian pyramids are usually the method of
choice where each simpler layer in the set is a blurred down-sampled
version of the previous (or possibly the derivative thereof). We argue
that the polygon reduction described above is fundamentally different
in that the surface is simplified in a data-dependent fashion. Gaussian
and Laplacian pyramids are constructed by applying the same linear
filters to the image regardless of the image. Polygon reduction produces
simpler surfaces by careful consideration of the shape of the surface.
This insures a more faithful representation of the surface especially at
the simplest levels which means that the computations done at coarsest
levels have much more bearing on the final output thereby leading to
fewer local minima and faster computation because less work needs to
be undone.

As pointed out in Hoppe (1996), mesh simplification can be seen as
a (potentially lossless) compression technique. It is not surprising that
compression can be used to obtain a good representation for matching.
If we assume that both surfaces are collections of features drawn from a
random (but structured) distribution, we would expect a compression
algorithm to be able to find common substructures and reduce them
in the same way thus allowing for easier matching. Finding the best
method for compression and the best features for learning are often
similar problems. We can view the polygon reduction stages of the
algorithm as implicit feature detectors.

2 For the two algorithms we tested, progressive meshes and quadric error met-
rics, and many other mesh simplification algorithms, the simplification is done by
collapsing edges and thus the vertices of Ai can be mapped to the vertices of Ai+1.
However, after removing half of the vertices such a mapping can be misleading and
we would like this algorithm to be independent of the method used to obtain the
simplified surfaces.
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3. Morphable Surface Models

Now that we have an algorithm for finding correspondences between
surfaces, we turn to building Morphable Surface Models. We are given
m surfaces, {A1,A2, . . . ,Am} and we fix one of them as the base surface
(without loss of generality, assume this is the one labeled A1). We now
find the correspondences between A1 and all of the other surfaces.
This produces a set of correspondences {C1, C2, . . . , Cm} (where C1 is
trivially computed and the rest describe how to warp A1 to each of the
other surfaces in the set).

These correspondences can be combined in a convex combination to
produce a new warping of the base surface. If Ξ = {ξ1, ξ2, . . . , ξm} are
the convex combination coefficients (

∑
i ξi = 1), then we define this

new warping in the obvious way,

WΞ(a) =
∑

i

ξiCi(a) (18)

where WΞ(a) is the new position of the point a from the base mesh
in the model whose parameters have been set to Ξ. This restricts the
new warping to lie in the m−1-dimensional space of these m warpings.
Clearly there is a slight bias in this model relative to the arbitrary choice
of the base surface (since correspondence calculations as described
above are not invariant to the ordering of the two surfaces). However,
for classes of similar objects with the same or similar topologies, this
bias is small.

To remove the condition that the sum of the ξi parameters must be
1, we will assume that the model parameters have been centered (we
will translate the space to a “center point” making any scaling of a
warping a valid warping). By this we mean that an origin model has
been set to warping when all ξi = 1

m and the correspondence vectors
have been changed from the absolute positions of the vertices to the
relative difference between the vertex position for the correspondence
and the vertex position of this origin model. Mathematically, we define
an origin as O(a) =

∑
i

1
mCi(a) and then define new “displacement”

correspondences C ′i(a) = Ci(a) − O(a) and associated parameters ξ′i
which do not now need to sum to 1. This means that W is now

W ′Ξ(a) = O(a) +
∑

i

ξ′iC
′
i(a) (19)

From now on, we will drop the prime notation and assume that all
models have been described in this fashion to eliminate the convex
constraint on the ξ’s.
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14 Christian R. Shelton

3.1. Matching Models to Surfaces

We can now formulate an algorithm for finding the parameters of
a morphable model so that the shape of the model best matches a
given surface, B (this surface is not necessarily one of the ones used to
construct the model). We again pose this as an energy minimization
problem with the following energy term:

Em(Ξ) =

∫

A1

‖WΞ(a)− PB(a)‖2 da+

∫

B

∥∥b− PWΞ(a)(b)
∥∥2

db+ λ
∑

i

ξi

(20)

This minimizes the difference between points from the model’s sur-
face and their closest points on the target surface and vice-versa. We
have also added a term penalizing high coefficient values. This reflects
our intuition that the model will not be a good one far away from
the surfaces used to construct it. If our model has been whitened as
described in section 3.3, then this penalty is analogous to assuming a
Gaussian prior in correspondence space.

