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Abstract
Neyman-Scott processes (NSPs) are a class of Cox processes constructed by stacking layers
of Poisson processes into a deep structure. While a lot of research has been conducted
regarding the posterior sampling and inference for NSPs, most of the existing methods only
work for shallow NSPs (i.e., NSPs with one layer of latent Poisson processes). In this paper,
we present virtual-event-based posterior sampling and inference algorithms for NSPs. The
algorithms work for both deep NSPs and shallow NSPs. Moreover, we show that deep NSPs
can be viewed as branching processes or a limiting case of probabilistic graphical models.
We conduct a theoretical analysis of the convergence of our algorithms and provide the
condition for the convergence to hold. In doing so, we also prove the convergence of virtual-
event-based sampling inference algorithms for other point process models with missing
information (Markov jump processes, piecewise-constant intensity models, and Hawkes
processes). Like NSPs, the latent variables of these models with missing information are
also point processes. Our experimental results demonstrate that the prediction based on
our sampling and inference algorithms for NSPs can achieve good prediction performance
compared with state-of-the-art methods.
Keywords: Markov chain Monte Carlo, variational inference, point processes, hierarchical
model, Neyman-Scott processes

1. Introduction

There has been a long history of developing hierarchical models (e.g., deep neural networks
(LeCun et al., 2015), graph neural networks (Scarselli et al., 2008), and probabilistic graphi-
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cal models (Koller and Friedman, 2009)) to solve real-world problems, and they have achieved
great success in various fields, such as computer vision (He et al., 2016), natural language
processing (Gales et al., 2008), and biology (Fout et al., 2017). However, little attention has
been given to inventing hierarchical models built solely with point processes, though point
processes without such kind of hierarchical structures have been used in different fields like
finance (Bauwens and Hautsch, 2009), cosmology (Stoica et al., 2014), and crime modeling
(Shelton et al., 2018). Amidst all point process models, Neyman-Scott processes (NSPs)
(Neyman and Scott, 1958), a class of networks with each node representing a point process,
have shown a promising future of working as a backbone model to capture the hierarchy.

NSPs were first proposed as a class of stochastic point processes to model the cluster-
ing behavior of galaxies. Since the appearance of NSPs, they have been widely used in
different areas, such as ecology (Waagepetersen and Guan, 2009), neuroscience (Williams
et al., 2020), and pandemics (Park et al., 2022). The central assumption of NSPs is that
the observed events are triggered by hidden events, and the hidden events themselves are
modeled as random events triggered by other hidden events. Each event is a point. Then,
this hierarchical triggering behavior allows us to stack multiple point processes to form a
deep structure and constitute the primary generative mechanism of NSPs. The points that
can induce another set of points are called parent points, while the points induced by the
parent points are called child points of these parent points. The child points themselves can
serve as parent points to generate another generation of child points. If the parent points
of an NSP are not child points of any other points, then this NSP is called a shallow NSP
(SNSP), otherwise it is called a deep NSP (DNSP). In the original paper proposing NSPs,
Neyman and Scott (1958) only describe the hierarchical clustering behavior of the model
without giving specific formulas. We first use DNSPs to name these kinds of deep structures
and give specific formulas for the intensity functions of each Poisson process in NSPs. We
present that DNSPs can be constructed as branching processes by treating each layer of
DNSPs as a generation of branching processes. We also show that DNSPs are a limiting
case of probabilistic graphical models when the number of random variables of probabilistic
graphical models approaches infinity.

Various posterior sampling and inference techniques (e.g., Møller and Waagepetersen,
2003; Waagepetersen and Guan, 2009; Andersen et al., 2018; Williams et al., 2020; Wang
et al., 2023) have been developed for NSPs though most of them are only applied to SNSPs.
To the best of our knowledge, Andersen et al. (2018) present the only work that infers the
parameters for a DNSP, but their method is not able to estimate the posterior distribution
of the points in the hidden space (i.e., parent points). The difficulty of designing efficient
posterior sampling and inference algorithms for NSPs lies in the fact that the hidden space
of NSPs contains an unbounded number of points and it is hard to find an analytical ex-
pression for the posterior distribution of these hidden points. Moreover, as we stack more
point processes into a deep NSP, the dependencies between different point processes become
increasingly complex and the search space of the posterior distribution of the hidden points
becomes increasingly large. Thus, we need to design a novel algorithm to help trim the
search space such that we can spend more time searching at the places where more points
would occur in the posterior distribution.

We propose virtual-event-based posterior sampling and inference algorithms for NSPs in
this paper. The proposed algorithms work for both shallow and deep NSPs. Virtual-event-
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based posterior sampling algorithms are based on reversible jump Markov chain Monte Carlo
(RJMCMC) (Green, 1995) and have been applied to various kinds of models, such as Markov
jump processes (MJPs) (Rao and Teh, 2011, 2013), piecewise-constant conditional intensity
models (PCIMs) (Gunawardana et al., 2011; Qin and Shelton, 2015), and Hawkes processes
(Hawkes, 1971; Shelton et al., 2018). Virtual events are auxiliary variables that can help
suggest possible locations of the events in the posterior distribution. The virtual-event-based
posterior sampling for NSPs differs significantly from the existing virtual-event-based sam-
pling algorithms in that the virtual events in our sampler can form a hierarchical structure
themselves. Moreover, we show that the hierarchical structures formed by the virtual events
in our algorithm can work as an approximation for the true posterior distribution of the hid-
den events. The distribution of the virtual events is learned through the optimization of the
inclusive Kullback–Leibler (KL) divergence, which is the key element of our virtual-event-
based inference algorithm. Different from the variational inference algorithm in Naesseth
et al. (2020), which minimizes inclusive KL divergence w.r.t. the variational parameters of
the Markov kernels, our inference algorithm optimizes the inclusive KL divergence for the
variational parameters of the auxiliary variables. Besides, our MCMC has an unbounded
number of dimensions, while the MCMC algorithm in Naesseth et al. (2020) has a fixed
number of dimensions. Although the virtual-event-based inference algorithm is only applied
to NSPs currently, we expect it can be generalized to other models (e.g., MJPs, PCIMs, and
Hawkes processes) as well if an approximate variational expression for the virtual events can
be found.

Though virtual-event-based posterior sampling algorithms have been applied to multiple
models, including ours, the analysis of the convergence is typically insufficient. The previous
work (Rao and Teh, 2011, 2013; Qin and Shelton, 2015; Shelton et al., 2018; Hong and
Shelton, 2022, 2023) did not exclude a null set from which convergence may fail. By studying
Ψ-irreducibility, aperiodicity, and Harris recurrence, we provide a sufficient condition for the
convergence of the RJMCMC to hold. With the convergence of the posterior sampling and
appropriate assumptions, the convergence of the optimization for inclusive KL divergence
can be proved to hold as well.

The paper is organized as follows. We introduce DNSPs in section 2. Then we describe
the posterior sampling in section 3 and the variational inference in section 4. The analysis
of the convergence of MCMC is performed in section 5 and the analysis of the convergence
of variational inference is discussed in section 6. With our novel algorithm, we are able to
make predictions for sequences and the prediction procedure is described in section 7. The
experimental results for earthquakes, homicides, and retweets are presented in section 8.
Finally, we conclude in section 9. Part of this paper builds on conference proceedings in
Hong and Shelton (2022, 2023) and we greatly extend the analysis of virtual-event-based
posterior sampling and inference algorithms to provide rigorous convergence guarantees for
both NSPs and other similar samplers (i.e., the samplers for MJPs, PCIMs, and Hawkes
processes).

2. Deep Neyman-Scott Processes

The formal introduction of the hierarchical structure and the generative mechanism for
DNSPs is given in this section. We should notice that SNSPs are DNSPs with the number
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of layers equaling 1. The main focus of this paper is on temporal point processes, but most
of the results can be generalized to spatio-temporal point processes easily.
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Figure 1: Structure of a DNSP

As depicted in Figure 1, the generative procedure for DNSPs can be described in a top-
down manner. Poisson processes are stacked together to form a network, with each node
of this network as a sample from a Poisson process. We usually use intensity functions to
describe Poisson processes:

Definition 1 (intensity function) The intensity function λ(t) for a Poisson process in
an Euclidean space Rn is defined as

λ(t) = lim
δ→0

E[the number of points inside tδ]
δ

,

where tδ is a ball centered at t with radius δ.

Different from the presentation of NSPs in Neyman and Scott (1958), we depict DNSPs
with specific intensity functions of each node similar to deep neural networks or probabilistic
graphical models. The Poisson processes at the top are homogeneous Poisson processes and
the intensities are constant numbers, while the intensities of the other Poisson processes
are fully determined by the samples from the Poisson processes stacked above. There are
L + 1 layers of Poisson processes (L hidden layers and 1 observed layer) in Figure 1, with
the Poisson processes at layer ` denoted as Z` = {Z`,k}K`k=1 (the realizations are denoted as
z` = {z`,k}K`k=1), where K` is the number of Poisson processes at layer ` and Z`,k is the k-th
hidden Poisson process (k-th type for multivariate point processes or k-th mark in marked
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point processes) at layer `. When ` = 0, z0,k = xk is observed. The intensity λ`,k of Z`,k is
fully determined by the samples of Z`+1 through kernel functions

φθ(`+1,·)→(`,k)
= {φθ(`+1,i)→(`,k)

}K`+1

i=1

for ` < L, while the intensity for ZL,k is a constant number µk > 0. A SNSP is a DNSP
with L = 1.

The Poisson processes at the bottom generate samples that can be observed, while the
samples generated by inner-layer Poisson processes cannot be directly detected. Thus, the
processes that are not at the bottom are hidden processes.

Generative Mechanism The generative mechanism of DNSPs is an iterative procedure.
We first draw a sample from each of the homogeneous Poisson processes at the top layer,
and the intensity functions for these Poisson processes are denoted as

λL,k = µk > 0.

Then we sample from the nonhomogeneous Poisson processes conditioned on the Poisson
processes stacked on the layer above. Given the samples from Z`+1, the intensity function
for Z`,k is

λ`,k(t) =

K`+1∑
i=1

m`+1,i∑
j=1

φθ(`+1,i)→(`,k)
(t− t`+1,i,j), (1)

where m`+1,i is the number of points for the sample drawn from Z`+1,i, t`+1,i,j represents the
location of the j-th point of the sample drawn from Z`+1,i, and φθ(`+1,i)→(`,k)

(·) is a bounded
function in a bounded space.

We let the time interval (denoted as [0, T ]) for each point process be the same and ignore
the edge effect to simplify our model.

Figure 2 is an example of the distribution of the events for a temporal DNSP with two
hidden layers. Every Poisson process resides in the same time interval. The sampled events
in Figure 2(a) are from forward sampling, and the sampled events in Figure 2(b) are from
posterior sampling.

During the forward sampling process in Figure 2(a), the realization z2,1 has 3 events
sampled from the homogeneous Poisson process at the top. The dashed lines at the top
represent the positions of these 3 events. Then, conditioned on the events at the top, we
can draw the realizations z1,1 and z1,2. Similarly, x1 is drawn conditional on z1,1 and x2 is
drawn conditional on z1,2. The intensity for Z2,1 is given and is a constant number, drawn
as a red line at the top. The other pink plots show the intensity functions generated using
the samples from the layer above. The short black lines sticking to the horizontal axes at
the bottom indicate the positions of the events from the realizations.

For posterior sampling (one of the main focuses of this paper), demonstrated in Fig-
ure 2(b), x1 and x2 are observations and they are fixed. The samples for the observations
are collected from forward sampling. The samples for the hidden point processes (z1,1, z1,2,
and z2,1) are drawn by performing the posterior sampling conditional on x1 and x2. The
dashed lines indicate the positions of the 3 events generated by the homogeneous Poisson
process in Figure 2(a). The pink plots are generated by kernel density estimation using
Gaussian kernels.
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Figure 2: Distribution of events: (a) demonstration of the samples generated by forward
sampling; (b) demonstration of the samples generated by posterior sampling.

The Kernel Function Kernel functions are used to propagate the information from the
top layer to the lower layers. The desirable kernel functions should be as flexible as possible
with a small number of parameters. Moreover, it is advantageous to have an analytical
inverse of the integral of the kernel functions, to allow efficient sampling of the Poisson
processes using inversion sampling. Here we give two examples of temporal point processes.

Example 1 (Gamma kernel for temporal point processes)

φθ(x) =

{
p · βα

Γ(α)x
α−1e−βx for x > 0, p, α, β > 0,

0 for x ≤ 0,

where θ = {p, α, β} and Γ(α) is the Gamma function.

Example 2 (Weibull kernel for temporal point processes)

φθ(x) =

{
p · kλ

(
x
λ

)k−1
e−(x/λ)k for x > 0, k, λ > 0,

0 for x ≤ 0,

where θ = {p, k, λ}.

Both the Gamma and Weibull kernels decrease monotonically or behave like a Gaussian
function. They approach 0 when x → ∞. The Weibull kernel has analytical forms of
the gradients for the kernel function itself and the integral of the kernel function, while
the gradient of the integral of the Gamma kernel is numerically unstable and expensive to
calculate because it involves the Meijer G-function.

Remark 2 Although we only discuss the kernel functions for temporal point processes, we
can extend the kernel in this paper to the kernel for spatio-temporal point processes, simply
by defining the functional forms of the kernel over the whole space, and not forcing the values
to be 0 for x ≤ 0.
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Connections to Branching Processes Similar to the branching structure of Hawkes
processes in Møller and Rasmussen (2006), DNSPs can also be defined as branching pro-
cesses. Layer ` can be viewed as generation L − ` and each event with time t`,i,j can be
viewed as an individual of generation L − `. Each event of generation L − ` can generate
offspring for generation L− `+ 1. The offspring of the event with time t`,i,j are distributed
as Poisson processes with the intensity function

φ`,i,j(t) =

K`−1∑
r=1

φθ(`,i)→(`−1,r)
(t− t`,i,j).

Connections to Probabilistic Graphical Models DNSPs can be viewed as a limiting
case of probabilistic graphical models (more specifically, deep exponential families (DEFs)
(Ranganath et al., 2015)) when the number of random variables of DEFs approaches infinity.

Following the conventions of DEFs, we consider a DEF with L hidden layers. The data is
at layer 0 (the bottom layer) and the hidden layer directly connected to layer 0 is layer 1 (the
bottom hidden layer). The top hidden layer is layer L. The random variables at layer ` are
denoted as G` = {{G`,i,j}K`i=1}

m̂`,i
j=1 (corresponding to the hidden variables z` in Ranganath

et al. (2015)) and they are distributed as Bernoulli distributions, where m̂`,i is the number
of random variables corresponding to the i-th Poisson process at layer ` of DEFs. For each
i, we can divide the interval [0, T ] into equally sized subintervals

{[T`,i,j , T`,i,j+1)}m̂`,i−2
j=0 ∪ [T`,i,m̂`,i−1, T`,i,m̂`,i ] = [0, T ],

where T`,i,0 = 0 and T`,i,m̂`,i = T .
G`,i,j corresponds to the number of events at subinterval T̂`,i,j = [T`,i,j−1, T`,i,j) for

j ≤ m̂`,i − 1 and T̂`,i,j = [T`,i,m̂`,i−1, T`,i,m̂`,i ] for j = m̂`,i in DNSPs. The size of each
subinterval at layer ` is denoted as δ`. The kernel φθ(t) satisfies 0 ≤ φθ(t) ≤ φ̂ for a positive
number φ̂ > 1 and t ∈ [−T, T ]. The probability of G`,i,j = 1 is p(G`,i,j = 1) = λ`,i(ξ`,i,j) · δ`
and p(G`,i,j = 0) = 1 − p(G`,i,j = 1), where ξ`,i,j is from a uniform distribution with the
support as T̂`,i,j , λ`,k(t) =

∑K`+1

i=1

∑m̂`+1,i

j=1 G`+1,i,j · φθ(`+1,i)→(`,k)
(t − ξ`+1,i,j) for ` ≤ L − 1,

and λL,k(t) = µk. The size of subinterval δ` satisfies δ` < 1/(K`+1 ·(T/δ`+1) · φ̂) for ` ≤ L−1
and δL < 1/maxk{µk}, such that p(G`,i,j = 1) = λ`,i(ξ`,i,j) · δ` < 1 for ` = 0, 1, 2, · · · , L and
δ` < δ`+1.

