
Learning Continuous Time Bayesian Networks

Uri Nodelman
Stanford University

nodelman@cs.stanford.edu

Christian R. Shelton
Stanford University

cshelton@cs.stanford.edu

Daphne Koller
Stanford University

koller@cs.stanford.edu

Abstract

Continuous time Bayesian networks (CTBN) describe
structured stochastic processes with finitely many
states that evolve over continuous time. A CTBN is
a directed (possibly cyclic) dependency graph over
a set of variables, each of which represents a finite
state continuous time Markov process whose transi-
tion model is a function of its parents. We address
the problem of learning parameters and structure of a
CTBN from fully observed data. We define a conju-
gate prior for CTBNs and show how it can be used
both for Bayesian parameter estimation and as the ba-
sis of a Bayesian score for structure learning. Because
acyclicity is not a constraint in CTBNs, we can show
that the structure learning problem is significantly eas-
ier, both in theory and in practice, than structure learn-
ing for dynamic Bayesian networks (DBNs). Further-
more, as CTBNs can tailor the parameters and depen-
dency structure to the different time granularities of
the evolution of different variables, they can provide a
better fit to continuous-time processes than DBNs with
a fixed time granularity.

1 Introduction

Learning about complex dynamic systems is an impor-
tant task. From learning the timing and organization of
metabolic pathways in cells to studying trends in demo-
graphic data to analyzing web server logs, there are many
different processes that we would like to understand.

Dynamic Bayesian networks (DBNs) (Dean &
Kanazawa, 1989) are a standard model used to learn
and reason about dynamic systems. DBNs model a tempo-
ral process by discretizing time and providing a Bayesian
network fragment that represents the probabilistic transi-
tion from the state at time t to the state at time t + ∆t.
Using such a model for learning about the structure of a
dynamic system has a significant limitation — namely, the
structure we learn may be a function of the ∆t parameter
we choose as much as it is a function of the underlying
structure of the process.

The discretization of time imposes several problems.
First, in standard DBN models, we must choose a uniform
time granularity. However, in many real-world processes
different variables can have very different time granulari-
ties, making any single choice of ∆t inappropriate. Sec-

ond, when we discretize time, we aggregate into a vari-
able’s transition model all of the state changes that it takes
over the entire course of the time slice. When the variable
evolves at a finer time granularity than ∆t, this approxima-
tion can be a very poor one.

Furthermore, the best possible time-sliced approxima-
tion to the variable’s evolution model can be quite com-
plex. First, it will often involve dependency edges within
a time slice, which significantly complicates learning algo-
rithms. Second, a DBN that best encodes the aggregated
dependency will exhibit entanglement: As the discretiza-
tion loses information about the values of a variable’s par-
ents, the values of the variable’s ancestors might become
relevant. Thus, a time-sliced DBN that represents the pro-
cess dynamics will often be densely connected, which both
obscures the true structure of the process, and makes it hard
to learn from limited data.

In (Nodelman et al., 2002) we presented the alterna-
tive framework of continuous time Bayesian networks
(CTBNs). This framework allows for modelling stochastic
processes over a structured state space evolving in contin-
uous time. In this paper, we consider the problem of learn-
ing the structure of CTBNs from data. We use a Bayesian
learning framework for CTBNs, using a Bayesian scoring
function derived from an appropriate conjugate parameter
prior. We provide an algorithm that searches over the space
of possible CTBN structures for one that maximizes this
Bayesian score; this algorithm is significantly simpler than
DBN learning algorithms.

2 Continuous Time Bayesian Nets

In this section, we review the continuous time Bayesian net-
work (CTBN) framework presented in (Nodelman et al.,
2002). A CTBN represents a stochastic process over a
structured state space, consisting of assignments to some
set of local variables X = {X1, . . . , Xn}, where each Xi

has a finite domain of values Val(Xi).

2.1 Markov Processes

Let us first consider a Markov process over a single vari-
able. A finite state, continuous time, homogeneous Markov
process X(t) with state space Val(X) = {x1, . . . , xk} is
described by an initial distribution P 0

X and an n×n matrix

Full
stomach

Concentration

Uptake

Joint
pain

Barometer

Drowsy

Eating Hungry

Figure 1: Drug effect network

of transition intensities:

QX =

−qx1
qx1x2

· · · qx1xk

qx2x1
−qx2

· · · qx2xk

...
...

. . .
...

qxkx1
qxkx2

· · · −qxk

,

where qxixj
is the intensity of transitioning from state xi to

state xj and qxi
=
∑

j 6=i qxixj
.