Again, the minimization of Em is difficult due to the integrals, so
we will approximate them with sums of sampled points yielding

Êm(Ξ) =
1

n

∑

a∈Sn(O(A1))

‖W (a)− PB(W (a))‖2

+
1

n

∑

b∈Sn(B)

∥∥PW (A)(b)− b
∥∥2

+ λ
∑

i

ξi

(21)

Just as before, we can minimize this function by alternating between
finding the closest points to sampled points from the opposite surface
and fixing these points to find Ξ by solving a linear-least squares prob-
lem. In this case, we do not minimize the distance to the plane, but just
the distance to the projected point for simplicity. By taking derivatives
of Êm with respect to Ξ while keeping the values of PB(W (a)) con-
stants (pretending they don’t depend on Ξ) and the values of PW (A)(b)
as linear functions of Ξ (pretending their barycentric coordinates are
fixed), the second half of the minimization has the solution:

Ξ = (A+ 2nλI)−1 q (22)

where

Aij =
∑

k

Ci(ak)
TCj(ak) (23)

qi =
∑

k

Ci(ak)
T bk (24)
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for k ranging over the terms of both sums of equation 21. ak is the point
on model’s surface (sampled for the first n values of k and projected
from a point on B for the second n) and bk is the associated point on
B (projected from a point on the model’s surface for the first n values
of k and sampled for the second n).

3.2. Inner Products of Correspondence

In order to use bootstrapping (Vetter et al., 1997; Jones and Poggio,
1998) for building models in a more robust manner (section 3.3), we
need to define an inner product over the space of correspondences. It
might seem that if we simply stack all of the components of the corre-
spondence vectors at each vertex into a large vector, we could use the
dot product of these vectors as the inner product of the correspondence
space. However, this definition is sensitive to the parameterization of
the base surface. As an example, if we keep the base surface the same
and the correspondences the same but subdivide some of the faces of the
base surface (so we have the same surface described in a different way),
we end up with a different inner product: we have lengthened the vector
of vertex positions (although the new components are dependent on the
old ones) and therefore magnified the importance of the correspondence
at the faces we subdivided.

To solve this problem, we define the inner product between two
correspondences in a parameter-independent fashion,

< Ci, Cj >=

∫

A1

Ci(a)TCj(a) da (25)

We would now like to find a tractable method for computing this
integral for piece-wise linear surfaces. For concreteness, we will take
the example of 2-dimensional surfaces which are therefore composed
of triangles. The analysis and resulting answer generalize to arbitrary
dimensional surfaces.

The above integral, for the case of 2-dimensional piece-wise linear
surfaces, becomes the sum of integrals of Ci(a)TCj(a) over triangles.
We know that Ci(a) is a linear function of a over the triangle patch
(and similarly with Cj(a)). Therefore, the integral of the dot product
of these two vectors is a quadratic function of position taken over the
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16 Christian R. Shelton

triangle. The following equality holds and can be verified easily.

∫

4x0x1x2

Ci(x)TCj(x) dx =

1

12
area(4x0x1x2)

[
2∑

k=0

Ci(xk)
TCj(xk) +

2∑

k=0

2∑

l=0

Ci(xk)
TCj(xl)

]

(26)

To allow us to use normal vector packages, we derive a new vector
representation for a correspondence whose dot-product in the usual
vector sense is exactly this inner product. Let VA be the set of all
vertices of A, FA be the set of all faces of A, {f0, f1, f2} be the vertices
of the face f , and F (v) be the set of faces adjacent to the vertex v.

< Ci, Cj >=
∑

f∈FA

∫

f
Ci(x)TCj(x) dx

=
∑

f∈FA

[
1

12
area(f)

[
2∑

k=0

Ci(fk)
TCj(fk) +

2∑

k=0

2∑

l=0

Ci(fk)
TCj(fl)

]]

=
∑

v∈VA

∑

f∈F (v)

1

12
area(f)Ci(v)TCj(v)

+
∑

f∈FA

1

12
area(f)

2∑

k=0

Ci(fk)
T

2∑

k=0

Cj(fk)

=
∑

v∈VA



√∑

f∈F (v) area(f)

12
Ci(v)



T 

√∑

f∈F (v) area(f)

12
Cj(v)




+
∑

f∈FA

[√
area(f)

12

2∑

k=0

Ci(fk)

]T [√
area(f)

12

2∑

k=0

Cj(fk)

]

(27)

which implies that, if D is the dimensionality of the embedded space,
the inner product can be represented as a dot product between two
vectors whose first D×VA components are the positions of the vertices
of the surface multiplied by the square root of the sum of the areas of
the adjacent faces and whose last D× FA components are the sums of
the positions of the vertices of each of the fA faces multiplied by the
square root of the area of the face.