Following the same notations of the hidden variables z and the weightsW in DEFs (Ran-

ganath et al., 2015), we let z`+1 =
[
[G`+1,i,j ]

K`
i=1

]m̂`,i
j=1

and w`,k,r =
[
[φθ(ξ`,k,r − ξ`+1,i,j)]

K`
i=1

]m̂`,i
j=1

.

Notice that we only use z for hidden variables in DEFs here. For the rest of this paper,
z refers to the hidden points processes in DNSPs. Like convolutional DEFs (Hong and
Shelton, 2021), the construction of the weights here also enjoys a convolutional paradigm
with the filter size equal to infinity since the weights w`,k,r only depend on the distances
{{ξ`,k,r − ξ`+1,i,j}K`i=1}

m̂`,i
j=1 between different hidden variables in adjacent layers. For the top

layer, the distribution of zL,k,r ≡ GL,k,r is

p(zL,k,r) =Bernoulli(zL,k,r;µk · δL)

=zL,k,r · µk · δL + (1− zL,k,r) · (1− µk · δL).
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The distribution of the random variable z`,k,r ≡ G`,k,r for ` ≤ L− 1 is

p(z`,k,r | z`+1,w`,k,r) = Bernoulli(z`,k,r; g(zT`+1w`,k,r))

= z`,k,r · g`(zT`+1w`,k,r) + (1− z`,k,r) · (1− g(zT`+1w`,k,r)),

where the link function g`(·) is given as g`(x) = x · δ`.
With the above construction, it is easy to find that the joint density, the conditional

density, and the marginal density of DEFs converge to the joint density, conditional den-
sity, and the marginal density of DNSPs when δL → 0. The definition and more rigorous
discussions of the density of DNSPs can be found in Section 3.2 and Theorem 7.

3. Posterior Sampling

By contrast to straightforward forward sampling, posterior sampling is generally considered
computationally intense, as it involves an unbounded number of events and there is no
analytical expression for the posterior distribution of the hidden Poisson processes. A lot of
research (e.g., Møller and Waagepetersen (2003); Kopeckỳ and Mrkvička (2016); Williams
et al. (2020); Wang et al. (2023)) has been conducted on the posterior sampling for those
NSPs with one single hidden layer. However, little work has been done to perform Bayesian
posterior sampling for NSPs with more than one hidden layer. In this paper, we provide
a posterior sampling algorithm, which can be applied to NSPs with any finite number of
hidden layers. Moreover, this posterior sampling algorithm serves as the foundation for both
the likelihood-based inference in section 4.1 and the variational inference in section 4.2.

The posterior sampling is based on RJMCMC equipped with auxiliary variables (or
auxiliary point processes), which we call virtual point processes (VPPs). In contrast to the
VPPs, we call the point processes belonging to our model (i.e., the point processes that are
not auxiliary variables) the real point processes (RPPs). The events belonging to VPPs are
called virtual events, and the events belonging to RPPs are called real events.

The intentions of the introduction of virtual events are (1) to use the virtual events,
instead of the real events, to explore the space of the real events more easily, as the sampling
of the virtual events is very efficient by inversion; (2) to serve as variational approximations of
the posterior point processes; (3) to help put more computational resources into searching
where there are more events; and (4) to propagate the information from the observation
to every hidden point process. Although virtual-event-based posterior sampling has been
applied to MJPs, PCIMs, and Hawkes processes, the virtual-event-based posterior sampling
for NSPs requires a new design of the sampler moves and the distribution of the virtual
events, as our virtual events form a hierarchical structure which propagates the information
from the data to the latent space.

3.1 Virtual Events

The VPPs are generative models as well. In correspondence with the DNSPs depicted in
Figure 1, there are L layers of VPPs Z̃1:L = {Z̃1, · · · , Z̃L}, where Z̃` = {Z̃`,k}K`k=1.
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3.1.1 Generative Mechanism

The VPPs are generated from bottom to top. We generate Z̃1 first and Z̃1 is assumed to be
a class of Poisson processes. The functional form of the intensity function for Z̃1,k is

λ̃1,k(t) = q1,k(t; z̃0 = x, θ̃1,k(t)),

where q1,k(t; x, θ̃1,k(t)) is a function of t with some parameters characterized by the events
from the observation x, and the other parameters θ̃1,k(t) that can evolve with time t.

Next, the samples z̃` for Z̃` are drawn conditionally on the samples z̃`−1, and the intensity
function for Z̃`,k is

λ̃`,k(t) = q`,k(t; z̃`−1, θ̃`,k(t)),

where q`,k(t; z̃`−1, θ̃`,k(t)) is a function of t with some parameters characterized by the events
from the sample z̃`−1, and the other parameters θ̃`,k(t) that can evolve with time t.

3.1.2 Examples for Virtual Point Processes

The generative mechanism guarantees that the information can be transported from the
observation to the top. Additionally, we need to design functional forms for q`,k such that
the inversion method for sampling can be efficiently applied and the VPPs are close enough
to the posterior point processes. For this purpose, we give two examples of the functional
forms for q`,k: upward Neyman-Scott processes (UNSPs) and upward self-attention processes
(USAPs).

Example 3 (Upward Neyman-Scott Processes) The VPPs are NSPs evolving in an
upward direction. In this case, the intensity function is

λ̃`,k(t) = q`,k

(
t; z̃`−1, θ̃`,k

)
= µ̃`,k +

K`−1∑
i=1

∑
t`−1,i,j

φθ̃(`−1,i)→(`,k)
(t̃`−1,i,j − t), (2)

where Θ̃`,k =

{
µ̃`,k,

{
θ̃(`−1,i)→(`,k)

}K`−1

i=1

}
and µ̃`,k > 0.

Example 4 (Upward Self-Attention Processes) To leverage the power of neural net-
works to construct more flexible approximate point processes, we adopt self-attention to en-
code the event information like other work (e.g., Zuo et al., 2020; Zhang et al., 2020; Chen
et al., 2021). Each event t`−1,i,j is mapped to a hidden vector h`−1,i,j = fAttn(t`−1,i,j , z

I
`−1 =

{{t`−1,i,j}
m`−1,i

j=1 }K`−1

i=1 }) through self-attention. The intensity function for t`−1,i,j−1 < t ≤
t`−1,i,j becomes

λ̃`,k(t) = q`,k

(
t; z̃`−1, θ̃`,k

)
= µ̃`,k + φθ̃`−1,i,j

(t̃`−1,i,j − t), (3)

where Θ̃`,k =

{
µ̃`,k,

{{
θ̃`−1,i,j

}K`−1

i=1

}m`−1,i

j=1

}
, µ̃`,k > 0, and θ̃`,k is the output of a neural

network applied to the hidden vector h`−1,i,j.
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Comparison To establish an intuitive understanding of how close our examples of vari-
ational point processes can approximate the posterior point processes, we demonstrate two
clean and typical examples for UNSPs and USAPs respectively in Figure 3. The intensity
functions obtained from variational inference for UNSPs and USAPs are compared with the
approximate intensity functions obtained from MCMC. The details of how to do variational
inference and MCMC will be discussed in the following sections.

For simplicity, we consider a DNSP with 2 hidden layers, each with one Poisson process.
3 events (times at 6, 10, 20) are picked manually and fixed at the observation. The model
parameters (i.e., θ and µ) are fixed, and we only change the parameters for the VPPs (i.e.,
θ̃ and µ̃). The yellow lines represent the approximate intensity functions and we estimate
these lines with the samples from MCMC. The whole interval is split into many subintervals,
and the intensity for a subinterval is the number of events at that subinterval divided by
its volume. The blue lines are the approximate intensity functions estimated by using the
samples from VPPs. The approximate intensity functions for layer 1 are just q1,0(·) and we
can simply draw this function. For layer 2, we do not have a direct way to represent the
approximate intensity functions. Thus, we first generate samples for the VPPs at layer 1.
Then, conditioned on the samples for layer 1, we can get some intensity functions for layer
2. The approximate intensity functions for layer 2 are just the mean of all these intensity
functions depending on the samples drawn from the VPPs at layer 1. It is easy to see from
Figure 3 that the USAP fits more closely to the approximate intensity functions for MCMC
than UNSP.
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Figure 3: Comparison between UNSP and USAP

USAPs approximate better because (1) self-attention enables the adaptation of the pa-
rameters for the kernels independently for each interval, while the parameters for the kernels
of UNSPs are tied for the same pair of connected Poisson processes; (2) USAPs can take
account of the events happening both before time t and after time t when producing the
intensity function at time t, while UNSPs can only use the information of the events with
the times greater than t.
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3.2 Density

We focus on realizations of point processes that have finite cardinality in this paper, as it is
not realistic to have an infinite number of events in the observation. Each realization x is
a countable subset of a space S and S is chosen to be a subset of a Euclidean space with d
dimensions Rd. These realizations are called locally finite point configurations (Møller and
Waagepetersen, 2003), which is defined in the following as

Definition 3 (Locally Finite Point Configurations) Suppose S ⊆ Rd, then Nlf is de-
fined as

Nlf = {x ⊆ S : n(xB) <∞ for all bounded B ⊆ S},
where xB = x ∩B and n(x) denotes the cardinality of x. Elements of Nlf are called locally
finite point configurations.

Unlike random variables, which usually have probability density functions defined w.r.t. the
Lebesgue measure, we can only define the density for a finite point process w.r.t. a Poisson
process. (Following the standard approach (Møller and Waagepetersen, 2003), we choose the
reference Poisson process as the homogeneous Poisson process with the intensity function as
1 in this paper. The choice of the reference does not affect the correctness of our derivation.)
The density can be defined as follows by using the Radon-Nikodym theorem

Definition 4 (Density (Møller and Waagepetersen, 2003)) By the Radon-Nikodym the-
orem, there exists a function f : Nlf → [0,∞] such that

P (X1 ∈ F ) = E[1[X2 ∈ F ]f(X2)], F ⊆ Nlf .

We call f a density for X1 with respect to X2.

Complete Density of NSPs For NSPs equipped with virtual events, the complete den-
sity w.r.t. Poisson(S, 1) is

f(x,Z1:L = z1:L, Z̃1:L = z̃1:L) = f(zL)

L−1∏
`=0

f(z` | z`+1)f̃(z̃`+1 | z`), (4)

where

Z1:L = {Z1,Z2, · · · ,ZL},
z1:L = {z1, z2, · · · , zL},
Z̃1:L = {Z̃1, Z̃2, · · · , Z̃L},
z̃1:L = {z̃1, z̃2, · · · , z̃L},

f(zL) =

KL∏
k=1

f(zL,k),

f(z` | z`+1) =

K∏̀
k=1

f(z`,k | z`+1),

f̃(z̃` | z`−1) =

K∏̀
k=1

f̃(z̃`,k | z`−1) .

11
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The density of zL,k is
f(zL,k) = exp (T − µL,kT )µ

mL,k
L,k , (5)

where mL,k is the number of events drawn from ZL,k.
The density of z`,k for 0 ≤ ` ≤ L− 1 is

f(z`,k | z`+1) = exp

( ∑
t`,k,j≤T

log λ`,k(t`,k,j) + T −
∫ T

0
λ`,k(t) dt

)
. (6)

The density of z̃`,k for 1 ≤ ` ≤ L is

f̃(z̃`,k | z`−1) = exp

( ∑
t̃`,k,j≤T

log λ̃`,k(t̃`,k,j) + T −
∫ T

0
λ̃`,k(t) dt

)
. (7)

Remark 5 Although we only derive equations for point processes in one-dimensional space,
most of the results can be generalized to higher-dimensional spaces. We often omit T in
densities since T is a constant and it does not affect the derivation.

Marginal Density The marginal density f(x) w.r.t. Poisson(S = [0, T ]
∑L
`=1K` , 1) of the

observation is

f(x) = EZ1:L
[f(x | Z1:L)] = Ez1:L∼Poisson(S,1) [f(x, z1:L)] . (8)

The marginal density f(x) is well-defined as explained in the following proposition:

Proposition 6 The marginal density f(x) is finite.

The proof of Proposition 6 can be found in Appendix A.

Density of DNSPs as a Limiting Case of Density of DEFs As we discussed earlier
in Section 2, the joint density, the conditional density, and the marginal density of DNSPs
can also be derived as the limiting value of the joint density, the conditional density, and
the marginal density of DEFs when δL → 0.

Theorem 7 For a realization (x, z1:L), the joint density of DEFs p(x, z1:L) converges to
the joint density of DNSPs f(x, z1:L), the conditional density of DEFs p(x | z1:L) converges
to the conditional density of DNSPs f(x | z1:L), and the marginal density of DEFs p(x)
converges to the marginal density of DEFs f(x) when δL → 0.

The proof of Theorem 7 can be found in Appendix B.

3.3 Sampler Moves

There are 3 kinds of moves for our RJMCMC sampler, namely, re-sample, flip, and swap, as
illustrated in Figure 4 and detailed below. For each MCMC step, we first uniformly select a
hidden Poisson process. Then, with some pre-determined probabilities, we randomly select
a move from the 3 types of moves and propose to apply this move to our randomly picked

12
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(a) Re-sample (b) Flip: real to vir-
tual

(c) Flip: virtual to
real

(d) Swap

Figure 4: Examples for sampler moves. represents a real event. represents a virtual event.

hidden Poisson process. According to the Hastings ratio, we accept this move randomly. We
repeat the process until the sampler reaches a stable distribution of the hidden events.

Move 1: Re-sample. We re-sample the virtual events when this move is selected. It is
worth noting that the determinant of the Jacobian matrix, which is the correction for the
changes of variables, is 1, since the newly sampled virtual events only depend on the real
events. Thus, the probability of accepting this move is always 1.

Remark 8 During re-sampling, the intensity functions for VPPs depend on the real events
on the layer immediately below, instead of the virtual events as described in the generative
mechanism for VPPs. We do this because the generated virtual events depending on the real
events are closer to the true posterior distribution, and this will not invalidate our posterior
sampling or inference algorithms.

Move 2: Flip. We first uniformly select an event from all of the real and virtual events.
Then, we propose to flip the type of the selected event. If the selected event is a real event,
then we propose to change the type to virtual, and vice versa.

Move 3: Swap. For this move, we choose two events uniformly from the set of real events
and the set of virtual events respectively. For these two events, we propose to swap the types
such that the type of the real event is proposed to become virtual, and vice versa.

We denote the proposals for z`,k and z̃`,k as z′`,k and z̃′`,k respectively. Then the likelihood
ratio is

P =
f(z′`,k | z`+1)f̃(z̃′`,k | z`−1)

f(z`,k | z`+1)f̃(z̃`,k | z`−1)
·
f(z`−1 | z′`)f̃(z̃`+1 | z′`)
f(z`−1 | z`)f̃(z̃`+1 | z`)

,

where f(z`−1 | z`) =
∏K`−1

k=1 f(z`−1,k | z`), and f̃(z̃`+1 | z`) =
∏K`+1

k=1 f̃(z̃`+1,k | z`).
The ratio for the proposal probability

Q =
f(z̃`,k | z`−1)

f(z̃′`,k | z`−1)

is 1 for both Move 2 and Move 3, as the proposed change would not change the number
of all events and the probability of choosing an event remains the same. According to the

13
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detailed balance, the acceptance probability for Move 2 and Move 3 is

α = min(1,P · 1).