Given QX we can describe the transient behavior of X(t)
as follows. If X(0) = x then it stays in state x for an
amount of time exponentially distributed with parameter
qx. Thus, the probability density function f for X(t) re-
maining at x is f(qx, t) = qx exp(−qxt) for t ≥ 0, and
the corresponding probability distribution function F for
X(t) remaining at x for an amount of time ≤ t is given
by F (qx, t) = 1 − exp(−qxt). The expected time of tran-
sitioning is 1/qx. Upon transitioning, X shifts to state x′

with probability qxx′/qx.
The distribution over transitions of X factors into two

pieces: an exponential distribution over when the next tran-
sition will occur and a multinomial distribution over where
the state transitions — the next state of the system. The
natural parameter for the exponential distribution is qx and
the natural parameters for the multinomial distribution are
θxx′ = qxx′/qx, x′ 6= x. (As staying in the state x is not a
transition of X , there is no multinomial parameter θxx.)

2.2 Continuous Time Bayesian Networks

We model the joint dynamics of several local variables by
allowing the transition model of each local variable X to
be a Markov process whose parameterization depends on
some subset of other variables U. The key building block
is a conditional Markov process:

Definition 2.1 A conditional Markov process X is an
inhomogeneous Markov process whose intensity matrix
varies with time, but only as a function of the current val-
ues of a set of discrete conditioning variables U. Its inten-
sity matrix, called a conditional intensity matrix (CIM), is
written QX|U and can be viewed as a set of homogeneous
intensity matrices QX|u — one for each instantiation of
values u to U.

The parameters of QX|U are qX|u = {qx|u : x ∈ Val(X)}
and θX|u = {θxx′|u : x, x′ ∈ Val(X), x 6= x′}.

We can now combine a set of conditional Markov pro-
cesses to form a CTBN:

Definition 2.2 A continuous time Bayesian network N
over X consists of two components: an initial distribution
P 0

X , specified as a Bayesian network B over X, and a
continuous transition model, specified as

• A directed (possibly cyclic) graph G whose nodes are
X1, . . . , Xn; PaG(Xi), often abbreviated Ui, denotes
the parents of Xi in G.

• A conditional intensity matrix, QXi|Ui
, for each vari-

able Xi ∈ X.

The learning problem for the initial distribution is a stan-
dard Bayesian network learning task, and we therefore ig-
nore it for the remainder of this paper.

Example 2.3 Figure 1 shows the graph structure for a
CTBN modelling the effect of a drug a person might take to
alleviate pain in their joints. There are nodes for the uptake
of the drug and for the resulting concentration of the drug
in the bloodstream. The concentration is affected by how
full the patient’s stomach is. The pain may be aggravated
by falling pressure. The drug may also cause drowsiness.
The model contains a cycle, indicating that whether a per-
son is hungry depends on how full their stomach is, which
depends on whether or not they are eating, which in turn
depends on whether they are hungry.

The transitions of each local variable in a CTBN are con-
trolled by the values of its parents. In the drug effect ex-
ample above, when the concentration of the drug is low
and barometric pressure is falling, the transition model
of the variable JointPain is a Markov process parameter-
ized by QJointPain|low,falling; in this model a transition to the
value JointPain=high is likely. When the concentration of
the drug rises to high (due to drug uptake), the parame-
terization of the transition model of JointPain changes to
QJointPain|high,falling, in which a transition to the value Joint-
Pain=high is much less likely.

3 CTBN Parameter Estimation

We first consider the problem of estimating the parameters
of a CTBN with a fixed structure G. As usual, this problem
is not only useful on its own, but also as a key component
in the structure learning task.

Our data are a set of trajectories D = {σ1, . . . , σh}
where each σi is a complete set of state transitions and the
times at which they occurred. So, for each point in time,
we know the full instantiation to all variables.

3.1 The Likelihood Function

As in any density estimation task, a key element is the like-
lihood function.

Single Markov Process. Consider a homogeneous
Markov process X(t). As all the transitions are observed,
the likelihood of D can be decomposed as a product of
the likelihoods for individual transitions d. Let d =
〈xd, td, x

′
d〉 ∈ D be the transition where X transitions to

state x′
d after spending the amount of time td in state xd.

We can write the likelihood for the single transition d as

LX(q, θ : d) = (qxd
exp(−qxd

td))
︸ ︷︷ ︸

LX(q:d)

(

θxdx′
d

)

︸ ︷︷ ︸

LX(θ:d)

.