main.tex; 23/02/2000; 19:01; p.16
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3.3. Building a Model

Now that we have an inner product for correspondences, we can use the
bootstrapping algorithm described in Vetter et al., Jones and Poggio
(1997, 1998) to build the model robustly. Usually the method de-
scribed above (where we take each of the surfaces and compute its
correspondence to the base surface) will work fine. However, since the
correspondence algorithm is not perfect, occasionally some parts of the
correspondence will be off. If we have a large number of surfaces to
be incorporated, we can correct for this problem in many cases. The
bootstrapping algorithm is

1. Let M be the model. Initialize it as just the base surface (thus only
one correspondence)

2. Repeat the following until the model has reach the desired level of
flexibility:

a) for each input surface:

i) Match the current model to the surface (as in section 3.1)
yielding an approximation to the input surface: W (a)

ii) Find the correspondence from the base surface to the ap-
proximation, W (a) (as in section 2): C(a)

iii) Let Ci(a) = W (C(a)).

b) Center the correspondences found in the previous step (as de-
scribed in the beginning of section 3) and create the data matrix
M whose columns are the centered correspondences (in the
vector representation of section 3.2).

c) Perform singular value decomposition on M yielding UDV T .

d) Retain only those columns of U with the largest singular values,
increasing the number of parameters of the model (each column
of U is an axis of correspondence space). Scale each column by
its singular value.

In this algorithm, we successively build a more and more flexible
model. Each time we use the old model to match the input surfaces
and give an easier starting point for the correspondence routines. We
then find and keep, via singular value decomposition, the axes of our
space with largest variance since they are likely to be “real” surface
changes and not due to noise in our correspondence algorithm.

Since we are scaling the axes by the standard deviation of the cor-
respondences (in step (d)), we have whitened the data. This supports
the

∑
i ξi log-prior term in the matching energy function of section 3.1.
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18 Christian R. Shelton

4. Experimental Results

We report results of running the model building algorithm on three col-
lections of surfaces. Figure 1 shows a few examples from a collection of
hand-drawn “smiley faces.” These surfaces are (one-dimensional) lines
embedded in the (two-dimensional) plane. They were created using a
tablet input device which sampled the pen position over time. The
example faces have between 66 and 407 line segments each, with most
surfaces having about 100 segments. All faces were composed of four
separate open curves and thus had the same topology; however this
topological equivalence was not used in the matching.

These types of line drawings are very difficult for conventional opti-
cal flow algorithms: if the surfaces were converted to images, the spatial
derivatives would be zero almost everywhere. A simple matching of
closest points also fails dramatically because of the variation in the
position of the eyes and mouth. It results in matching portions of some
eyes and mouths to the large head circle. The structure term plays a
crucial role.

We ran the bootstrapping algorithm on 57 faces for 23 iterations
producing a model with 23 parameters. Figure 2 shows the major axes
of variation captured by the model (the principal components of the
last iteration of the bootstrapping algorithm).

We then asked two people to rank each face on four attributes
(friendly vs. sinister, ugly vs. cute, left-looking vs. right-looking, and
down-looking vs. up-looking). We created a radial-basis function (RBF)
regressor (Bishop, 1995) mapping those four attributes to the dimen-
sions of the face model. From that mapping, we automatically generated
the results shown in figure 3. Similarly, we used an RBF to create the
reverse mapping (from parameters to attributes). Figure 4 shows the
results of matching eight faces not used in creating the model and then
estimating the attributes from the resulting model parameters.

Secondly, we constructed a surface model of cars from 15 computer
graphics surfaces (6 of which are shown in figure 5). These models have
different topologies. All of the cars have five closed surfaces represent-
ing the body and tires. Some additionally have either open or closed
surfaces representing the bumpers and side mirrors. Between 1270 and
10568 triangles define each surface. Color is represented by three extra
dimensions (red, green, and blue). Thus, these shapes are 2D surfaces
embedded in six-dimensional space. This 6D representation allows the
algorithm to trade-off matching color verses matching shape. In previ-
ous Morphable Model work with images, the variations in shape had
different model parameters than those of texture (or color). This would
be analogous to separating every correspondence in the model into two
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correspondences (one that had only non-zero spatial components and
one that had only non-zero color components). We have chosen not
to do so here and instead our results insist that the color and surface
changes be dependent. Thus a given correspondence represents a change
in the surface shape and surface color.