4. Inference

Instead of updating the parameters of Markov kernels as in the inference algorithm proposed
by Naesseth et al. (2020), our algorithm gradually updates the parameters of VPPs to
minimize the KL divergence. As we mentioned in Section 3.1, VPPs serve as our variational
approximation. We briefly outline our algorithm in Algorithm 1. Our inference algorithm
approximately maximizes the marginal likelihood of our model (line 13 in Algorithm 1),
w.r.t. the model parameters Θ, and minimizes the inclusive KL divergence (line 14 in
Algorithm 1) between the posterior distribution and variational distribution, w.r.t. the
variational parameters Θ̃, at the same time. The maximization of the marginal likelihood is
performed by stochastic gradient ascent, and the gradient is an unbiased estimation of the
gradient of the marginal likelihood (see Theorem 9). The minimization of the inclusive KL
divergence is also implemented by stochastic gradient ascent, with the gradient estimated by
using Theorem 10. The function for re-sample, flip, and swap can be found in Algorithm 2,
3, and 4 respectively. To make the notations more concise, we let Θ̂ =

[
Θ, Θ̃

]
.

Algorithm 1 Inference for NSPs
Input: data x and modelM.
Initialization: parameters for the model Θ0, parameters for the VPPs Θ̃0, number of
samples for each iteration S, initial sample for RPPs z(0,S) = {z(0,S)

1 , · · · , z(0,S)
L }, initial

sample for VPPs z̃(0,S) = {z̃(0,S)
1 , · · · , z̃(0,S)

L }, and iterations N .
Output: ΘN ≈ Θ∗, Θ̃N ≈ Θ̃∗

1: for n = 1 to N do
2: z(n,0) = z(n−1,S)

3: for s = 1 to S do
4: draw R ∼ Uniform([0, 1])
5: if R < p(re-sample) then
6: z(n,s), z̃(n,s) ← Re-sample(z(n,s−1), z̃(n,s−1), Θ̃n−1)
7: else if R < p(re-sample) + p(flip) then
8: z(n,s), z̃(n,s) ← Flip(z(n,s−1), z̃(n,s−1), Θn−1, Θ̃n−1)
9: else

10: z(n,s), z̃(n,s) ← Swap(z(n,s−1), z̃(n,s−1), Θn−1, Θ̃n−1)
11: end if
12: end for
13: Θn ← Θn−1 + ηn

1
S
∑S

s=1∇Θ log f(x, z(n,s); Θn−1)

14: Θ̃n ← Θ̃n−1 + η̃n
1
S
∑S

s=1∇Θ̃ log f̃(z(n,s); Θ̃n−1)
15: end for

14
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Algorithm 2 Re-sample
Input: current sample z and z̃, parameters Θ̃.
Output: updated sample z′ and z̃′.
1: function Re-sample(z, z̃, Θ̃)
2: draw (`, k) ∼ Uniform

(
{{(w, s)}Lw=1}

Kw
s=1

)
3: draw ξ̃ ∼ λ̃`,k(·) . The parameters for λ̃`,k are determined by Θ̃

4:


z̃
′
`,k = ξ̃

z̃
′
`′,k′ = z̃`′,k′ for (`′, k′) 6= (`, k)

z
′
`′′,k′′ = z`′′,k′′ for all (`′′, k′′)

5: return z′, z̃′

6: end function

Algorithm 3 Flip
Input: current sample z and z̃, parameters Θ and Θ̃.
Output: updated sample z′ and z̃′.
1: function Flip(z, z̃,Θ, Θ̃)
2: draw (`, k) ∼ Uniform

(
{{(w, s)}Lw=1}

Kw
s=1

)
3: draw ξ ∼ Uniform({z`,k = {t`,k,i}

m`,k
i=1 , z̃`,k = {t̃`,k,i}

m̃`,k
i=1 })

4: Calculate the acceptance probability α
5: draw R′ ∼ Uniform([0, 1])
6: if R′ < α then
7: if ξ = t`,k,j then

8:

{
z′`,k = {t`,k,i}

m`,k
i=1 \t`,k,j

z̃′`,k = {t̃`,k,i}
m̃`,k
i=1 ∪ t`,k,j

9: else if ξ = t̃`,k,j then

10:

{
z′`,k = {t`,k,i}

m`,k
i=1 ∪ t̃`,k,j

z̃′`,k = {t̃`,k,i}
m̃`,k
i=1 \t̃`,k,j

11: end if
12: else

13:

{
z′`,k = z`,k

z̃′`,k = z̃`,k
14: end if

15:

{
z′`′,k′ = z`′,k′ for (l′, k′) 6= (l, k)

z̃′`′,k′ = z̃`′,k′ for (l′, k′) 6= (l, k)

16: return z′, z̃′

17: end function
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Algorithm 4 Swap
Input: current sample z and z̃, parameters Θ and Θ̃.
Output: updated sample z′ and z̃′.
1: function Flip(z, z̃,Θ, Θ̃)
2: draw (`, k) ∼ Uniform

(
{{(w, s)}Lw=1}

Kw
s=1

)
3: draw ξ ∼ Uniform({z`,k = {t`,k,i}

m`,k
i=1 )

4: draw ξ̃ ∼ Uniform({z̃`,k = {t̃`,k,i}
m̃`,k
i=1 })

5: Calculate the acceptance probability α
6: draw R′ ∼ Uniform([0, 1])
7: if R′ < α then

8:

{
z′`,k = {t`,k,i}

m`,k
i=1 \ξ ∪ ξ̃

z̃′`,k = {t̃`,k,i}
m̃`,k
i=1 \ξ̃ ∪ ξ

9: else

10:

{
z′`,k = z`,k

z̃′`,k = z̃`,k
11: end if

12:

{
z′`′,k′ = z`′,k′ for (l′, k′) 6= (l, k)

z̃′`′,k′ = z̃`′,k′ for (l′, k′) 6= (l, k)

13: return z′, z̃′

14: end function

4.1 Likelihood-based Inference for the Model Parameters

Similar to Ou and Song (2020); Naesseth et al. (2020), we notice that the numerical approx-
imation 1

S
∑S

s=1∇Θ log f(x, z(n,s); Θn−1) at line 13 in Algorithm 1 is an unbiased estimate
of the gradient of the marginal likelihood, as stated in the following theorem:

Theorem 9 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0, then

Ez∼f(Z|x)[∇Θ log f(x, z)] = ∇Θ log f(x).

We leave the proof of Theorem 9 to Section C.1. Theorem 9 implies that the update of the
parameters based on stochastic gradient ascent at line 13 in Algorithm 1 is equivalent to
approximately maximizing the marginal likelihood.

4.2 Variational Inference for the Variational Parameters

Notice that the inclusive KL divergence between the true posterior Z | x and the approximate
posterior (VPPs) Z̃ can be written as

KL(f(Z | x; Θ) ‖ f̃(Z; Θ̃)) = Ez∼f(Z|x)

[
log f(z | x; Θ)− log f̃(z; Θ̃)

]
, (9)

where f̃(z; Θ̃) is the density of the VPPs, and

f̃(z; Θ̃) =
L∏
`=1

f̃(z` | z`−1; Θ̃),

16



Virtual-Event-Based Posterior Sampling and Inference for NSPs

where z0 is equal to x.
We also find that the gradient of the inclusive KL divergence in Equation 9 can be

represented as an expectation of the gradient of the densities of the samples from posterior
distributions, formally described in the following theorem:

Theorem 10 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0, then

Ez∼f(Z|x;Θ)

[
∇Θ̃ log f̃(z; Θ̃)

]
= ∇Θ̃Ez∼f(Z|x;Θ)

[
log f̃(z; Θ̃)

]
.

We leave the proof of Theorem 10 to Section C.2.
As described in this section, Algorithm 1 performs maximum likelihood estimation for the

model parameters and variational inference for the variational parameters simultaneously.
Moreover, as we will show in section 6, the convergence of the optimization for the marginal
likelihood and the inclusive KL divergence depends on the convergence of RJMCMC. Thus,
we first prove the convergence of RJMCMC in the following section.

5. Convergence of RJMCMC

We analyze the aperiodicity, Ψ-irreducibility, and Harris recurrence for RJMCMC. A suffi-
cient condition for the convergence is given in this section and we demonstrate how to verify
the convergence by applying the analysis to NSPs, Markov jump processes (MJPs) (Rao
and Teh, 2013), piecewise-constant conditional intensity models (PCIMs) (Qin and Shelton,
2015), and Hawkes processes (Shelton et al., 2018).

The analysis of previous work (Rao and Teh, 2013; Qin and Shelton, 2015; Shelton et al.,
2018; Hong and Shelton, 2022) implies that the posterior distribution exists and there is a
positive probability density moving from any point configuration to any other. However,
these results cannot guarantee the algorithm can move from any point configuration to any
other set with a probability measure greater than 0 and it may get stuck within a null
set with a measure of 0. Harris recurrence provides additional conditions such that the
algorithm will not always stay within a null set.

5.1 Virtual-Event-Based RJMCMC

We first describe a virtual-event-based RJMCMC. We denote the trans-dimensional Markov
chain as C = (C0, C1, C2, · · · ) with the state space as Ω. The real events represent the events
in our desired posterior distribution, and the virtual events are auxiliary events that only
serve as the candidates for the real events. Given that the chain is in state Cn, it proposes
to move to a state C′n+1 with proposal probability g(Cn, C′n+1). We accept this move with
probability α(Cn, C′n+1) and reject this move with probability 1−α(Cn, C′n+1). The proposal
of Markov chain C can be categorized into two types: (1) re-sampling virtual events from
some Poisson processes, which involves the dimension changing; (2) changing the states of
the events (virtualness, marks or the parent-child relationships in Hawkes processes), which
does not involve the changing of the number of dimensions.

Remark 11 According to the design of the virtual-event-based RJMCMC, the real events
can only appear where the virtual events occur.
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Suppose we have an unnormalized target density function for real and virtual point
processes fr+v : (ΩR

r ,Ω
V
v ) → (0,∞) with

∫
(ΩRr ,Ω

V
v ) fr+v < ∞, where r, v ∈ N and (ΩR

r ,Ω
V
v )

is of dimension r + v. We combine different spaces with different dimensions into a single
state space

Ω = ∪∞r=1 ∪∞v=1 {(({r} × ΩR
r ), ({v} × ΩV

v ))},

where r represents the number of points for a realization of RPPs, ΩR
r represents the space

of dimension r where RPPs reside, xr is a realization of RPPs, v represents the number of
points for a realization of virtual point processes, ΩV

v represents the space of dimension v
where virtual point processes reside, and xv is a realization of virtual point processes.

The Markov chain C is reversible if the detailed balance is satisfied, which also implies
that the invariant distribution Π exists. Following Møller and Waagepetersen (2003), we let

Qm(F ) = EPm(C0, F ) = P (Cm ∈ F ), F ⊆ Ω,

denote the marginal distribution of Cm, where Pm(C0, F ) = P (Cm ∈ F | C0) is the m-
step transition probability. Then, we use the total variation norm to measure the distance
between Qm and the invariant distribution Π, and the total variation norm is defined as

Definition 12 (total variation norm (Møller and Waagepetersen, 2003)) The total
variation norm for any two probability distributions µ and ν defined on Ω is

‖µ− ν‖TV = sup
F⊆Ω
|µ(F )− ν(F )|.

We first define drift combination in Definition 13. Then, we use drift combination to help
describe the main result of the convergence analysis in this section in Theorem 14.

Definition 13 (drift combination) A drift combination is the combination of moves that
change a real event to a virtual event followed by a re-sampling of virtual events.

Theorem 14 For a Ψ-irreducile and aperiodic Markov chain described in virtual-event-
based RJMCMC, if the re-sampling of virtual events and the acceptance of the drift combi-
nation for each real event happen eventually, then

lim
m→∞

‖Qm −Π‖TV = 0

holds for this Markov chain, where Π is the invariant distribution.

We provide a sketch of proof for Theorem 14 in Section 5.2 and more details can be found
in Appendix D.

Now it becomes much easier to see whether a Markov chain can converge, since we only
need to check aperiodicity, Ψ-irreducibility, and whether the re-sampling of virtual events
and a drift combination for each real event will be accepted eventually with probability 1.
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5.2 Markov Chains and Harris Recurrence

Definition 15 (Ψ-irreducible (Møller and Waagepetersen, 2003)) For any x ∈ Ω
and F ⊆ Ω, if there exists a nonzero measure Ψ on Ω such that Ψ(F ) > 0, Pm(x, F ) > 0
for some m ∈ N, then this Markov chain is Ψ-irreducible.

Definition 16 (aperiodicity (Møller and Waagepetersen, 2003)) For a Ψ-irreducible
chain, if Ω can be partitioned into d disjoint subsets D0, · · · , Dd−1 with Ψ(Di) > 0, such
that P (x,Di+1) = 1 for all x ∈ Di (1 ≤ i ≤ D − 1) and P (x,D0) = 1 for all x ∈ Dd−1. If
there exists a partition such that d > 1, the chain is periodic, else it is aperiodic.

If a Markov chain is Ψ-irreducible and aperiodic, then this Markov chain converges to the
invariant distribution Π from almost every starting point. However, this kind of convergence
is not good enough for our RJMCMC algorithm, since there may exist a null set of point
configurations where the Markov chain cannot converge with any point configuration as a
starting point. To exclude the null set, we consider Harris recurrence:

Definition 17 (Harris recurrence (Møller and Waagepetersen, 2003))
A Ψ-irreducible Markov chain is Harris recurrent if for some probability measure Ψ, and
that for all x ∈ Ω and all F ⊆ Ω with Ψ(F ) > 0,

P (Ym ∈ F for some m | Y0 = x) = 1.

With Harris recurrence, we can use the following proposition to prove our RJMCMC algo-
rithm converges to Π without any null sets involved:

Proposition 18 (Møller and Waagepetersen (2003, Proposition 7.7 (iii)))
The Markov chain C is Harris recurrent and aperiodic if and only if

lim
m→∞

‖Qm −Π‖TV = 0

regardless of the initial distribution.

From Proposition 18, we know that the only remaining tasks for the proof of convergence
are the verifications of aperiodicity and Harris recurrence.

The verification of aperiodicity is pretty easy and will be discussed in Section 5.3. The
verification of Harris recurrence, however, is not straightforward and we would like to use the
following theorem to find a criterion that can be used to check Harris recurrence practically:

Theorem 19 (Roberts and Rosenthal (2006, Theorem 6(vi))) For a Markov chain
which is Ψ-irreducible with invariant probability distribution Π and period d ≥ 1, the chain
is Harris recurrent if and only if for all x ∈ Ω and all F ⊆ Ω with Π(F ) = 0,

P (∀n Cn ∈ F | C0 = x) = 0.

Theorem 19 provides us a weak condition under which a Ψ-irreducible Markov chain with
invariant distribution is Harris recurrent. Following this condition, we only need to show
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that there exists x ∈ Ω, F ⊆ Ω with Π(F ) = 0, and a number n0 ∈ N such that P ( Cn0 ∈
F | C0 = x) = 0, then it follows immediately that

P (∀n Cn ∈ F | C0 = x) ≤ P (Cn0 ∈ F | C0 = x) = 0.

We use Π(r, xr, v, xv) to denote the invariant probability distribution for the posterior point
processes, and it can be set as

Π(r,Ar, v, Av) = p(r, v)

∫
(Ar,Av) fr+v(x)Ur+v(dx)∫
(Ωr,Ωv) fr+v(x)Ur+v(dx)

, (10)

where p : (N,N) → (0, 1) with
∑

r

∑
v p(r, v) = 1, Ur+v(·) is the Lebesgue measure on

Rdr+dv . Π(·) could be 0 for impossible point configurations. For example, if the intensity
for an interval is 0, then there would never be any event in this interval.

To find under which condition the Harris recurrence can be established, we introduce
drift here:

Definition 20 (drift) A drift for an event is the behavior in which not only the state of
the event is changed, but the location is also changed, including completely removed from the
realization.

Proposition 21 Let Mi(x, ·) be the i-th transition kernel that proposes to move a point
configuration x ∈ Ω to another point configuration x′ ∈ Ω, and (i1, i2, · · · , in) be any se-
quence of transition kernels. Assume that each of the point of x accepts at least one drift in
(i1, i2, · · · , in), then

(Mi1Mi2 · · ·Min)(x,A) = 0

for all x ∈ Ω and A ⊆ Ω with the Lebesgue measure of A is 0.