By multiplying the likelihoods for each transition d, we see
that we can summarize our data D in terms of the sufficient
statistics T [x], the amount of time X spends in state x, and
M [x, x′], the number of times X transitions from x to x′

for x 6= x′. If we write M [x] =
∑

x′ M [x, x′], the total
number of transitions leaving the state X = x then we have

LX(q, θ : D) =

(
∏

d∈D

LX(q : d)

)(
∏

d∈D

LX(θ : d)

)

=

(
∏

x

qM [x]
x exp(−qxT [x])

)

∏

x

∏

x′ 6=x

θ
M [x,x′]
xx′

. (1)

CTBNs. In a CTBN N , each variable X ∈ X is con-
ditioned on its parent set U, and each transition of X is
considered in the context of the instantiation to U. With
complete data, we know the value of U during the entire
trajectory, so we know at each point in time precisely which
homogeneous intensity matrix QX|u governed the dynam-
ics of X . Thus, the likelihood decomposes by variable as

LN (q, θ : D) =
∏

Xi∈X

LXi
(qXi|Ui

, θXi|Ui
: D)

=
∏

Xi∈X

LXi
(qXi|Ui

: D)LXi
(θXi|Ui

: D) .

The term LX(θX|U : D) is the probability of the sequence
of state transitions, disregarding the times between transi-
tions. These state changes depend only on the value of the
parents at the instant of the transition. Therefore, with the
sufficient statistic M [x, x′|u], we have

LX(θ : D) =
∏

u

∏

x

∏

x′ 6=x

θ
M [x,x′|u]
xx′|u .

The computation of LX(qX|U : D) is more subtle. Con-
sider a particular transition d where a state in which X =
x,U = u transitioned to another state X = x,U = u′

after time t. In other words, the duration in the state
was terminated not due to a transition of X , but due to a
transition of one of its parents. Intuitively, these transi-
tions still depend on X’s dynamics, as they can only oc-
cur if X stayed at the value x for at least a duration of
t. The probability that X stayed at x for this duration is
1− F (qx|u, t) = exp(−qx|ut).

More formally, the sufficient statistic T [x|u], the total
amount of time where X = x and U = u, can be de-
composed into two different kinds of durations: T [x|u] =
Tr[x|u] + Tc[x|u], where Tr[x|u] is the total over dura-
tions td that terminate with X remaining equal to x (these
include transitions where U changed value, as well as the
end of a trajectory), and Tc[x|u] is the total over durations
td that terminate with a change in the value of X . It is
easy to see that the terms for the different transitions that
comprise Tr[x|u] combine, so that we have

LX(qX|U : D) =

(
∏

u

∏

x

q
M [x|u]
x|u exp(−qx|uTc[x|u])

)

×

(
∏

u

∏

x

exp(−qx|uTr[x|u])

)

=
∏

u

∏

x

q
M [x|u]
x|u exp(−qx|uT [x|u]) .

Thus, we do not need to maintain the distinction between
Tc[x|u] and Tr[x|u]. Instead, we can simply use T [x|u] as
the sufficient statistic.

We can now write the log likelihood as a sum of local
variable likelihoods of the form

`X(q, θ : D) = `X(q : D) + `X(θ : D)

=

[
∑

u

∑

x

M [x|u] ln(qx|u)− qx|u · T [x|u]

]

+

∑

u

∑

x

∑

x′ 6=x

M [x, x′|u] ln(θxx′|u)

 .

From this formula, we can derive the MLE parameters:

q̂x|u = M [x|u]
T [x|u] ; θ̂xx′|u = M [x,x′|u]

M [x|u] . (2)

3.2 The Bayesian Approach

To perform Bayesian parameter estimation, and to define a
Bayesian score for our structure search, we need to define
a prior distribution over the parameters of our CTBN. As
usual, for computational efficiency, we want to use a con-
jugate prior — one where the posterior (after conditioning
on the data) is in the same parametric family as the prior.

Let us begin with constructing an appropriate prior for a
single Markov process. Recall that a Markov process has
two sets of parameters: a multinomial distribution parame-
terized by θ, and an exponential distribution parameterized
by q. The multinomial distribution is familiar from tra-
ditional Bayesian networks where the standard conjugate
prior is a Dirichlet distribution (Heckerman et al., 1995;
Geiger & Heckerman, 1995). An appropriate conjugate
prior for the exponential parameter q is the Gamma dis-
tribution P (q) = Gamma(α, τ), where

P (q) =
(τ)α+1

Γ(α + 1)
qα exp(−qτ) .

If we assume that

P (θ) = Dir(αxx1
, . . . , αxxk

)

P (q) = Gamma(αx, τx)

P (θ, q) = P (θ)P (q),

then, after conditioning on the data, we have

P (θ | D) = Dir(αxx1
+ M [x, x1], . . . , αxxk

+ M [x, xk])

P (q | D) = Gamma(αx + M [x], τx + T [x]) .

We generalize this idea to a parameter prior for an entire
CTBN by making two standard assumptions for parame-
ter priors in Bayesian networks (Heckerman et al., 1995).
global parameter independence:

P (q, θ) =
∏

X∈X

P (qX|Pa(X), θX|Pa(X))

and local parameter independence:

P (qX|U, θX|U) =

(
∏

u

P (qx|u)

)(
∏

x

∏

u

P (θx|u)

)

.