We ran the bootstrapping algorithm to completion (15 rounds, adding
one additional parameter per round). The resulting principle compo-
nents are shown in figure 6. Given that only 15 example surfaces were
used and the high dimensionality of the problem (over 6000 numbers
to represent one surface), we feel these capture the natural variations
in car bodies well. The bounding boxes on the cars were normalized,
so the first eigenvector well captures the difference between small and
large car shapes. The second could be characterized as a “sporty” verses
“boxy” axes. The third and fourth make distinctions in the tail-lights
and rear windows.

The results from the matching procedure from section 3.1 are shown
in figure 7. The first line is the input car to be matched. The second
line is the model matched to the input. The third line is the model with
the input car removed matched to the input. The difference between
the second and third lines is mainly due to limited size of the model. As
there are only 14 other cars, they do not completely span the space of
all cars and thus were not able to exactly match the input. There were
only two other “sporty” two-seater cars and no other car had such large
side or rear windows. Thus it was impossible for the model to represent
the input shape as the learned examples did not cover that portion of
“car shapes.”

The wheels in most of the car correspondences are a problem. Be-
cause they are round, the matching algorithm tends to add a bit of ran-
dom rotation to the correspondences. Rotation correspondence fields do
not add linearly and thus the wheel representations are not as crisp as
the rest of the vehicle (the wheels tend to collapse). This is essentially a
mismatch between the polygonal representation and the round surface.

To visually demonstrate the correspondence algorithm, figure 8 shows
the results of each step of the algorithm run on two car surfaces. We
think this clearly shows the iterative refining of the solution from coarse
to fine resolution. Notice that most of the gross changes are done at the
coarse level where the number of free variables (positions of vertices)
are minimal. This helps to prevent overfitting.

Finally, to demonstrate the use of these correspondences as a metric-
space, we took the animal surfaces of figure 9 and built a morphable
model. Using the distance metric implied by the vector representation
of section 3.2, we clustered the examples using the k-means algorithm
(Bishop, 1995). This produced one cluster of the cat surfaces and one
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Figure 1. Six of the 57 example line-drawings used to construct the face model.

of the dog surfaces without a supervision. The projection of the points
and cluster centers onto the first two principle components is shown in
figure 10. The color and spatial positioning differences among the sur-
faces were eliminated by projecting out the correspondence directions
of pure translation (in both spatial and color coordinates).

The goal in all of these experiments is to show that the correspon-
dence technique and model building algorithms produce models which
are robust and good at capturing the class of surfaces either for analysis
or synthesis. The true test of a correspondence (especially in a domain
where there isn’t a ground truth) is in its use. We feel that these figures
demonstrate the usefulness of the models built.

5. Extensions and Conclusions

No user intervention was required to build the models in this paper.
The surfaces were input to the model building algorithm which ran
automatically. They were all roughly aligned (centered, scaled, and
rotated approximately the same). However, such rough alignment could
have easily been done by comparing the first and second moments of
the surface. Additionally, a few parameters3 needed to be set (though
not as many as in Shelton (1998) where gradient descent was used for

3 specifically: α and beta (the weights of the terms of the energy function), n
(number of sampled points), t (number of iterations of the minimization), γ (the
ratio of color to spatial coordinates), λ (the prior’s weight in the model matching
algorithm), and the annealing schedule for α. None of these were sensitive in the
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mean face

−2σ +2σ −2σ +2σ

↔ ↔

↔ ↔

↔ ↔

Figure 2. The first 6 eigenvectors of the face model scaled by ±2 standard deviations
shown applied to the average face.

(1, 0, 0, 0) (0, 1,−1, 0) (0, 0,−1, 0) (0,−0.5, 1,−1)
⇓ ⇓ ⇓ ⇓

Figure 3. Results of fitting a radial-basis function network to mapping from four
attributes (sinisterness, cuteness, left-right orientation, up-down orientation) to mor-
phable model parameters. Four example outputs from settings of the attributes are
shown.

minimization). We found that running a few test correspondences to
find the correct order of magnitude for the parameters was all that was
necessary.