The following corollary follows immediately from Proposition 21:

Corollary 22 If the Lebesgue measure of A is 0, then

P [Xn ∈ A | X0 = x0] ≤ P [Dn],

where Xn ∈ Ω, and Dn is the event that, by time n, the chain has not yet accepted at least
one drift for each event of the original starting realization.

Combining Corollary 22 and Theorem 19, the following proposition follows immediately:

Proposition 23 If a Ψ-irreducible Markov chain eventually accepts at least one drift for
each real and virtual event, then this Markov chain is Harris recurrent.

Proposition 23 gives us a condition under which Harris recurrence can hold. If the re-
sampling and the drift combination described in Theorem 14 happen eventually, then the
probability of accepting a drift for each real and virtual event eventually would be 1, which
leads to Harris recurrence and Theorem 14 follows easily from it.
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5.3 Verification of Aperiodicity

The verification of aperiodicity is simple, as we only need to check whether a Markov chain
can leave and go back to the same state, i.e., P (x, {x}) > 0 for some x ∈ Ω.

5.4 Verification of Ψ-irreducibility

For the verification of Ψ-irreducibility, we need to find a probability measure Ψ which meets
the requirement for Ψ-irreducibility. Here we give one way of finding such probability mea-
sure Ψ, and we need to introduce a new concept:

Definition 24 (continuous set of point configurations) Let y be the evidence, x be a
point configuration sampled from MCMC for the missing information, l(x, y) be the joint
likelihood of the evidence y and the sample x, URr ⊆ ΩR

r , and UVv ⊆ ΩV
v . A continuous set

of point configurations is defined as

U = {(({r} × URr ), ({v} × UVv )) : l(x = (xr ∈ Ur, xv ∈ Uv), y) > 0, r ≥ 0, v ≥ 0},

if URr is either an empty set or has the Lebesgue measure greater than 0, and the same for
UVv . Notice that UV0 = UR0 = ∅.

A Ψ-irreducible Markov chain needs to have a positive probability of moving any point
configuration x to a set with a positive measure. From the definition of the intensity function
and density, it is easy to see that the probability of generating a single point configuration
is 0. This implies that we need a set of point configurations such that the probability of
generating this set of point configurations is greater than 0, which leads to the introduction
of the continuous set of point configurations and the following theorem follows immediately.

Theorem 25 If a Markov chain is Ψ-irreducible, then there exists a continuous set of point
configurations U for this Markov chain.

However, the existence of a continuous set of point configurations cannot guarantee Ψ-
irreducibility, because there is an additional requirement implied by the definition of Ψ-
irreducibility that the probabilities of transitions with a finite number of steps from any
state x to the continuous set of point configurations U should be greater than 0.

Thus, we need to check whether a continuous set of point configurations exists and
whether any state can be moved to the continuous set of point configurations for each
specific algorithm. If both of the above conditions are satisfied, we can just let

Ψ(F ) = 1[U ∈ F ], F ⊆ Ω,

where 1[·] is the indicator function.

5.5 Examples of Convergence Analysis

Based on the above analysis of the convergence, we would like to demonstrate how to verify
the convergence of virtual-event-based MCMC algorithms with some examples, including
the convergence for NSPs, MJPs, PCIMs, and Hawkes processes.
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5.5.1 Neyman-Scott Processes

Proposition 26 The Markov chain C generated by Algorithm 1 is Ψ-irreducible and aperi-
odic. The continuous set of point configurations can be chosen as

U =

{(({
r =

∑
`

K`

}
× URr

)
,
(
{0} × UV0

))}
,

where URr is the set of points such that z`,k = {t`,k,0 : 0 < t`,k,0 < mini,j{t`−1,i,j}}.

Remark 27 We have the restriction in Proposition 26 that each hidden point process has
one real event because the intensities for RPPs are solely dependent on the real events. This
restriction can be removed if we add a constant base rate to the intensity in Equation 1, like
the intensity functions for VPPs. In such a case, U can be set as

{({0} × UR0 ), ({0} × UV0 )}.

Proposition 28 The re-sampling of virtual events and the drift combination for each real
event happen eventually for the Markov chain generated by Algorithm 1.

The proofs can be found in Appendix D.1, and the convergence then follows from Proposi-
tion 26, Proposition 28, and Theorem 14.

5.5.2 Markov Jump Processes (MJPs) and Extensions

Rao and Teh (2013) propose an MCMC algorithm for MJPs and their extensions. An MJP
is a stochastic process with random paths that depict jumps from one state to another
state. An MJP path can be specified by a 3-element tuple (s0, S, T ) where s0 is the initial
state, T = (t1, t2, · · · , tn) are the ordered times where the state changes happen, and S =
(s1, s2, · · · , sn) are the corresponding states after the changing of the states.

Remark 29 In the semantics of virtual-event-based RJMCMC, each point x for MJP is
represented as x = (t, s), where t represents the time and s represents the state. We exclude
the initial state (0, s0) from our RJMCMC state space as the initial time is always set as 0
and only the initial state s0 can be changed.

Rao and Teh (2013) propose a uniformization-based Gibbs sampling algorithm for MJP-
based models. The Markov chain first re-samples a set of virtual jumps as auxiliary variables,
and then samples a new MJP path conditional on the times of the union of the newly sampled
virtual jumps and the jumps from the current MJP path. The algorithm repeats the above
two sampling steps alternately until convergence. The virtual jumps are jumps that do not
change the state of the MJP, which are equivalent to virtual events described in this paper.
The normal jumps, corresponding to the real events, leave the current states and move to
other states.

When implementing the uniformization-based Gibbs sampling algorithm, Rao and Teh
(2013) sample the times of the virtual jumps JT from an inhomogeneous Poisson process
with intensity R(t) = λΩ +AS(t), where AS(t) represents the transition matrix when MJP is
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at state S(t) at time t and λΩ ≥ maxs |As| is a positive constant. The states of the virtual
jumps JS are determined by JT and the current MJP trajectory (s0, S, T ). The union of
JT and the times of the current MJP T is equivalent to the samples drawn from a Poisson
process with rate λΩ, and we use W = (w1, · · · , w|W |) to denote the times of this union.
Given W , we can sample an MJP path by assigning each wi as a virtual jump or a normal
jump by performing the forward-filtering backward-sampling algorithm with 1 + |W | steps.
The likelihood of state s at step i is given as

Li(s) = p(O[wi,wi+1) | S(t) = s for t ∈ [wi, wi+1)]),

where O[wi,wi+1) is the observations in the interval [wi, wi+1).

Proposition 30 If there exists a continuous set of point configurations U , then the Markov
chain for the MCMC algorithm proposed in Rao and Teh (2013) is convergent.

From Proposition 30, we know the convergence of MCMC for an MJP depends on the
likelihood Li(s), as the joint likelihood of the MJP states and the observations depends on
Li(s) and the set U requires the joint likelihood to be positive. More details can be found
in Appendix D.2. Here is an example:

Example 5 (Markov-Modulated Poisson Processes) The likelihood at step i is given
by

Li(s) = (λs)
|Oi| exp(−λs(wi+1 − wi)),

where λs is a nonnegative constant associated with the state s, |Oi| is the number of events
of the observation in the interval [wi, wi+1). If there exists a state s∗ such that λs∗ > 0, then
the probability of staying at state s∗ for the MJP is greater than 0 and U can be

{(({0} × UR0 ), ({0} × UV0 ))}.

Then, the convergence is implied by Proposition 30.

5.5.3 Piecewise-Constant Conditional Intensity Models (PCIMs)

A PCIM is a model that uses decision trees to determine the piecewise-constant conditional
intensity functions. Different tests are performed at each internal node to propagate the
information to the leaves. Different leaves have different constant intensity functions and
form the final piecewise-constant conditional intensity functions. Qin and Shelton (2015)
propose an MCMC for PCIM to infer the missing events in an unobserved time period.
A PCIM assumes the events can be represented as a sequence x = {(ti, li)}ni=1, where
0 < t1 < · · · < tn and li is from a finite label set L. The data likelihood for x is

p(x) =
∏
l∈L

∏
s∈Σl

λ
cls(x)
ls e−λlsdls(x),

where
∑

l is the set of leaves corresponding to label l, cls(x) is the number of times label
l occurs in x for leaf s, dls(x) is the total duration when the decision tree maps the event
sequence x to leaf s for label l.
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Similar to Rao and Teh (2013), Qin and Shelton (2015) first re-samples a set of auxiliary
variables (virtual events), and then samples a new event sequence by re-specifying the vir-
tualness for each event from the union of the newly sampled virtual events and the current
event sequence. The convergence analysis is given as Proposition 31, which is similar to
Proposition 30 and we omit the proof.

Proposition 31 If there exists a continuous set of point configurations U , then the Markov
chain for the MCMC algorithm proposed in Qin and Shelton (2015) is convergent.

5.5.4 Hawkes Processes

Hawkes processes are a class of point processes whose intensity functions for label l are
written as

λl = µl +
∑
ti:ti<t

φli,l(t− ti),

where µl > 0 is the base rate for events with label l and φli,l(·) is a kernel function that indi-
cates the sudden increase of the intensity function triggered by the events from the history.
Possible functional forms for φli,l(·) include the exponential function (φ(t) = e−βt with β >
0) and the power-law function (φ(t) = (t+ γ)−(1+β) with β > 0 and γ > 0).

Shelton et al. (2018) propose an MCMC algorithm for Hawkes processes with missing
data. 3 moves are designed for the MCMC algorithm: virtual children, virtualness, and
parent. The virtual children move proposes to replace the current set of virtual children
with a new set of virtual children for a given index; the virtualness move proposes to switch
the type of event between real and virtual for a given event; the parent move proposes
to re-sample the parent for a chosen event. Given the observed data, we uniformly select
a move at random at each MCMC step until convergence. We choose an empty set for
the continuous set of point configurations for Hawkes processes because, in contrast to the
intensities we design for the NSPs, the Hawkes processes allow the extraneous intensity to be
0, as explained in Remark 27. Thus, we have the following propositions and the convergence
follows directly. More details of the proofs can be found in Appendix D.3.

Proposition 32 The Markov chain generated by the MCMC algorithm proposed in Shelton
et al. (2018) is Ψ-irreducible and aperiodic. The continuous set of point configurations can
be

U = {(({0} × UR0 ), ({0} × UV0 ))}.

Proposition 33 The re-sampling of virtual events and the drift combination for each real
event happen eventually for the Markov chain in Shelton et al. (2018).

6. Convergence of Optimization

The general algorithm for the optimization in Algorithm1 is of the form

Θn+1 = Θn + γn+1H(Θn, Xn+1), (11)

and
Θ̃n+1 = Θ̃n + γn+1H̃(Θ̃n, Xn+1), (12)
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where Θn and Θ̃n are in Rd and Xn represents the point configurations in the whole space,
H(Θn, Xn+1) and H̃(Θ̃n, Xn+1) are approximations of

Ez∼f(Z|x;Θn)[∇Θn log f(x, z; Θn)]

and
Ez∼f(Z|x;Θn)[∇Θ̃n

log f̃(z; x, Θ̃n)]

respectively. We get S samples from the MCMC with target distribution as f(z | x; Θn).
The samples are denoted as z1, z2, · · · , zS . Then

H(Θn, Xn+1) =
1

S

S∑
i=1

∇Θn log f(x, zi; Θn)

and

H̃(Θ̃n, Xn+1) =
1

S

S∑
i=1

∇Θ̃n
log f̃(zi; x, Θ̃n).

The proof of convergence of this optimization that follows is largely modified from Ben-
veniste et al. (2012, Chapter 5).

Assumption 34 Given the history Fn = {Xi,Θi, Θ̃i}ni=1 until the n-th step, we assume
the approximations approach the true posterior distribution, i.e.,

E[H(Θn, Xn+1) | Fn] = Ez∼f(Z|x;Θn)[∇Θn log f(x, z; Θn)] (13)

E[H̃(Θ̃n, Xn+1) | Fn] = Ez∼f(Z|x;Θn)[∇Θ̃n
log f̃(z; x, Θ̃n)] (14)

Remark 35 Theoretically, when the number of samples S goes to infinity, the approxima-
tion approaches the true posterior, i.e.,

lim
S→∞

H(Θn, Xn+1) = Ez∼f(Z|x;Θn)[∇Θn log f(x, z; Θn)]

and
lim
S→∞

H̃(Θ̃n, Xn+1) = Ez∼f(Z|x,Θn)[∇Θ̃n
log f̃(z; x, Θ̃n)].

In practice, we choose the number of samples large enough to make our algorithm stable.

Let Θ̂∗ =
[
Θ∗, Θ̃∗

]
and Ĥ(Θ̂, X) =

[
H(Θ, X), H̃(Θ̃, X)

]
, then we have the following

proposition and theorem.

Proposition 36
∀r > 0, sup

|Θ̂|≤r
Ez∼f(Z|x;Θ)

[
|Ĥ(Θ̂, X)|2

]
<∞, (15)

∀r > 0, sup
|Θ̂|≤r

h(Θ̂) = Ez∼f(Z|x;Θ)

[
|Ĥ(Θ̂, X)|

]
<∞, (16)

where | · | represents the length of a vector.
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Proof When the sample size S goes to infinity, H converges to the expectation, and we can
choose S such that for any ε > 0,

H(Θn, Xn+1) = Ez∼f(Z|x;Θn)[∇Θn log f(x, z; Θn)] + ε

and
H̃(Θ̃n, Xn+1) = Ez∼f(Z|x,Θn)[∇Θ̃n

log f̃(z; x, Θ̃n)] + ε.

Thus, we only need to verify the following equations are true.

∀r > 0, sup
|Θ̂|≤r

∣∣Ez∼f(Z|x;Θn)[∇Θn log f(x, z; Θn)]
∣∣ <∞ (17)

∀r > 0, sup
|Θ̂|≤r

∣∣∣Ez∼f(Z|x;Θn)[∇Θ̃n
log f̃(z; x, Θ̃n)]

∣∣∣ <∞ (18)

∀r > 0, sup
|Θ̂|≤r

∣∣Ez∼f(Z|x;Θn)[∇Θn log f(x, z; Θn)]
∣∣2 <∞ (19)

∀r > 0, sup
|Θ̂|≤r

∣∣∣Ez∼f(Z|x;Θn)[∇Θ̃n
log f̃(z; x, Θ̃n)]

∣∣∣2 <∞ (20)

Equations 17 and 19 have been verified in Theorem 9. Equations 18 and 20 have been
verified in Theorem 10.

Assumption 37 Let h(Θ̂) = E[Ĥ(Θ̂, X)], then

∃Θ̂∗ s.t. sup
ε≤|Θ̂−Θ̂∗|≤ 1

ε

(Θ̂− Θ̂∗)
Th(Θ̂) < 0 for all 1 > ε > 0.

Assumption 37 is a stability condition and it describes the phenomenon that Θ̂ would move
towards Θ̂∗.

Assumption 38
∑
ηn =∞,

∑
η2
n <∞.

Following the construction of H̃ in Benveniste et al. (2012, Sec 5.3.4), we let φ be a function
mapping from R+ into [0, 1]. φ is equal to 1 on [0, R] and 0 on (R,∞) for some R, and set

˜̂
H
(
Θ̂, X

)
= φ

(∣∣∣Θ̂− Θ̂∗

∣∣∣) Ĥ (Θ̂, X
)
−
(

1− φ
(∣∣∣Θ̂− Θ̂∗

∣∣∣))(Θ̂− Θ̂∗

)
Theorem 39 If the Assumptions 34, 37, and 38 hold, then Θ̂n converges a.s. to Θ̂∗ on the
set {supn |Θ̂n| <∞}.