If our parameter prior satisfies these assumptions, so does
our posterior, as it belongs to the same parametric family.
Thus, we can maintain our parameter distribution in closed
form, and update it using the obvious sufficient statistics:
M [x, x′|u] for θx|u, and M [x|u], T [x|u] for qx|u.

Given a parameter distribution, we can use it to predict
the next event, averaging out the event probability over the
possible values of the parameters. As usual, this prediction
is equivalent to using “expected” parameter values, which
have the same form as the MLE parameters, but account
for the “imaginary counts” of the hyperparameters:

q̂x|u =
αx|u+M [x|u]

τx|u+T [x|u] ; θ̂xx′|u =
αxx′|u+M [x,x′|u]

αx|u+M [x|u] . (3)

Note that, in principle, this choice of parameters is
only valid for predicting a single transition, after which
we should update our parameter distribution accordingly.
However, as is often done in other settings, we can “freeze”
the parameters to these expected values, and use them for
predicting an entire trajectory.

4 Learning CTBN Structure

We now turn to the problem of learning the structure of
a CTBN. We take a score-based approach to this task,
defining a Bayesian score for evaluating different candi-
date structures, and then using a search algorithm to find a
structure that has high score.

4.1 Scoring CTBNs

The Bayesian score over structures G is defined as

scoreB(G : D) = ln P (D | G) + ln P (G) . (4)

We can significantly increase the efficiency of our search
algorithm if we assume that our prior satisfies certain stan-
dard assumptions. We assume that our structure prior
P (G) satisfies structure modularity, so that P (G) =
∏

i P (Pa(Xi) = PaG(Xi)). We also assume that our pa-
rameter prior satisfies parameter modularity: For any two
structures G and G′ such that PaG(X) = PaG′(X), we have
that P (qX , θX | G) = P (qX , θX | G′). Combining pa-
rameter modularity and parameter independence, we have

P (qG , θG | G) =
∏

Xi

P (qXi|Ui
| Pa(Xi) = PaG(Xi))

P (θXi|Ui
| Pa(Xi) = PaG(Xi)).

As P (G) does not grow with the amount of data, the sig-
nificant term in Eq. (4) is the marginal likelihood P (D |
G). This term incorporates our uncertainty over the param-
eters by integrating over all of their possible values:

P (D | G) =

∫

qG ,θG

P (D | qG , θG)P (qG , θG | G)dqGdθG .

As in Eq. (1), the likelihood decomposes as a product:

P (D | qG , θG) =
∏

Xi

LXi
(qXi|Ui

: D)LXi
(θXi|Ui

: D)

=

(
∏

Xi

LXi
(qXi|Ui

: D)

)

︸ ︷︷ ︸

L(q:D)

(
∏

Xi

LXi
(θXi|Ui

: D)

)

︸ ︷︷ ︸

L(θ:D)

.

Using this decomposition, and global parameter indepen-
dence, we now have

P (D | G) =

∫

qG ,θG

L(qG : D)L(θ : D)P (θG)P (qG)dqGdθG

=

(
∫

qG

L(qG : D)P (qG)dqG

)

(5)

×

(∫

θG

L(θG : D)P (θG)dθG

)

. (6)

Using local parameter independence, the term (5) can be
decomposed as

Y

X∈X

Y

u

Y

x

Z ∞

0

P (qx|u)LX(qx|u : D)dqx|u

=
Y

X∈X

Y

u

Y

x

Z ∞

0

(τx|u)
αx|u+1

Γ(αx|u+1)
(qx|u)αx|u exp(−qx|uτx|u)

×(qx|u)M[x|u] exp(−qx|u · T [x|u])dqx|u

=
Y

X∈X

Y

u

Y

x

Z ∞

0

"

(τx|u)
αx|u+1

Γ(αx|u+1)
(qx|u)αx|u+M[x|u]

× exp(−qx|u(τx|u + T [x|u]))

#

dqx|u

=
Y

X∈X

Y

u

Y

x

Γ(αx|u + M [x|u] + 1)(τx|u)αx|u+1

Γ(αx|u + 1)(τx|u + T [x|u])αx|u+M[x|u]+1

=
Y

X∈X

MargLq(X, PaG(X) : D) .

As the distributions over the parameters θ are Dirichlet,
the analysis of the term Eq. (6) is analogous to traditional
Bayesian networks, simplifying to

∏

X∈X

∏

u

∏

x

Γ(αx|u)

Γ(αx|u + M [x|u])

×
∏

x′ 6=x

Γ(αxx′|u + M [x, x′|u])

Γ(αxx′|u)

=
∏

X∈X

MargLθ(X, PaG(X) : D) .