For its generality, we feel that the energy function described pro-
duces good results. However, in domains where prior knowledge about

least and very easy to set except for the annealing schedule which we had to tune
differently for each set of surfaces.
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⇓ ⇓ ⇓ ⇓

⇓ ⇓ ⇓ ⇓
(−0.2,0.2,−0.5,−0.1) (0.1,−0.1,0.4,0.1) (0.0,0.0,−0.0,−0.0) (0.1,0.0,−0.3,0.0)

⇓ ⇓ ⇓ ⇓

⇓ ⇓ ⇓ ⇓
(0.1,−0.3,0.6,−0.2) (−0.2,0.4,−0.9,0.1) (0.2,−0.2,−0.0,−0.1) (−0.0,0.1,−0.0,0.2)

Figure 4. Analysis results for faces. The first row is the input faces. The second
row is the model after matching. The third row of numbers are the output from the
regressor (sinisterness, cuteness, left-right orientation, up-down orientation).

Figure 5. Six of the fifteen 3D surfaces used to construct the car morphable model.
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mean car

−2σ +2σ

↔

↔

↔

↔

Figure 6. The first four eigenvectors of the car model. Each eigenvector is shown
applied to the average model scaled by ±2 standard deviations. The other eigenvec-
tors have similar forms. We show the cars from this view since the back of the car
tends to have the most variation.

surface deformations is available, better results could certainly be ob-
tained by modifying the Estr and Epri terms. Preliminary results with
using this algorithm as a replacement for optical flow are promis-
ing (Shelton, 1998): the polygon reduction produces large triangles in
textureless areas leading to easy matching where traditionally opti-
cal flow algorithms have had problems. Yet, this algorithm makes no
assumptions about the images matched.
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Figure 7. An example of matching a surface to a model. The top line is two ren-
derings of the same input surface. The second line is the result of matching the top
surface to a model of all 15 cars. The last line is the result of matching the surface
to the model of only 14 cars (where the input car has been removed). Note that in
this final case, the 14 cars used to construct the model do not span the space of all
cars sufficiently enough to reconstruct the input car. The poor match in this case is
mainly a result of insufficient flexibility in the model. For instance, in our set of car
surface, there were no other cars with a small rear window and a similarly-shaped
trunk.

We would like to replace the hard-threshold of the maximum oper-
ation in the P function (P takes a point and finds its closest point on
another surface) with a soft-max function as is done in elastic networks
(Durbin and Willshaw, 1987) since this leads to a smoother energy
landscape (Durbin et al., 1989) and fewer local minima. However, so
far we have not found a tractable method for doing so.

Although not shown here, user-defined correspondences can be used
to improve the match by adding additional spring terms connecting the
points on one surface to their matched points on the other surface. We
have found such extra springs to be useful in matching shapes which
differ greatly (i.e. in building a more general model of animals which
included a rhinoceros, a camel, a giraffe, and a buffalo) or in applica-
tions where certain fairly undistinguished features are highly important
for appearance to human observers (i.e. the outline of the lips can be
difficult to match because of limited contrast in some images).

We would like to add the ability for the topology of the surface
to change. Currently, example surfaces of different topologies can be
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Figure 8. An example of the process of finding correspondence. The upper right
surface is the input surface A. The lower right surface is the input surface B. The top
line is the sequence of surfaces A5 through A0 (left to right). Similarly, the bottom
line is the sequence of surfaces B5 through B0. These surfaces are produced from the
input boxed surfaces as shown by the arrows at the top and bottom. Chronologically,
the correspondence continues from the upper left corner and proceeds down each
column and then across from left to right: First A5 is matched to B5 by iteratively
solving the dual-minimization. The successive resulting correspondences, as applied
to A5, are shown top-to-bottom in the first column (produced in the order shown
by arrows). The final correspondence is then converted to a correspondence on A4

(the top surface in the column to the left) and the process is repeated in the next
column (now matching to B4). Finally, the rightmost column shows the algorithm’s
steps on the last coarse-to-fine level with the figure outlined in bold being the final
correspondence applied to A.
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Figure 9. Surfaces used for constructing an animal model (this model has also been
used for psychophysics experiments (Riesenhuber and Poggio, 1999; Riesenhuber
and Poggio, 2000)). Clustering using the k-means algorithms (for k = 2) produced
the top row as one cluster and the bottom row as another cluster. This nicely
corresponds to cats and dogs.

Figure 10. Plotting the six surfaces in correspondence space (projected onto the two
axes of largest variance). The × markers are the cat surfaces and the circles are the
dogs. The stars represent the cluster centers found.
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used to create a model. However, all of the surfaces produced by that
model will all have the topology of the base surface. McInerney and Ter-
zopoulos (1995) describe a method for allowing the topology of snakes
to change during the matching process. Combining this idea with the
mesh reduction algorithm of Popović and Hoppe (1997), which allows
topology changes, might provide for a more flexible surface model.
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