Proof Notice that

˜̂
H
(
Θ̂, X

)
=

Ĥ
(
Θ̂, X

)
if
∣∣∣Θ̂− Θ̂∗

∣∣∣ ∈ [0, R],

−
(
Θ̂− Θ̂∗

)
if
∣∣∣Θ̂− Θ̂∗

∣∣∣ ∈ (R,∞),
(21)
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then it follows easily (by Proposition 36) that

σ̃2(Θ̂) = E
[
| ˜̂H(Θ̂, X)|2

]
≤ C(1 + |Θ̂|2)

for some constant C.

h̃(Θ̂) = E
[ ˜̂
H(Θ̂, X)

]
exists, and

sup
ε≤|Θ̂−Θ̂∗|≤ 1

ε

(Θ̂− Θ̂∗)
T h̃(Θ̂) < 0 for all 1 > ε > 0.

Following Benveniste et al. (2012, Section 5.3.4), ˜̂Θn converges a.s. to Θ̂∗ for the algo-
rithm ˜̂

Θn+1 =
˜̂
Θn + ηn+1

˜̂
H
(
Θ̂n, Xn+1

)
.

But for all n, ˜̂Θn = Θ̂n on {τ = +∞}, where τ = inf{n ≥ 0 : |Θ̂n−Θ̂∗| > R} for arbitrarily
large R, which proves the result stated above.

7. Prediction

As described in Hong and Shelton (2022, 2023), the prediction is performed by utilizing the
samples from the approximate posterior distribution (MCMC or virtual point processes) of
the hidden points. The procedure of the prediction is briefly described in Algorithm 5. We
adopt the Weibull kernel as in Example 2. The implementation for the inference is a little
different than Algorithm 1. We do not optimize the constant intensity function on the top
layer by stochastic gradient ascent. Instead, we directly estimate the constant intensity by
Monte Carlo expectation maximization (MCEM). In this way, the constant intensity for the
top layer is just the expectation of the number of points divided by the length of the interval
where NSPs reside. In practice, we found it efficient and stable. We should also notice that
we assume different sequences have different constant intensity functions for the top layer.
Thus, during the training process, we only learn and fix the parameters for the kernels of
the model parameters. For the prediction, we update the constant intensity function for the
top layer for each test sequence by MCEM as well.

In terms of the sampling for the next future event, we can extend the intensity function
to the future and then sample the next future event. The events for all layers at the interval
[0, tn] are fixed from the posterior sample. The events at the interval (tn,∞) for the top
layer (layer L) are sampled from the constant intensity function µk for each k. Then, the
events at the interval (tn,∞) for layer L − 1 are sampled based on Equation 1 determined
by the events from the posterior sampling (at the interval [0, tn]) and the forward sampling
(at the interval (tn,∞)) at layer L. We can keep this sampling process from top to bottom
until we reach the evidence. The event at the bottom layer with the smallest time at the
interval (tn,∞) is the next future event.
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Algorithm 5 Prediction with MCMC or approximation
Input: observed data x = {e1, e2, · · · , en}, where ei = (ti, ki) with ti representing the time
and ki representing the type, sampler G(x,ΘG), and modelM.
Initialization: the model parameters Θ (the kernel parameters θ are from the training
process, and the constant intensity functions {µk}KLk=1 are set as the mean of the constant
intensity functions for all training sequences), the variational parameters Θ̃, the number of
iterations for MCEM C (C can be set as 1 in practice), and the sample size S.
Output: time prediction t̂n+1, type prediction k̂n+1.

. If we are predicting using MCMC,
G(x,ΘG) = f(z | x; Θ), where ΘG = Θ.

. If we are predicting using approximation,
G(x,ΘG) = f̃(z; x, Θ̃), where ΘG = Θ̃.

1: for c = 1 to C do
2: for s = 1 to S do
3: sample zs ∼ G(x,ΘG)
4: end for
5: for k = 1 to KL do
6: µk = 1

S
∑S

s=1m
s
L,k/T . ms

L,k is the number of points within s-th sample for ZL,k
7: end for
8: end for
9: for s = 1 to S do

10: sample zs ∼ G(x,ΘG)

11: sample the future time t̂sn+1 based on zs

12: sample the future type k̂sn+1 based on zs

13: end for

14: t̂n+1 = 1
S

S∑
s=1

t̂sn+1

15: k̂n+1 = arg max
k∈{1,...,K0}

S∑
s=1

1k(k̂
s
n+1)

Remark 40 Notice that we do not need to sample until ∞ in practice. The sampling for
the intensity function

∑K`+1

i=1

∑
t`+1,i,j

φθ(`+1,i)→(`,k)
(t − t`+1,i,j) as a whole is equivalent to

sampling independently for each φθ(`+1,i)→(`,k)
(t− t`+1,i,j) and combining the samples at the

end. Thus, we can first sample an event at the interval (tn,∞) for the evidence with the
intensity function determined by a part of the events (the events from the posterior sampling
and some events from the forward sampling) and set the time of this sampled event as the
largest possible time for the next future event. Suppose the largest possible time is tlargest,
then we only need to sample the events at the interval (tn, tlargest) for all layers.
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Figure 5: 1-hidden (n = 1) and 2-hidden (n = 2)
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Figure 6: Results on the synthetic dataset

8. Experiments

The metrics we use to compare the performance of different models and algorithms are root
mean squared error (RMSE) for the time prediction and accuracy for the type prediction.
Experiments are performed for both synthetic and real-world datasets. We split each dataset
into training, validation, and test sets. The training sets are used to train the model pa-
rameters and the variational parameters. The validation sets are used to stop early. The
test sets are used to calculate the metrics for performance comparison. Multiple samples
are needed to calculate the prediction results in Algorithm 5. More samples typically lead
to better results, though consuming more computational time.

Our experiments demonstrate that when the time budget is limited, UNSPs and USAPs
perform better than MCMC in terms of time prediction and type prediction. NSPs-based
methods are better than non-NSPs-based methods for all the real-world datasets (retweet,
earthquake, and homicide) appearing in Section 8.2. We have also constructed NSPs with
various numbers of layers and numbers of Poisson processes per layer to compare the pre-
diction performance for the real-world datasets. More hidden layers and hidden Poisson
processes can be beneficial in some instances. However, it is not guaranteed that more
hidden Poisson processes lead to better predictions as shown in Section 8.2. Theoretically,
NSPs with more hidden Poisson processes are more expressive than NSPs with less hidden
Poisson processes, which should help improve the performance. However, many factors can
prevent the models from reaching their full potential, such as the initialization of the param-
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Figure 7: NSPs with more hidden layers and more hidden processes: (a) NSPs with 3 hidden
layers with K2 = 3; (b) NSPs with 3 hidden layers with K2 = 5; (c) NSPs with 4 hidden
layers with K2 = K3 = 3; (d) NSPs with 4 hidden layers with K2 = K3 = 5.

eters, local optima, and the architectures of the models. Regarding how to choose suitable
architectures for specific datasets, more research is still needed.

8.1 Synthetic Data Experiments

The two synthetic datasets are generated by 1-hidden and 2-hidden models of NSPs (shown
in Figure 5) separately. The NSPs used to generate synthetic data have 2 event types.
During synthetic data generation, model parameters are fixed and the data is produced
from top to bottom like what we do in Figure 2(a).

Figure 6 summarizes the prediction results for the synthetic datasets. Different algo-
rithms are represented by different line styles with different colors, where NSP-MCMC
represents the predictions made by using MCMC for NSPs, NSP-UNSP represents the pre-
dictions made by using approximation with UNSPs for NSPs, NSP-USAP represents the
predictions made by using approximation with USAPs. The vertical axes indicate RMSE
or accuracy. The horizontal axes indicate the time for sampling with different sample sizes
for the predictions of the events from all sequences. Different computational time budgets
correspond to different numbers of samples used to predict the next future event. Amidst
UNSPs, USAPs, and MCMC, USAPs perform the best in the areas filled with light green,
and UNSPs perform the best in the areas filled with light orange. It is easy to find that
NSP-UNSP and NSP-USAP behave better than NSP-MCMC when the computational time
budget is tight.
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Figure 8: Results on the retweet dataset
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Figure 9: Results on the earthquake dataset
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Figure 10: Results on the homicide dataset
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Table 1: RMSE comparison for the retweet dataset

Model
Time(s)

6e4 1.2e5 2.4e5 4.8e5 2e6

1-hidden 9.42e+03 7.05e+03 7.04e+03 4.34e+03 4.34e+03

2-hidden 9.42e+03 9.42e+03 6.28e+03 6.29e+03 6.29e+03

3_3-hidden 6.49e+03 6.47e+03 6.46e+03 6.46e+03 6.46e+03

3_5-hidden 5.01e+09 3.28e+09 1.13e+09 1.10e+09 1.10e+09

4_3-hidden 6.16e+09 5.02e+09 3.02e+09 1.59e+09 1.59e+09

4_5-hidden 1.86e+10 1.39e+10 4.33e+09 2.21e+09 2.18e+09

HP 1.60e+04

THP 1.56e+04

SAHP 1.67e+04

NHP 1.66e+04

MTPP 1.66e+04

Table 2: Accuracy comparison for the retweet dataset

Model
Time(s)

6e4 1.2e5 2.4e5 4.8e5 2e6

1-hidden 5.48e-01 5.65e-01 5.78e-01 5.87e-01 5.87e-01

2-hidden 7.56e-01 7.81e-01 7.89e-01 7.98e-01 7.98e-01

3_3-hidden 7.69e-01 7.69e-01 7.70e-01 7.70e-01 7.70e-01

3_5-hidden 7.68e-01 7.68e-01 7.69e-01 7.69e-01 7.69e-01

4_3-hidden 7.63e-01 7.65e-01 7.68e-01 7.69e-01 7.70e-01

4_5-hidden 7.56e-01 7.61e-01 7.71e-01 7.76e-01 7.77e-01

HP 5.34e-01

THP 6.07e-01

SAHP 4.55e-01

NHP 4.89e-01

MTPP 3.60e-01

8.2 Real-World Data Experiments

Other than 1-hidden and 2-hidden in Figure 5, we also run the experiments for NSPs with
more hidden layers and more hidden Poisson processes as in Figure 7. For the models in
Figure 7, the numbers of Poisson processes in layers 0 and 1 are both the number of event
types. The layers except for the bottom 2 layers are fully connected. Each Poisson process
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Table 3: RMSE comparison for the earthquake dataset

Model
Time(s)

1e4 5e4 2.5e5 1.6e6 3.2e6

1-hidden 1.73e+03 1.26e+03 1.25e+03 1.25e+03 1.25e+03

2-hidden 2.09e+03 2.08e+03 1.42e+03 1.42e+03 1.42e+03

3_3-hidden \ 1.28e+03 1.27e+03 1.22e+03 1.22e+03

3_5-hidden \ 1.02e+10 1.69e+03 1.63e+03 1.16e+03

4_3-hidden \ 8.13e+09 2.11e+03 1.55e+03 1.20e+03

4_5-hidden \ \ 2.23e+03 1.53e+03 1.53e+03

HP 1.55e+03

THP 1.93e+03

SAHP 1.79e+03

NHP 1.95e+03

MTPP 1.93e+03

Table 4: Accuracy comparison for the earthquake dataset

Model
Time(s)

1e4 5e4 2.5e5 1.6e6 3.2e6

1-hidden 6.02e-01 6.02e-01 6.02e-01 6.02e-01 6.02e-01

2-hidden 6.87e-01 6.87e-01 6.86e-01 6.86e-01 6.86e-01

3_3-hidden \ 6.82e-01 6.84e-01 6.84e-01 6.84e-01

3_5-hidden \ 6.81e-01 6.83e-01 6.82e-01 6.82e-01

4_3-hidden \ 6.82e-01 6.85e-01 6.85e-01 6.85e-01

4_5-hidden \ \ 6.80e-01 6.79e-01 6.79e-01

HP 5.90e-01

THP 6.02e-01

SAHP 5.54e-01

NHP 4.00e-01

MTPP 5.14e-01

in layer 0 is only connected to one corresponding Poisson process in layer 1. For the models
in Figures 7(a) and 7(b), the number of Poisson processes in layer 3 is 1, the number of
Poisson processes in layer 2 is 3 for 3-hidden (K2 = 3) and 5 for 3-hidden (K2 = 5). For the
models in Figures 7(c) and Figure 7(d), the number of Poisson processes in layer 4 is 1, the
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Table 5: RMSE comparison for the homicide dataset

Model
Time(s)

1e4 2e4 2.4e5 4.8e5 2e6

1-hidden 1.12e+05 1.07e+05 1.05e+05 1.05e+05 1.05e+05

2-hidden 1.58e+05 1.42e+05 1.09e+05 1.09e+05 1.09e+05

3_3-hidden 7.30e+04 7.26e+04 7.23e+04 7.23e+04 7.23e+04

3_5-hidden \ 1.23e+05 8.63e+04 8.63e+04 8.63e+04

4_3-hidden \ 1.23e+05 1.03e+05 1.03e+05 1.03e+05

4_5-hidden \ \ 7.04e+04 7.04e+04 7.05e+04

HP 1.44e+05

THP 1.80e+05

SAHP 1.80e+05

NHP 1.80e+05

MTPP 1.80e+05

Table 6: Accuracy comparison for the homicide dataset

Model
Time(s)

1e4 2e4 2.4e5 4.8e5 2e6

1-hidden 2.82e-01 2.90e-01 2.90e-01 2.90e-01 2.90e-01

2-hidden 7.77e-01 8.29e-01 8.67e-01 8.67e-01 8.67e-01

3_3-hidden 6.07e-01 6.75e-01 7.18e-01 7.18e-01 7.18e-01

3_5-hidden \ 6.47e-01 7.70e-01 7.70e-01 7.70e-01

4_3-hidden \ 6.47e-01 8.45e-01 8.45e-01 8.45e-01

4_5-hidden \ \ 7.85e-01 8.11e-01 8.22e-01

HP 1.88e-01

THP 2.96e-01

SAHP 2.10e-01

NHP 1.57e-01

MTPP 2.05e-01

number of Poisson processes in layers 2 and 3 are 3 for 4-hidden (K2 = K3 = 3) and 5 for
4-hidden (K2 = K3 = 5).