Using this decomposition, and the assumption of
structure modularity, the Bayesian score in Eq. (4)
can now be decomposed as a sum of family scores
FamScore(X, PaG(X) : D) that measures the quality of
PaG(X) as a parent set for X given data D:

scoreB(G : D) =
∑

Xi∈X

FamScore(Xi, PaG(Xi) : D)

=
∑

Xi∈X

ln P (Pa(X) = PaG(Xi))+

ln MargLq(Xi,Ui : D) + ln MargLθ(Xi,Ui : D) .

4.2 Model Search

Given the score function, it remains to find a structure G
that maximizes the score. This task is an optimization prob-
lem over possible CTBN network structures. Interestingly,
the search space over CTBN structures is significantly sim-
pler than that of BNs or DBNs.

Chickering et al. (1994) show that the problem of
learning a optimal Bayesian network structure is NP-hard.
Specifically, they define the problem k-Learn: Finding
the highest scoring Bayesian network structure, when each
variable is restricted to have at most k parents. The prob-
lem k-Learn is NP-hard even for k = 2. Intuitively, the
reason is that we cannot determine the optimal parent set
for each node individually; due to the acyclicity constraint,
the choice of parent set for one node restricts our choices
for other nodes. The same NP-hardness result clearly car-
ries over to DBNs, if we allow edges within a time slice.

However, this problem does not arise in the context of
CTBN learning. Here, all edges are across time — repre-
senting the effect of the current value of one variable on
the next value of the other. Thus, we have no acyclicity
constraints, and we can optimize the parent set for each
variable independently. Specifically, if we restrict the max-
imum number of parents to k, we can simply exhaustively
enumerate each of the possible parent sets U for |U| ≤ k
and compute FamScore(X | U : D). We then choose as
Pa(X) the set U which maximizes the family score. For
fixed k, this algorithm is polynomial in n. Therefore,

Theorem 4.1 The problem k-Learn for CTBNs, for fixed
k, can be solved in polynomial time in the number of vari-
ables n and the size of the dataset D.

In practice, we do not wish to exhaustively enumerate the
possible parent sets for each variable X . We can there-
fore use a greedy hill-climbing search with operators that
add and delete edges in the CTBN graph. However, due
to the lack of interactions between the families of differ-
ent variables, we can perform this greedy search separately
for each variable X , selecting a locally optimal family for
it. Thus, this heuristic search can be performed much more
efficiently than for BNs or DBNs.

5 Structure Identifiability

So far, we have focused on the problem of learning a CTBN
that provides a good fit to some training data D. How-
ever, we have not addressed the fundamental question of
the scope of this learning procedure: Which stochastic pro-
cesses can we represent using a CTBN, and can we reliably
identify them from training data?

5.1 Representational Ability

We begin by considering the scope of the CTBN represen-
tation: Which underlying distributions can we represent us-
ing a CTBN? More formally, we say that two Markov pro-
cesses are stochastically equivalent if they have the same
state space and transition probabilities (Gihman & Skoro-
hod, 1973). Now, consider a homogeneous stochastic pro-
cess over Val(X), defined as an intensity matrix QX . We
would like to determine when there is a CTBN which is
stochastically equivalent to QX .

In Nodelman et al. (2002), we provided a semantics for a
CTBN in terms of an amalgamation operation, which takes
a CTBN and converts it into a single intensity matrix that
specifies a homogeneous stochastic process. For a CTBN
N , let QN be the induced joint intensity matrix. We can
now define

Definition 5.1 A CTBN structure G is an S-map for a ho-
mogeneous stochastic process QX if there exists a CTBNN
over the graph G such that QN is stochastically equivalent
to QX .

As discussed in Nodelman et al. (2002), a basic assump-
tion in the semantics of CTBNs is that, as time is continu-
ous, variables cannot transition at the same instant. Thus,
in the joint intensity matrix, all intensities that correspond
to two simultaneous changes are zero. More precisely:

Definition 5.2 A homogeneous stochastic process QX

with entries qxx′ is said to be variable-based if, for any
two assignments x and x′ to X that differ on more than
one variable, qxx′ = 0.

It turns out that this condition is the only restriction on
the CTBN expressive power. Let G> be the fully connected
directed graph. Then we can show that

Theorem 5.3 The graph G> is a S-map for any variable-
based homogeneous stochastic process QX .

Thus, we can represent every variable-based homoge-
neous process as some parameterization over the graph G>.
In fact, this parameterization is unique:

Theorem 5.4 LetN andN ′ be two CTBNs over G>. Then
QN and QN ′

are stochastically equivalent if and only if
their conditional intensity matrices are identical.