The real-world datasets we use are retweets (Zhao et al., 2015), earthquakes (NCEDC,
2014; BDSN, 2014; HRSN, 2014; BARD, 2014), and homicides (COC, 2022) as in Hong
and Shelton (2022, 2023). We compare NSPs with other state-of-the-art models represented
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Table 7: Training time for the retweet dataset

Model
Time(d)

Hardware
UNSP USAP

1-hidden 1.2 5.5
2 cores from

an Intel® Xeon® Silver 4214 CPU @ 2.20GHz

1 NVIDIA® GeForce® RTX 2080 Ti

2-hidden 2.9 6.4
2 cores from

an Intel® Xeon® Silver 4214 CPU @ 2.20GHz

1 NVIDIA® GeForce® RTX 2080 Ti

3_3-hidden 24.5 30.7
1 Intel® Xeon® Gold 6330 CPU @ 2.00GHz

shared with other programs

1 NVIDIA® GeForce® RTX 4090

3_5-hidden 32.0 32.7
1 Intel® Xeon® Gold 6330 CPU @ 2.00GHz

shared with other programs

1 NVIDIA® GeForce® RTX 4090

4_3-hidden 21.8 33.0
1 Intel® Xeon® Gold 6330 CPU @ 2.00GHz

shared with other programs

1 NVIDIA® GeForce® RTX 4090

4_5-hidden 23.4 25.3
1 Intel® Xeon® Gold 6330 CPU @ 2.00GHz

shared with other programs

1 NVIDIA® GeForce® RTX 4090

by various line styles in Figures 8, 9 and 10, where HP is for Hawkes processes(Hawkes,
1971) with an exponential kernel (the parametric form of the kernel is φ(t) = α exp(−α · βt)
with the parameters α > 0 and β > 0), THP is for transformer Hawkes processes (Zuo
et al., 2020), SAHP is for self-attentive Hawkes processes (Zhang et al., 2020), NSP is for
neural Hawkes processes (Mei and Eisner, 2017), and MTPP is for a multitask point process
model (Lian et al., 2015). Similar to the synthetic data experiments, the vertical axes
represent RMSE or accuracy. The horizontal axes represent the time for sampling. The
results demonstrate that NSPs-based methods are better than non-NSPs-based methods
for all these real-world datasets regarding RMSE and accuracy. We also find that the
approximations (UNSPs and USAPs) are clearly better than MCMC if there is a limit for
the time budget.
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Table 8: Training time for the earthquake dataset

Model
Time(d)

Hardware
UNSP USAP

1-hidden 4.0 1.1
2 cores from

an Intel® Xeon® Silver 4214 CPU @ 2.20GHz

1 NVIDIA® GeForce® RTX 2080 Ti

2-hidden 5.2 6.8
2 cores from

an Intel® Xeon® Silver 4214 CPU @ 2.20GHz

1 NVIDIA® GeForce® RTX 2080 Ti

3_3-hidden 12.9 11.8
1 AMD EPYC 7763 64-Core Processor

shared with other programs

1 NVIDIA® GeForce® RTX 3090

3_5-hidden 12.8 14.8
1 AMD EPYC 7763 64-Core Processor

shared with other programs

1 NVIDIA® GeForce® RTX 3090

4_3-hidden 16.3 17.0
1 AMD EPYC 7763 64-Core Processor

shared with other programs

1 NVIDIA® GeForce® RTX 3090

4_5-hidden 20.2 25.9
1 AMD EPYC 7763 64-Core Processor

shared with other programs

1 NVIDIA® GeForce® RTX 3090

Tables 1, 2, 3, 4, 5, and 6 compare the performance of NSPs with different architectures
and the baseline models at some fixed time (measured in seconds) points. The experiments
are run on different machines with different computational devices. Then, we scale the
running time to the running time of the machines with the same computational devices,
making sure the running time scales linearly with the sample sizes. The results of each
NSPs-based model for each time point reported in these tables are the best predictions
among NSP-MCMC, NSP-UNSP, and NSP-USAP, where “\” means there is no result for
this entry. The best results among the NSPs with different architectures for each fixed time
point are shown in bold text. 2-hidden NSPs achieve the best type prediction results for
almost all of the fixed time points. For the time prediction, the effect of adding more hidden
Poisson processes is more complicated. For the earthquake and homicide datasets, NSPs
with more hidden Poisson processes tend to behave better when we keep increasing the
number of samples. For the retweet dataset, more hidden Poisson processes help improve
the performance when the number of samples used for prediction is small, while do not
boost the performance when we continue to increase the number of samples used for time
prediction. One possible reason is that the retweet dataset is much larger than the other
two datasets, so the time prediction for the retweet dataset may require many more samples
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Table 9: Training time for the homicide dataset

Model
Time(d)

Hardware
UNSP USAP

1-hidden 2.1 3.6
2 cores from

an Intel® Xeon® Silver 4214 CPU @ 2.20GHz

1 NVIDIA® GeForce® RTX 2080 Ti

2-hidden 2.2 1.9
2 cores from

an Intel® Xeon® Silver 4214 CPU @ 2.20GHz

1 NVIDIA® GeForce® RTX 2080 Ti

3_3-hidden 7.7 9.5
1 Intel® Xeon® Silver 4210 CPU @ 2.20GHz

shared with other programs

1 NVIDIA® GeForce® RTX 2080Ti

3_5-hidden 4.1 \
1 Intel® Xeon® Silver 4210 CPU @ 2.20GHz

shared with other programs

1 NVIDIA® GeForce® RTX 2080Ti

3_5-hidden \ 5.9
1 Intel® Xeon® Silver 4214R CPU @ 2.40GHz

shared with other programs

1 NVIDIA® A40

4_3-hidden 8.8 \
1 Intel® Xeon® Silver 4210 CPU @ 2.20GHz

shared with other programs

1 NVIDIA® GeForce® RTX 2080Ti

4_3-hidden \ 23.7
1 Intel® Xeon® Silver 4214R CPU @ 2.40GHz

shared with other programs

1 NVIDIA® A40

4_5-hidden 5.2 13.9
1 Intel® Xeon® Silver 4214R CPU @ 2.40GHz

shared with other programs

1 NVIDIA® A40

to get good results. The time spent on training (measured in days) is shown in Tables 7, 8,
and 9.

9. Conclusion

We revisit the classical work of NSPs (Neyman and Scott, 1958) and introduce DNSPs
in a more modern formulation. DNSPs are formed by stacking Poisson processes into a
deep network. The inherent hierarchical structure allows DNSPs to capture the triggering
mechanism of random events. However, the deep and multivariate structure of DNSPs brings
huge challenges to the design of posterior sampling and inference algorithms and very few
work has touched this problem.
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We design virtual-event-based posterior sampling and inference algorithms for NSPs.
Our posterior sampling algorithm uses virtual events to help accelerate the mixing, and the
distribution of the virtual events is learned through variational inference. Our algorithms
combine RJMCMC, marginal likelihood maximization, and variational inference together.
The virtual events not only guide the proposal of RJMCMC but also work as approximations
for variational inference. We conduct a theoretical analysis of the convergence and provide a
sufficient condition for RJMCMC and variational inference to converge. We further extend
the analysis to other models, such as MJPs, PCIMs, and Hawkes processes. We have also run
experiments to demonstrate the efficacy of NSPs in prediction by using our algorithms. NSPs
can predict future events better than baselines and the variational approximation achieves
better performance than RJMCMC when the computational time available is limited.

The main limitation of the algorithms proposed in this paper is that the computational
cost of the training and prediction is high. During the training process, a large number of
samples are needed to be drawn from RJMCMC for each iteration. Further investigation is
needed to develop new inference algorithms without RJMCMC involved, such as variational
inference through the optimization of exclusive KL divergence. For the prediction algorithm,
a large number of samples need to be drawn for the prediction of each future event. To
accelerate the prediction, we may consider training a function to map the history to the
predicted value directly.

Our work has demonstrated the potential of NSPs in both theory and applications. From
the theoretical aspect, there is still much room left for the analysis of the convergence. Our
work can only be used to check whether the convergence can be reached. More research is
needed to find the convergence rate of our algorithm. With the convergence rate, we may be
able to find the bottleneck of our algorithm and accelerate it accordingly. For applications,
we can extend our algorithm to spatio-temporal point processes. This extension requires the
kernel to be non-causal (i.e., a kernel that is not only positive for t > 0 like in Examples 1 and
2, but positive in the whole space like a Gaussian function) and new network architectures
may be needed to design a new variational approximation, as the self-attention network used
in USAPs cannot be directly applied to a space with 3 or more dimensions.
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Appendix A. Marginal Density

Lemma 41 Suppose the parameters for λ`,k(·) are in a bounded space, then

λ`,k(t) ≤ m`+1 · a+ b,

where a > 0, b > 0 are some constant numbers, and m`+1 =
∑

im`+1,i is the number of
points at layer `+ 1.

Proof It is easy to see from the functional form of the intensity function as in Equation 1.

Lemma 42
∞∑
n=0

kn

n!
(n+ β)α = O(eCk),

where the O notation is w.r.t. k > 0, and α ≥ 0, β ≥ 0, C > 1 are constants.

Proof Let an = kn

n! (n+ β)α, and we can write an as an = (Ck)n

n!
(n+β)α

Cn .
Then, it follows that

∞∑
n=0

an =
∞∑
n=0

(Ck)n

n!

(n+ β)α

Cn
(22)

=
N∑
n=0

(Ck)n

n!

(n+ β)α

Cn
+

∞∑
n=N+1

(Ck)n

n!

(n+ β)α

Cn
(23)

≤eCk
N∑
n=0

(n+ β)α

Cn
+

∞∑
n=N+1

(Ck)n

n!
(24)

≤eCk
(

N∑
n=0

(n+ β)α

Cn
+ 1

)
(25)

=O(eCk), (26)

where N > 0 in Equation 23 is a number s.t. Cn > (n+ β)α for n ≥ N , the first inequality
follows from the fact that (Ck)n

n! <
∑∞

n=0
(Ck)n

n! = exp(Ck) and (n+β)α

Cn < 1, and the last

equality follows from the fact that
(∑N

n=0
(n+β)α

Cn + 1
)
is a constant number w.r.t. k.

Proposition 6 The marginal density f(x) is finite.
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Proof We can write the marginal density as a sequence

f(x) =Ez∼Poisson(S,1) [f(x, z)]

=Ez∼Poisson(S,1)

[
f(zL)

L∏
`=1

f(z`−1 | z`)

]

=EzL

[
EzL−1

[
· · ·Ez1

[
f(zL)

L∏
`=1

f(z`−1 | z`)

]]]
=EzL

[
f(zL)EzL−1 [f(zL−1 | zL) · · ·Ez1 [f(z1 | z2)f(z0 | z1)]]

]
, (27)

where S = [0, T ]
∑
K` .

Let

q`−1(z`) = Ez`−1

[
f(z`−1 | z`)Ez`−2

[f(z`−2 | z`−1) · · ·Ez1 [f(z1 | z2)f(z0 | z1)]]
]
, (28)

then it follows from Equation 27 that

f(x) =

∞∑
mL=0

exp(−KL · T )

mL!

∫ (KL∏
k=1

exp(−µk · T )µ
mL,k
k

)
· qL−1(zL)dz|mL (29)

≤
∞∑

mL=0

µmL

mL!

∫
qL−1(zL)dz|mL , (30)

where mL =
∑KL

k=1mL,k, µ = maxk{µk}, and z|m` means z is restricted to the dimension of
m`.

It also follows that

q`−1(z`) =
∞∑

m`−1=0

exp(−K`−1 · T )

m`−1!

∫ K`−1∏
k=1

f(z`−1,k | z`)

 · q`−2(z`−1)dz|m`−1
(31)

≤
∞∑

m`−1=0

(a ·m` + b)m`−1

m`−1!

∫
q`−2(z`−1)dz|m`−1

, (32)

where f(z`−1,k | z`) = exp
(
−
∫
λ`−1,k(t; z`)dt

)∏m`−1,k

i=1 λ`−1,k(t`−1,k,i; z`).
According to Lemma 41,

f(z0 | z1) ≤ (a ·m1 + b)m0 , (33)

where m0 is the number of points in the observation.
Then,

f(x) ≤
∞∑

mL=0

µnL

mL!

 ∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

) .

(34)
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Let

h`−1 =

∞∑
m`−1=0

(a ·m` + b)m`−1

m`−1!
·

 ∞∑
m`−2=0

(a ·m`−1 + b)m`−2

m`−2!

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

) , (35)

and we want to prove

h`−1 = O(ec·m`), where O is w.r.t. m`, and c > 0 is a constant number (36)

by induction.
When ` = 2,

h1 =
∞∑

m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

=am0

∞∑
m1=0

(a ·m2 + b)m1

m1!
(m1 +

b

a
)m0

=am0O(ec1·(a·m2+b))

=O(ec1·a·m2),

where c1 > 0 is a constant number and the third equality follows from Lemma 42. It is easy
to see Equation 36 holds for ` = 2.

Suppose Equation 36 holds for ` = n, then

hn+1 =
∞∑

mn+1=0

(a ·mn+2 + b)mn+1

mn+1!
hn

≤M ·
∞∑

mn+1=0

(a ·mn+2 + b)mn+1

mn+1!
(ec·mn+1) for a constant number M > 0

≤M ·
∞∑

mn+1=0

((a ·mn+2 + b) · ec)mn+1

mn+1!

≤M · e(a·mn+2+b)·ec

=O(ec
′·mn+2), (37)

where c′ = a · ec is a constant number w.r.t. mn+2.
It follows from derivation of Equation 37 that

hL−1 = O(ec·mL),

where the O is w.r.t. mL and c > 0 is a constant number.
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Thus,

f(x) ≤M ′ ·
∞∑

mL=0

µmL

mL!
ec·mL for a constant number M ′ > 0

=M ′ · eµec ,

which shows that the marginal density f(x) exists and is finite.

Appendix B. Density of DNSPs as the Limiting Value of DEFs

Lemma 43 For a realization (x, z1:L), the joint density of DEFs p(x, z1:L) converges to the
joint density of DNSPs f(x, z1:L) when δL → 0.

Proof For the realization (x, z1:L), we can build a corresponding DEF such that G`,i,j = 1

if there is an event in T̂`,i,j and G`,i,j = 0 if there is no event in T̂`,i,j , where G`,i,j represents
a hidden variable in DEFs as explained in Section 2.

lim
δL→0

p(x, z1:L) = lim
δL→0

 ∏
G`,i,j=0

(1− λG`,i(ξ`,i,j)δ`)

 ∏
G`,i,j=1

λG`,i(ξ`,i,j)δ`

δ`

 (38)

= lim
δL→0

 ∏
G`,i,j=0

exp
(
−λG`,i(ξ`,i,j) · δ` + o(δ`)

) ∏
G`,i,j=1

λG`,i(ξ`,i,j)


(39)

= exp

−∑
`,i

∫ T

0
λ`,i(t)dt

∏
t`,i,j

λ`,i(t`,i,j) (40)

=f(x, z1:L) (41)

Lemma 44 For a realization (x, z1:L), the conditional density of DEFs p(x | z1:L) converges
to the conditional density of DNSPs f(x | z1:L) when δL → 0.

Proof It can be proved similarly to Lemma 43.

Lemma 45 For a realization (x, z1:L), the marginal density of DEFs p(x) converges to the
marginal density of DEFs f(x) when δL → 0.

Proof Similar to the proof of Lemma 43, we can build a corresponding DEF such that

p(x) = EgL

[
p(gL)EgL−1 [p(gL−1 | gL) · · ·Eg1 [p(g1 | g2) · p(x | g1)]]

]
,
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where g` is a realization for G` =
{
{G`,i,j}K`i=1

}m̂`,i
j=1

.

Let

p`−1(g`) = Eg`−1

[
p(g`−1 | g`)Eg`−2

[p(g`−2 | g`−1) · · ·Eg1 [p(g1 | g2)p(x | g1)]]
]
,

we first prove
lim
δL→0

p1(g2) = q1(z2),

where q`−1(z`) is defined in Equation 28 and g2 is the realization of DEF corresponding to
z2 as in Lemma 43.

Notice that when ` = L + 1, we let gL+1 = zL+1 = ∅, p(gL | gL+1) = p(gL) and
f(zL | zL+1) = f(zL).

p1(g2) =Eg1 [p(g1 | g2)p(x | g1)] (42)

=
∑
g1

p(g1 | g2)p(g1 | g2)p(x | g1) (43)

=

K1·T/δ1∑
n=0

∑
g1=1|n

p(g1 | g2)p(g1 | g2)p(x | g1) (44)

=

K1·T/δ1∑
n=0

∑
g1=1|n


exp

− ∑
g1,i,j=0

λG1,i(ξ1,i,j) + o(δ1)

 ∏
g1,i,j=1

λG1,i(ξ1,i,j)

2

· (45)

exp

− ∑
g0,i,j=0

λG0,i(ξ0,i,j) + o(δ0)

 ∏
g0,i,j=1

λG0,i(ξ0,i,j)


 , (46)

where, with i = 1,
∑

gi
represents the sum w.r.t. different realizations for Gi, n represents

the number of random variables of Gi equal to 1, and gi = 1 | n represents the different
combinations of gi with n random variables equal to 1.