Let NQX
represent the unique CTBN over G> which is

stochastically equivalent to QX .
Although capturing a stochastic process using a fully-

connected CTBN is not very interesting, it provides us with
the tools for proving our main result.

Theorem 5.5 A CTBN structure G is an S-map for a
variable-based process QX if and only if NQX

satisfies
the following condition: For every variable X , and any
two assignments x, x′ to Val(X) such that x and x′ agree
on the value of X and PaG(X), we have that qx = qx′ .

Thus, we cannot represent the same process using two fun-
damentally different CTBN structures. We can only add
spurious edges, corresponding to vacuous dependencies.

Theorem 5.6 For any variable-based process QX , there
exists a structure G∗ such that, for any S-map G for QX ,
G∗ ⊆ G.

Let us compare this result to the case of Bayesian net-
works. There, any distribution has many minimal I-maps;
indeed, many distributions even have several perfect maps,
each of which captures the structure of the distribution per-
fectly. In the case of CTBNs, we have a unique minimal
S-map. To obtain some intuition for this difference, con-
sider the simple example of a two-variable CTBN N with
the graph X → Y . Unless the edge between X and Y is
vacuous, this graph cannot give rise to the same transition
probabilities as any CTBN N ′ with the graph X ← Y . To
see that, recall that in N , the variable Y is an inhomoge-
neous Markov process whose transition probabilities vary
over time as a function of the changing value of X . But,
in N ′, the variable Y is a homogeneous Markov process
whose transition probabilities never change.

5.2 Identifiability

Now that we have determined that any variable-based
stochastic process has a unique minimal CTBN represen-
tation, the main question is whether we can identify this
CTBN from data. More precisely, assume that our data D

is generated from some process QX , and let G∗ be the min-
imal S-map for QX . We would like our learning algorithm
to return a network whose structure is G∗. Our learning al-
gorithm searches for the network structure that maximizes
the Bayesian score. Thus, the key property (ignoring pos-
sible limitations of our search procedure) is the following.

Definition 5.7 A scoring function is said to be consistent
if, as the amount of data |D| → ∞, the following holds
with probability that approaches 1: The structure G∗ will
maximize the score, and the score of all structures G 6= G∗

will have a strictly lower score.

Once again, compare this situation to that of Bayesian net-
works. There, the best we can hope for is that all and only
structures that are I-equivalent to the “true” network will
maximize the score.

To prove that our score is consistent, it helps to consider
its behavior as the amount of data increases.

Theorem 5.8 As the amount of data |D| → ∞,

scoreB(G : D) = `(q̂G , θ̂G : D)−
ln |D|

2
Dim[G] + O(1)

(7)
where Dim[G] is the number of independent parameters in
G, and q̂G and θ̂G are the MLE parameters of Eq. (2).

Eq. (7) is simply the standard BIC approximation to the
Bayesian score (Lam & Bacchus, 1994), which carries
over to CTBNs. It shows that, asymptotically, the CTBN
Bayesian score trades off fit to data and model complexity.
We are more likely to add an arc if it represents a strong
connection between the variables. Moreover, as the amount
of data grows, we obtain more support for weak connec-
tions, and are more likely to introduce additional arcs.

Theorem 5.9 scoreB(G : D) is consistent.

The proof shows that the BIC score is consistent; as consis-
tency is an asymptotic property, it suffices to show the con-
sistency of the Bayesian score. The argument for the con-
sistency of the BIC score is a standard one: If G is a super-
set of G∗, it can represent QX exactly; thus, with enough
data, the difference between the log-likelihood components
of the score of G and G∗ will go to zero. But, G has more
parameters, leading to a higher penalty and thus a lower
score. If G is not a superset of G∗, it follows from Theo-
rem 5.6 that it is not capable of representing QX . In this
case, as the amount of data grows, the likelihood portion of
the score will dominate and G∗ will have the higher score.

6 Experimental Results

We tested our CTBN learning framework on various syn-
thetic data sets, generated from CTBNs. We used a sim-
ple greedy hill-climbing algorithm over the space of struc-
tures, optimizing the family for each variable separately.
For comparison, we also learned DBNs using different time
granularities. To allow a fair comparison, we used the same
greedy hill-climbing algorithm there.

We first tested ability of CTBNs and DBNs to capture
very simple dependencies. We constructed a CTBN model
with four binary variables arranged in a chain. The first
variable randomly switches between its states on a time
scale of 1 time unit and each of the other variables follows
its predecessor on the same time scale. In total, there are 14
parameters in this network. We learned a CTBN structure
with increasing amounts of data, and DBNs with with vary-
ing time granularities. The number of parameters learned
can be seen in Figure 2(a). The CTBN learning converges
very quickly to the correct number of parameters, and, in-
deed, to the correct structure. Moreover, as we can see from

5 10 20 50 100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

40

45
CTBN
∆ t = 0.10
∆ t = 1.00
∆ t = 5.00

data size

nu
m

be
r o

f p
ar

am
et

er
s

CTBN
∆ t = 0.10
∆ t = 1.00
∆ t = 5.00

2 4 6 8 10
−40

−35

−30

−25

−20

−15

Te
st

 L
og

−L
ik

el
ih

oo
d

Number of Trajectories

optimal

correct structure

learned structure

1 2 3 4 5 6
0

5

10

15

20

25

H
am

m
in

g
D

is
ta

nc
e

Number of Trajectories

(a) (c) (e)

|D| CTBN ∆t = 0.1 ∆t = 1 ∆t = 5

10

100

1000 2 4 6 8 10
−120

−100

−80

−60

−40

−20

0

Te
st

 L
og

−L
ik

el
ih

oo
d

Number of Trajectories

optimal

CTBN

∆ t = 0.1

∆ t = 1.0

∆ t = 5.0

1 2 3 4 5 6
0

1

2

3

4

5

6

7

H
am

m
in

g
D

is
ta

nc
e

Number of Trajectories

(b) (d) (f)

Figure 2: (a) For a 4-node chain network, the number of parameters of the learned structures as a function of the amount of time the
data was collected, for CTBNs and DBNs with varying time granularity. (b) Example learned structures for the 4-node chain network.
(c) & (d) Log-likelihoods of test data for networks learned from varying amounts of data generated from the drug effect network. Each
trajectory corresponds to 6 units of time, and about 18 transitions. The thin line shows the likelihood for the true network. (c) CTBN with
learned parameters and structure and CTBN with learned parameters only. (d) Learned CTBN model and DBN models with differing
time slice durations. (e) & (f) Hamming distances for randomly generated 10-node CTBNs, for varying amounts of data. Each trajectory
corresponds to 150 units of time, and about 1000 transitions. (e) Distance between the true structure and the highest scoring structure.
(f) Distance between the highest scoring structure and the structure learned by greedy search for random CTBNs.

the error bars, there is very low variance in the structures
produced. By contrast, the DBN learning algorithm fluctu-
ates significantly, and does not converge to the right num-
ber of parameters even with a large amount of data.

Typical structures are shown in Figure 2(b). As we can
see, a DBN with time slices much shorter than the average
rate of change of the system does converge to a reasonable
structure; however, for large amounts of data, the structure
still becomes more complex than the corresponding CTBN.
For a time granularity on the same order as the time scale of
the system, things become more difficult for the DBN, as it
must model multiple transitions in a single time step, lead-
ing to entanglement which increases with the amount of
available data. Finally, if the time-slicing is too coarse, the
DBN learns a model of the steady-state distribution without
any model of the transition probabilities.

We then tested our ability to recover more complex struc-
tures. We generated different amounts of data from the
drug effect network of Figure 1, and used it to learn two
models: one where we learned both the CTBN structure
and the parameters, and the other where we simply esti-
mated parameters for the correct network structure. We
then computed the log-likelihood of test data for all net-
works, including the generating network. In all cases where

we used a learned network, we used the expected parame-
ters of Eq. (3) throughout the entire test trajectory. The
results are shown in Figure 2(c). Even for fairly small
amounts of data, our results with unknown structure are
essentially identical to those with the correct structure.

To further test the ability of our algorithm to recover
structure, we generated 100 random networks of 10 binary
processes. We fixed a maximum parent set size of 4 and
generated a random graph structure obeying this constraint.
We then drew the multinomial parameters of the network
from Dirichlet distributions (with parameters all 1) and the
exponential parameters from a Gamma distribution (with
both parameters equal to 1). In figure 2(e) we compared
the maximum-score structure (with the same constraint on
parent sets) to the true structure. The Hamming distance
measured is the number of arcs present in only one of the
graphs. As predicted by Theorem 5.9, as the amount of data
grows, the correct structure has the highest score. Indeed,
this happens even for very reasonable amounts of data.
More interestingly, in a very large fraction of the cases, the
simple greedy search algorithm recovers the highest scor-
ing network very reliably. Figure 2(f) shows the difference
between the maximum-score structure and the one found
by greedy search. As we can see, the local minima in the

search space are less frequent as the amount of data grows,
and in general the difference between the exhaustive and
greedy search techniques is small (roughly one edge differ-
ence for reasonable amounts of data).