It is easy to find that

lim
δL→0

K1·T/δ1∑
n=0

∑
g1=1|n


exp

− ∑
g1,i,j=0

λG1,i(ξ1,i,j) + o(δ1)

 ∏
g1,i,j=1

λG1,i(ξ1,i,j)

2

· (47)

exp

− ∑
g0,i,j=0

λG0,i(ξ0,i,j) + o(δ0)

 ∏
g0,i,j=1

λG0,i(ξ0,i,j)


 (48)

=

K1·T/δ1∑
n=0

∑
z1=1|n


exp

(
−
∫ T

0
λ1,i(t)dt

) ∏
t1,i,j

λ1,i(t1,i,j)

2

· (49)

exp

(
−
∫ T

0
λ0,i(t0,i,j)

) ∏
t0,i,j

λ0,i(t0,i,j)


 , (50)
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which implies that ∀ε′ > 0, ∃δ′ > 0, such that for all δ1 < δ′,∣∣∣∣∣∣∣∣
K1·T/δ1∑
n=0

∑
g1=1|n


exp

− ∑
g1,i,j=0

λG1,i(ξ1,i,j) + o(δ1)

 ∏
g1,i,j=1

λG1,i(ξ1,i,j)

2

· (51)

exp

− ∑
g0,i,j=0

λG0,i(ξ0,i,j) + o(δ0)

 ∏
g0,i,j=1

λG0,i(ξ0,i,j)


− (52)

K1·T/δ1∑
n=0

∑
z1=1|n


exp

(
−
∫ T

0
λ1,i(t)dt

) ∏
t1,i,j

λ1,i(t1,i,j)

2

· (53)

exp

(
−
∫ T

0
λ0,i(t0,i,j)

) ∏
t0,i,j

λ0,i(t0,i,j)



∣∣∣∣∣∣∣∣ < ε′. (54)

We can also find that ∀ε′′ > 0, ∃δ′′ > 0, such that for all δ1 < δ′′,

∞∑
n=K1·T/δ1

∑
z1=1|n


exp

(
−
∫ T

0
λ1,i(t)dt

) ∏
t1,i,j

λ1,i(t1,i,j)

2

· (55)

exp

(
−
∫ T

0
λ0,i(t0,i,j)

) ∏
t0,i,j

λ0,i(t0,i,j)


 < ε′′, (56)

since the density of the corresponding DNSP is finite.
Hence, for all δ1 < min{δ′, δ′′},∣∣∣∣∣∣∣∣

K1·T/δ1∑
n=0

∑
g1=1|n


exp

− ∑
g1,i,j=0

λG1,i(ξ1,i,j) + o(δ1)

 ∏
g1,i,j=1

λG1,i(ξ1,i,j)

2

· (57)

exp

− ∑
g0,i,j=0

λG0,i(ξ0,i,j) + o(δ0)

 ∏
g0,i,j=1

λG0,i(ξ0,i,j)


− (58)

∞∑
n=0

∑
z1=1|n


exp

(
−
∫ T

0
λ1,i(t)dt

) ∏
t1,i,j

λ1,i(t1,i,j)

2

· (59)

exp

(
−
∫ T

0
λ0,i(t0,i,j)

) ∏
t0,i,j

λ0,i(t0,i,j)



∣∣∣∣∣∣∣∣ < ε′ + ε′′, (60)
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which implies lim
δL→0

p1(g2) = q1(z2).

Next, we assume
lim
δL→0

p`−1(g`) = q`−1(z`)

holds for ` = i. Then we need to prove it also holds for ` = i+ 1.
When ` = i+ 1,

p`−1(g`) =Egi [p(gi | gi+1)pi−1(gi)] (61)

=
∑
gi

p(gi | gi+1)p(gi | gi+1)pi−1(gi) (62)

=

Ki·T/δi∑
n=0

∑
gi|n

p2(gi | gi+1)pi−1(gi) (63)

=

Ki·T/δi∑
n=0

∑
gi|n

exp

− ∑
gi,s,k=0

λGi,s(ξi,s,k) + o(δi)

 ∏
gi,s,k=1

λGi,s(ξi,s,k)

2

pi−1(gi).

(64)

Notice that when i = L, Equation 61 becomes p`−1(g`) = EgL [p(gL)pL−1(gL)] and the
following arguments still hold.

Similar to the argument of proving lim
δL→0

p1(g2) = q1(z2), ∀ε′′′ > 0, we can find δ′′′ > 0,

such that for all δi < δ′′′,∣∣∣∣∣∣∣∣
Ki·T/δi∑
n=0

∑
gi=1|n


exp

− ∑
gi,s,k=0

λGi,s(ξi,s,k) + o(δi)

 ∏
gi,s,k=1

λGi,s(ξi,s,k)

2

· pi−1(gi)

−
(65)

K1·T/δ1∑
n=0

∑
zi=1|n


exp

(
−
∫ T

0
λi,s(t)dt

) ∏
ti,s,k

λi,s(ti,s,k)

2

· qi−1(zi)


∣∣∣∣∣∣∣∣ < ε′′′. (66)

It also follows that ∀ε′′′′ > 0, ∃δ′′′′ > 0, such that for all δi < δ′′′′,

∞∑
n=Ki·T/δi

∑
zi=1|n


exp

(
−
∫ T

0
λi,s(t)dt

) ∏
ti,s,k

λi,s(ti,s,k)

2

· qi−1(zi)

 < ε′′′′. (67)

Thus,
lim
δL→0

p`−1(g`) = q`−1(z`)

holds for ` = i+ 1 and for all ` ≤ L+ 1, which implies that

lim
δL→0

p(x) = f(x).
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Theorem 7 For a realization (x, z1:L), the joint density of DEFs p(x, z1:L) converges to
the joint density of DNSPs f(x, z1:L), the conditional density of DEFs p(x | z1:L) converges
to the conditional density of DNSPs f(x | z1:L), and the marginal density of DEFs p(x)
converges to the marginal density of DEFs f(x) when δL → 0.

Proof It follows directly from Lemmas 43, 44, and 45.

Appendix C. Interchange of the Expectation and the Gradient

The following theorem tells us under which conditions a sequence of functions would uni-
formly converge.

Theorem 46 (Rudin et al. (1976, Theorem 7.10)) Suppose {fn} is a sequence of func-
tions defined on E, and suppose

|fn(x)| ≤Mn (x ∈ E, n = 1, 2, 3, · · · ).

Then
∑
fn converges uniformly on E if

∑
Mn converges.

The uniform convergence of a sequence of functions provides a nice property for interchanging
the derivative and the limit of a sequence of functions, which can be described as follows.

Theorem 47 (Rudin et al. (1976, Theorem 7.17)) Suppose {fn} is a sequence of func-
tions, differentiable on [a, b] and such that {fn(x0)} converges for some point x0 on [a, b]. If
{f ′n} converges uniformly on [a, b], then {fn} converges uniformly on [a, b], to a function f ,
and

f ′(x) = lim
n→∞

f ′n(x) (a ≤ x ≤ b).

The following corollary follows easily from Theorem 471:

Corollary 48 Suppose {fn} is a sequence of functions, differentiable on a convex set C ⊆
X ⊆ Rn and such that {fn} converges pointwise to a function f on C. If {∇fn} converges
uniformly on C, then {fn} converges uniformly on C, to a function f , and

∇f = lim
n→∞

∇fn.

C.1 Unbiased Estimate of the Gradient of the Marginal Likelihood

We can write the gradient of the marginal likelihood as

∇Θ log f(x; Θ) =
∇Θf(x)

f(x)

=
∇Θ

∑∞
n=0

exp(−|S|)
n!

∫
f(x, z)dz|n

f(x)
, (68)

1. https://math.stackexchange.com/questions/2511866/multivariable-uniform-convergence-and-d
ifferentiation
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where S = [0, T ]
∑
`K` , z|n indicates that z is restricted in a space with dimension of n.

The expectation of the gradient of the joint log of density can be written as

Ez∼f(Z|x) [∇Θ log f(x, z)] =

∞∑
n=0

exp(−|S|)
n!

∫
f(z | x)∇Θ log f(x, z)dz|n

=
∞∑
n=0

exp(−|S|)
n!

∫
f(z,x)

f(x)

∇Θf(x, z)

f(x, z)
dz|n

=
∞∑
n=0

exp(−|S|)
n!

∫
∇Θf(x, z)

f(x)
dz|n, (69)

where S = [0, T ]
∑
`K` .

It is easy to see that
∫
∇Θf(x, z)dz|n = ∇Θ

∫
f(x, z)dz|n, where the equality follows from

the dominated convergence theorem. Because f(x, z) is integrable w.r.t. z and differentiable
w.r.t. Θ, and ∇Θf(x, z) is bounded.

Let

wm(Θ) =
m∑
n=0

exp(−|S|)
n!

∫
f(x, z)dz|n,

it follows that

∇Θwm(Θ) = ∇Θ

m∑
n=0

exp(−|S|)
n!

∫
f(x, z)dz|n =

m∑
n=0

exp(−|S|)
n!

∫
∇Θf(x, z)dz|n.

We want to show that ∇Θwm(Θ) converges uniformly, then we can use Theorem 47 to
demonstrate that Equation 68 is equal to Equation 69.

The gradient of the joint density is

∇Θf(x, z) =∇Θ

(
L∏
`=1

f(z`−1 | z`)

)

=

L∑
i=1

∇Θf(zi−1 | zi)

 L∏
j=1,j 6=i

f(zj−1 | zj)

 .

and,

∇Θf(z` | z`+1) =∇Θ

∏
k

f(z`,k | z`+1)

=∇Θ exp

 K∑̀
k=1

m`,k∑
j=1

log λ`,k(t`,k,j)−
∫ T

0
λ`,k(t)dt


=

∑
k

∑
i

(∇Θλ`,k(t`,k,i)) ·

 ∏
p 6=k,j 6=i

λ`,p(t`,p,j)

 · exp

(
−
∑
k

∫ T

0
λ`,k(t)dt

)

+

(∏
k

∏
i

λ`,k(t`,k,i) exp

(
−
∫
λ`,k(t)dt

))
·

(
−
∑
k

∫
∇Θλ`,k(t)dt

)
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Since the parameters are in a compact set (
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0), we can find a bound

(by Lemma 41) for λ`,k(t) s.t. |λ`,k(t)| ≤ m`+1a + b, where a > 0 and b > 0 are constant
numbers. There also exists a bound for |∇Θλ`,k(t)| s.t. |∇Θλ`,k(t)| ≤ m`+1ag + bg, where
ag > 0 and bg > 0. We also notice that

∣∣∣∇Θλ`,k(t)
λ`,k(t)

∣∣∣ ≤ Cr for some constant Cr > 0, because∣∣∣∇Θφ(·)
φ(·)

∣∣∣ is bounded.
Thus,

|∇Θf(z` | z`+1)| ≤(m`Cr + (m`+1ag + bg)K`T )

(∏
k

∏
i

λ`,k(t`,k,i) · exp

(
−
∫ T

0
λ`,k(t)dt

))

≤(m`Cr + (m`+1ag + bg)K`T )

(∏
k

∏
i

λ`,k(t`,k,i)

)
. (70)

Notice that

lim
m→∞

∇Θwm(Θ) = Ez∼Poisson([0,T ]
∑
` K` ,1) [∇Θf(x, z)] ,

we can write down the equation similar to Equation 34, when ` = 0,

Ez∼Poisson([0,T ]
∑
` K` ,1)

∣∣∣∣∣∣
(

L−1∏
i=`+1

f(zi | zi+1)

)
(∇Θf(z` | z`+1))

∏̀
j=1

f(zj−1 | zj)

∣∣∣∣∣∣


≤
∞∑

mL=0

µmL

mL! ∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

(
C ′0 ·m0 + C ′′0 ·m1 + C ′′′0

)) ,

where C ′0 > 0, C ′′0 > 0, C ′′′0 > 0 are constant numbers w.r.t. {m`}` based on Equation 70.
When ` > 0,

Ez∼Poisson([0,T ]
∑
` K` ,1)

∣∣∣∣∣∣
(

L−1∏
i=`+1

f(zi | zi+1)

)
(∇Θf(z` | z`+1))

∏̀
j=1

f(zj−1 | zj)

∣∣∣∣∣∣


≤
∞∑

mL=0

µmL

mL!

 ∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

(
· · ·

 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
(C ′` ·m` + C ′′` ·m`+1 + C ′′′` )

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

) ,

where C ′` > 0, C ′′` > 0, C ′′′` > 0 are constant numbers w.r.t. {m`}` based on Equation 70.
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Let

h
(1)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0 ·m0

)
,

h
(2)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0 ·m1

)
,

h
(3)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

)
,

h
(4)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!
·

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m`

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

) ,

h
(5)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!
·

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m`+1

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

) ,

and it follows that

Ez∼Poisson([0,T ]
∑
` K` ,1)

∣∣∣∣∣∣
(

L−1∏
i=`+1

f(zi | zi+1)

)
(∇Θf(z` | z`+1))

∏̀
j=1

f(zj−1 | zj)

∣∣∣∣∣∣


≤
∞∑

mL=0

µmL

mL!

(
C ′0h

(1)
L−1 + C ′′0h

(2)
L−1 + C ′′′0 h

(3)
L−1

)
for ` = 0,

Ez∼Poisson([0,T ]
∑
` K` ,1)

∣∣∣∣∣∣
(

L−1∏
i=`+1

f(zi | zi+1)

)
(∇Θf(z` | z`+1))

∏̀
j=1

f(zj−1 | zj)

∣∣∣∣∣∣


≤
∞∑

mL=0

µmL

mL!

(
C ′`h

(4)
L−1 + C ′′` h

(5)
L−1 + C ′′′` h

(3)
L−1

)
for ` > 0.

Then we only need to show that
∑∞

mL=0
µmL
mL! h

(i)
L−1 is bounded for i = 1, 2, 3, 4, 5. Notice

that h` is defined in Equation 35.

Lemma 49
∞∑

mL=0

µmL

mL!
h

(2)
L−1 is bounded.

Proof We first show that
h

(2)
` = O(m`+1e

C·m`+1), (71)
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where C > 0 is a constant number.
For ` = 1,

h
(2)
1 =

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0 ·m1

=(a ·m2 + b)
∞∑

m1=1

(a ·m2 + b)m1−1

(m1 − 1)!
(a ·m1 + b)m0

=(a ·m2 + b)

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a · (m1 + 1) + b)m0

≤(a ·m2 + b) · am0 · ec·(a·m2+b) for some constant number c > 1

=O(m2e
C·m2),

where C = c · a and the inequality follows from Lemma 42.

Suppose, h(2)
` = O(m`+1e

C′·m`+1) holds for ` = i and a constant number C ′ > 0. For
` = i+ 1,

h
(2)
i+1 =

∞∑
mi+1=0

(a ·mi+2 + b)mi+1

mi+1!
h

(2)
i (72)

≤M ·
∞∑

mi+1=0

(a ·mi+2 + b)mi+1

mi+1!
mi+1e

C′·mi+1 for some constant number M > 0 (73)

≤M ·
∞∑

mi+1=1

(a ·mi+2 + b)mi+1

(mi+1 − 1)!
eC
′·mi+1 (74)

=M ·
∞∑

mi+1=0

(a · (mi+2 + 1) + b)mi+1+1

mi+1!
eC
′·(mi+1+1) (75)

=M · eC′ · (a · (mi+2 + 1) + b)

∞∑
mi+1=0

((a · (mi+2 + 1) + b) · eC′)mi+1

mi+1!
(76)

=M · eC′ · (a · (mi+2 + 1) + b) · e(a·(mi+2+1)+b)·eC′ , (77)

where M > 0 is a constant number.
Thus, h(2)

i+1 = O(mi+2e
C·mi+2), where C = a · eC′ , and we can conclude that

h
(2)
` = O(m`+1e

C·m`+1),

holds for some constant number C > 0.
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It then follows that
∞∑

mL=0

µmL

mL!
h

(2)
L−1

≤M ′ ·
∞∑

mL=0

µmL

mL!
mLe

C·mL for some constant M ′ > 0

=M ′ ·
∞∑

mL=1

µmL

(mL − 1)!
eC·mL

=M ′ ·
∞∑

mL=1

(µeC)mL

(mL − 1)!

=M ′ · µeC
∞∑

mL=0

(µeC)mL

(mL)!

=M ′ · µeCeµeC .

Lemma 50
∞∑

mL=0

µmL

mL!
h

(4)
L−1 is bounded.