Finally, we wanted to compare the generalization perfor-
mance of learned CTBNs with those of learned DBNs. To
do so, we had to extend the DBN model to include distri-
butions over when, within a time slice, a given transition
occurred. We assumed a uniform distribution within the
time slice, augmenting it with a parameter for each variable
that determines the probability that the value of the variable
transitions more than once within a time slice. The value
of this parameter was also learned from data. Figure 2(d)
compares the generalization ability of learned CTBNs and
learned DBNs with varying time granularity. As expected,
the correct DBN structure exhibits entanglement due to the
temporal discretization, and therefore requires more edges
to approximate the distribution well. Even for small ∆t,
the amount of data required to estimate the much larger
number of parameters is significantly greater. As ∆t grows
large, the performance of the DBN decreases rapidly. Inter-
estingly, as in the chain network, for large values of ∆t, the
DBNs simply cannot capture the transition dynamics accu-
rately enough to converge to competitive performance.

7 Discussion and Conclusions

We have presented a Bayesian structure learning algorithm
for continuous time Bayesian networks. As we showed,
learning temporal processes as a CTBN has several impor-
tant advantages. As we are not discretizing time, we do
not need to choose some single time granularity in which
to model the process. The model for each variable can re-
flect its own time granularity, better representing its evo-
lution. Furthermore, as CTBNs do not aggregate multiple
transitions over the course of a time slice, they avoid entan-
glement due to aggregation. Thus, they allow us to learn
a model that more directly reflects the dependencies in the
process. Finally, with no intra-time-slice edges, acyclicity
is not a concern, so that the task of searching for a high-
scoring network is computationally significantly simpler,
both in theory and in practice, than in the case of DBNs.

It is useful to compare the ability of DBNs and CTBNs
to represent different temporal processes. CTBNs are de-
signed to represent purely Markovian processes — those
where the instantaneous transition model depends only on
the current state. Such processes can be represented very
compactly as a CTBN, taking full advantage of any struc-
ture. By contrast, to represent these dynamics correctly
as a DBN, we would need to aggregate the influence of
one variable on another over the entire time slice, lead-
ing to entanglement of the influences and thereby to a
more complicated network structure, with more parame-
ters, that obscures the independencies in the underlying
process. But, DBNs provide a more expressive model for
processes evolving over discrete time points — a fully con-

nected DBN with intra-time-slice arcs has more free pa-
rameters than the fully connected CTBN. (For example, if
there are 2 binary variables, a fully-connected DBN has 12
free parameters and a fully-connected CTBN has only 8.)
Thus, the DBN can represent certain transition models that
do not arise from a purely Markovian continuous-time pro-
cess. Overall, DBNs are a good choice for domains where
the data is naturally time-sliced and where questions about
events occuring between time points are not relevant. How-
ever, there are domains where the data has no natural time-
slices (e.g., computer system monitoring or web/database
transactions). Such domains are more naturally modelled
as CTBNs than DBNs and the estimation of fewer parame-
ters make CTBNs simpler to learn.

However, accurate modelling of most datasets will re-
quire an extension of the work presented here. The Marko-
vian assumption restricts the expressive power of CTBNs
to modeling exponential distributions over time. To al-
low more expressive distributions, hidden state must be
introduced, either explicitly (through hidden variables) or
implicitly (by using delayed exponentials or mixtures of
exponentials). These extensions are not straightforward.
Whereas in traditional Bayesian networks, a hidden vari-
able takes any of a discrete number of possible values, in
CTBNs a hidden variable takes any trajectory as a value.
The space of trajectories is infinite both in the number of
transitions and the times at which the transitions occur. Our
current research is focused on adding hidden state which
would make CTBN learning applicable to a wide range of
practical applications where full observability is typically
an unrealistic assumption.

Acknowledgments. This work was funded by ONR contract
N00014-00-1-0637 under the MURI program “Decision Making
under Uncertainty.”

References
Chickering, D. M., Geiger, D., & Heckerman, D. (1994). Learn-

ing Bayesian Networks is NP-Hard (Technical Report MSR-
TR-94-17). Microsoft Research.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about
persistence and causation. Computational Intelligence, 5, 142–
150.

Geiger, D., & Heckerman, D. (1995). A characterization of
the dirichlet distribution with application to learning Bayesian
networks (Technical Report MSR-TR-94-16). Microsoft Re-
search.

Gihman, I. I., & Skorohod, A. V. (1973). The theory of stochastic
processes II. New York: Springer-Verlag.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learn-
ing Bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20, 197–243.

Lam, W., & Bacchus, F. (1994). Learning Bayesian belief net-
works: An approach based on the MDL principle. Computa-
tional Intelligence, 10, 269–293.

Nodelman, U., Shelton, C. R., & Koller, D. (2002). Continuous
time Bayesian networks. Proceedings of the Eighteenth Con-
ference on Uncertainty in Artificial Intelligence (pp. 378–387).