Proof

h
(4)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!
·

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m`

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

)
=

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m` · h`−1


≤M ·

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m` · ec·m`

 ,

where the second equality follows from Equation 35, the third inequality follows Equation 36,
and c > 0,M > 0 are constant numbers.

It follows from Equation 77 that

h
(4)
L−1 = O(mLe

C·mL) for some constant number C > 0,

and from Lemma 49 that
∑∞

mL=0
µmL
mL! h

(4)
L−1 is bounded.
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Lemma 51
∞∑

mL=0

µmL

mL!
h

(5)
L−1 is bounded.

Proof

h
(5)
L−1 =

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!
·

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m`+1

(
· · ·

∞∑
m1=0

(a ·m2 + b)m1

m1!
(a ·m1 + b)m0

)
=

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

· · ·
 ∞∑
m`=0

(a ·m`+1 + b)m`

m`!
·m`+1 · h`−1


≤M ·

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

· · ·
m`+1 ·

∞∑
m`=0

(a ·m`+1 + b)m`

m`!
· ec·m`


=M ·

∞∑
mL−1=0

(a ·mL + b)mL−1

mL−1!

· · · ∞∑
m`+1=0

(a ·m`+2 + b)m`+1

m`+1!

(
m`+1 · e(a·m`+1+b)ec

) ,

where M > 0 and c > 0 are constant numbers. It also follows from Equation 77 that

h
(5)
L−1 = O(mLe

C·mL) for some constant number C > 0,

and from Lemma 49 that
∑∞

mL=0
µmL
mL! h

(5)
L−1 is bounded.

According to Equations 68 and 69, it is easy to see Theorem 9 follows from the following
lemma.

Lemma 52 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0,

∇Θ

∞∑
n=0

exp(−|S|)
n!

∫
f(x, z)dz|n =

∞∑
n=0

exp(−|S|)
n!

∫
∇Θf(x, z)dz|n.

Proof The statement that
∑∞

mL=0
µmL
mL! h

(3)
L−1 is bounded has been proved in Equation 36, and

it follows easily that
∑∞

mL=0
µmL
mL! h

(1)
L−1 is bounded sincem0 is a constant number. Combining

Lemmas 49,50, and 51, it follows that ∇Θwm(Θ) converges uniformly.
wm(Θ) converges for some Θ follows from Proposition 6.
Thus, it follows from Corollary 48 that

∇Θ

∞∑
n=0

exp(−|S|)
n!

∫
f(x, z)dz|n =

∞∑
n=0

exp(−|S|)
n!

∫
∇Θf(x, z)dz|n.
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Theorem 9 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0, then

Ez∼f(Z|x)[∇Θ log f(x, z)] = ∇Θ log f(x).

Proof This theorem is an immediate result of Lemma 52, Equations 68 and 69.

C.2 Interchange of the Expectation and the Gradient for Virtual Point
Processes

Similar to the proof of Theorem 9, we prove Theorem 10 by Theorem 46 and Corollary 47.

Lemma 53 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0 and each point process is restricted in a

compact set B(e.g.,[0,T]), then the expected number of events Λ̄`,k(B) = Ez∼f(z)[N ], where
N represents the number of hidden points, for a point process Z`,k in a DNSP is bounded,
and

Λ̄`,k(B) ≤
L∑

h=`+1

Ch−` ·max
i
{µh,i · v(B)}, (78)

where C > 0 is a constant number, and v(B) is the volume of the compact set B.

Proof The expected intensity function λ̄`,k for Z`,k is

λ̄`,k(t) = EZ`+1,i

Et`+1,i,j∼Z`+1,i

µ`,k +

K`+1∑
i=1

∑
t`+1,i,j

φθ(`+1,i)→(`,k)
(t− t`+1,i,j)

 , (79)

where µ`,k = 0 for ` 6= L and λ̄L,k(t) = µL,k.
By Campbell’s theorem,

λ̄`,k(t) = µ`,k +

K`+1∑
i=1

∫
φθ(`+1,i)→(`,k)

(τ)λ̄`+1,i(τ)dτ. (80)

It follows that
Λ̄`,k(B) =

∫
B
λ̄`,k(t)dt. (81)

By
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0,

Λ̄`,k(B) ≤ C ·max
i
{Λ̄`+1,i(B)}+ µ`,k · v(B), (82)

where the constant number C exists because there exists a bound for the parameters such
that the kernel function φ(·) is also bounded, and the number of point processes per layer
is also bounded. Then it follows

Λ̄`,k(B) ≤
L∑
h=`

Ch−` ·max
i
{µL,i · v(B)}. (83)
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Lemma 54 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0, Ez∼f(z|x)[N ] is finite, where N represents the

number of hidden points.

Proof We shall prove this by contradiction. Suppose Ez∼f(z|x)[N ] =∞, then there exists a
posterior point process for Z`,i, s.t. ∃ε0 > 0,∀C0 > 0,

∑∞
n=m0

p(N`,i = n | x) · n > ε0, where
N`,i represents the number of points for Z`,i.

However, we know

∞∑
n=C0

p(N`,i = n | x) · n (84)

=

∞∑
n=C0

p(N`,i = n,x)

f(x)
· n (85)

≤
∞∑

n=C0

p(N`,i = n)

f(x)
· n, (86)

where f(x) is the density of x. Lemma 53 tells us that ∃C1 > 0, ∀ε1 > 0,
∑∞

n=C1
p(N`,i =

n) · n ≤ ε1. Let ε1 = f(x)ε0 and C0 = C1, we can get (by Equation 86)

∞∑
n=C0

p(N`,i = n | x) · n ≤ ε0, (87)

which contradicts our assumption.

Lemma 55 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0, then there exists ã > 0, b̃ > 0, ãg > 0, and

b̃g > 0 such that
|λ̃`,k| ≤ nm · ã+ b̃,

where nm = max {no, n}, no is the number of points in the observation, and n is the number
of hidden points of a realization for a real point process.

Proof Since λ̃`,k(t) = µ̃`,k +
∑
φ(·) or λ̃`,k(t) is represented as a self-attention map and the

parameters are in a compact set (
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0), we can find a bound for λ̃(t) s.t.

|λ̃(t)| ≤ nm · ã+ b̃, where ã > 0 and b̃ > 0.

Theorem 10 Suppose
∣∣∣Θ̂∣∣∣ ≤ r for some r > 0, then

Ez∼f(Z|x;Θ)

[
∇Θ̃ log f̃(z; Θ̃)

]
= ∇Θ̃Ez∼f(Z|x;Θ)

[
log f̃(z; Θ̃)

]
.

Proof We can write the expectation as a sequence,

Ef(z|x;Θ)[− log f̃(z; x, Θ̃)] = − lim
m→∞

gm(Θ̃), (88)
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where gm(Θ̃) =
∑m

n=0 p(n)
∫

log f̃(z; x, Θ̃)f(z)dz|n, p(n) is the probability that the number
of points of a realization z from the posterior point processes equals n, and f(z) is the
density of the realization z given the number of points n.

Because we can interchange the gradient with the summation if the series has finite
terms, we can get

∇Θ̃gm(Θ̃) =

m∑
n=0

pz|x(n)∇Θ̃

∫
log f̃(z; x, Θ̃)f̃(z)dz|n

=
m∑
n=0

pz|x(n)

∫
f(z)∇Θ̃ log f̃(z; x, Θ̃)dz|n, (89)

where the second equality follows from dominated convergence theorem.
By Lemma 55, |λ̃`,k| ≤ nm · ã + b̃. Similarly, there also exists a bound for the gradient

|∇λI(t)| s.t. |∇λI(t)| ≤ nm · ãg + b̃g. We also notice that there exists a constant C s.t.∣∣∣∣∣∇Θ̃λ̃(t)

λ̃(t)

∣∣∣∣∣ ≤ C, (90)

because (1) if λ̃(t) = µ̃+
∑
φ(·), then ∇Θ̃λ̃(t) =

∑
∇Θ̃φ(·) and

∣∣∣∇Θ̃φ(·)
φ(·)

∣∣∣ is bounded; (2) if
λ̃(t) is an output from a self-attention network, then it is obvious both ∇Θ̃λ̃(t) and λ̃(t) are
bounded.

We notice that

∣∣∣∇Θ̃ log f̃(z; x, Θ̃)
∣∣∣ =

∣∣∣∣∣∣∇Θ̃

L∑
`=1

K∑̀
k=1

−∫ λ̃`,k(t)dt+

m̃`,k∑
i=1

log λ̃`,k(t̃`,k,i)

∣∣∣∣∣∣ (91)

≤
L∑
`=1

K∑̀
k=1

∣∣∣∣∫ ∇Θ̃λ̃`,k(t)dt

∣∣∣∣+

m̃`,k∑
i=1

∣∣∣∣∣∇Θ̃λ̃`,k(t)

λ̃`,k(t)

∣∣∣∣∣
 (92)

≤(nm · ãg + b̃g) · (
∑

K`) · T + nmC (93)

Let g∗n = pz|x(n)
∫
f(z)∇Θ̃ log f̃(z; x, Θ̃)dz|n, and we know

|g∗n| ≤ pz|x(n)
(

(nm · ãg + b̃g) · (
∑

K`) · T + nmC
)
,

where pz|x(n) is the probability of the number of hidden points equal to n.
It also follows that∑

n

pz|x(n) · nm = Ez∼f(z|x)[N ] +

no∑
i=0

pz|x(i) · (no − i),

as nm = no when n < no.
LetM∗n = pz|x(n)

(
(nm · ãg + b̃g) · (

∑
K`) · T + nmC

)
,
∑

nM
∗
n converges (by Lemma 54)

and
∑

nM
∗
n = (Ez∼f(z|x)[N ]−

∑no
i=0 p(i) · (no − i))(ãg · (

∑
`K`) · T + C) + b̃g · (

∑
`K`) · T .
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Then it follows (by Theorem 46) ∇Θ̃gm(Θ̃) =
∑m

n=0 g
∗
n(Θ̃) converges uniformly. It is easy

to see gm(x0) converges for some point x0.
The uniform convergence implies, by Corollary 48, that limm→∞ gm exists, and

lim
m→∞

∇Θ̃gm(Θ̃) = ∇Θ̃ lim
m→∞

gm(Θ̃). (94)

By Equations 89 and 88, we know∇Θ̃Ef(z|x;Θ)

[
log f̃(z; x, Θ̃)

]
= Ef(z|x;Θ)

[
∇Θ̃ log f̃(z; x, Θ̃)

]
.

Appendix D. Convergence of MCMC

Proposition 21 Let Mi(x, ·) be the i-th transition kernel that proposes to move a point
configuration x ∈ Ω to another point configuration x′ ∈ Ω, and (i1, i2, · · · , in) be any se-
quence of transition kernels. Assume that each of the point of x accepts at least one drift in
(i1, i2, · · · , in), then

(Mi1Mi2 · · ·Min)(x,A) = 0

for all x ∈ Ω and A ⊆ Ω with the Lebesgue measure of A is 0.

Proof For each re-sampling, we re-sample a set of virtual events, it is easy to see, from
Equation 10, if the re-sampled events fall into a set with measure 0, then the probability of
generating these re-sampled events is 0.

The real events can only appear where the virtual events appear, so the measure of the
set of real events is also 0.

Thus, we complete the proof.

Corollary 22 If the Lebesgue measure of A is 0, then

P [Xn ∈ A | X0 = x0] ≤ P [Dn],

where Xn ∈ Ω, and Dn is the event that, by time n, the chain has not yet accepted at least
one drift for each event of the original starting realization.

Proof

P [Xn ∈ A | X0 = x0]

=P [Xn ∈ A,Dn | X0 = x0] + P [Xn ∈ A,¬Dn | X0 = x0]

=P [Xn ∈ A,Dn | X0 = x0] + 0 (by Proposition 21)

≤P [Xn ∈ A,Dn | X0 = x0] + P [Xn 6∈ A,Dn | X0 = x0]

=P [Dn]
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Proposition 23 If a Ψ-irreducible Markov chain eventually accepts at least one drift for
each real and virtual event, then this Markov chain is Harris recurrent.

Proof If Π(r,Ar, v, Av) = 0, then Ur+v(Ar, Av) = 0 because fr+v(x) > 0 for any x ∈
(Ωr,Ωv).

By Corollary 22, we have

P [Xn ∈ A ∀n | X0 = x] ≤ lim
n→∞

P [Xn ∈ A | X0 = x] ≤ lim
n→∞

P [Dn | X0 = x] = 0,

where Xn represents the point configuration of the real and virtual point processes at state
Cn, A = (Ar, Av), the last equality follows from the fact that the Markov chain accepts at
least one drift eventually with probability 1.

Thus, the result follows from Theorem 19.

Theorem 14 For a Ψ-irreducile and aperiodic Markov chain described in virtual-event-
based RJMCMC, if the re-sampling of virtual events and the acceptance of the drift combi-
nation for each real event happen eventually, then

lim
m→∞

‖Qm −Π‖TV = 0

holds for this Markov chain, where Π is the invariant distribution.

Proof It follows directly from Proposition 23.

D.1 Neyman-Scott Processes

Proposition 26 The Markov chain C generated by Algorithm 1 is Ψ-irreducible and aperi-
odic. The continuous set of point configurations can be chosen as

U =

{(({
r =

∑
`

K`

}
× URr

)
,
(
{0} × UV0

))}
,

where URr is the set of points such that z`,k = {t`,k,0 : 0 < t`,k,0 < mini,j{t`−1,i,j}}.

Proof Let x = (({r}×{uR1 , uR2 , · · · , uRr }), ({v}×{uV1 , uV2 , · · · , uVv })) ∈ Ω be a point config-
uration to be moved and m = r be the number of transition steps.

Ifm = r =
∑
K`, then for each virtual point process, we draw a new set of points and this

set is an empty set, which makes sure that each virtual point process has an empty set of vir-
tual events. For this case,

∑
K` is the total number of virtual point processes, and the prob-

ability of drawing an empty set of points for Z̃`,k is equal to P̃`,k(∅) = exp
(
−
∫
λ̃`,k(t)dt

)
.

According to Remark 27, each real point process has one real event. The probability of
moving any x to URr is

Pm(x, URr ) =
∏
`,k

(
1∑
K`

Pre−sample · P̃`,k(∅)
)
> 0, (95)

59



Hong, Shelton and Zhu

where 1∑
K`

is the probability of choosing the point process Z̃`,k, and Pre−sample is the
probability of resampling virtual events.

If m >
∑
K`, then one possible way to ensure x is transited to URr is to do flips

(m−
∑
K`) times first, and draw an empty set of virtual events similar to the case m = r.

Pm(x, URr ) ≥

m−
∑
K`∏

t=1

1∑
K`

Pflip ·
1

M(t)
·min{1,Ptr}

 (96)

·
∏
`,k

(
1∑
K`

Pre−sample · P̃`,k(∅)
)
> 0, (97)

where Pflip is the probability of choosing the flip move, M(t) is the total number of real
and virtual events when performing the t-th flip, and Ptr is the Hastings ratio for performing
the t-th flip, Pre−sample is the probability of re-sampling virtual events (Hong and Shelton,
2023, Appx. B.3). The inequality comes from the fact that we can either re-sample at first
or at last.

If Ψ(F ) > 0, then Pm(x, F ) ≥ Pm(x, URr ) > 0 for any x for m ≥ 1, which implies the
chain is Ψ-irreducible.

If x ∈ URr , P (x, {x}) > 0, which implies the chain is aperiodic.

Lemma 56 For a sequence of random variables {An}, if the probability P (Ani = a) > 0 for
a subsequence {Ani}, then there exists N > 0 s.t. AN = a with probability 1.

Proof The probability of the event that An 6= a for all n is equal to

lim
i→∞

∏
i

P (Ani 6= a) = 0.

Definition 57 (non-empty-event region) The non-empty-event region is the region where
there must be at least one real event for a realization of NSPs of a Markov state.

Lemma 58 The probability of having a newly generated real event (i.e., the real event is
flipped from a virtual event) in a non-empty-event region infinitely often is 1.

Proof Suppose there exists a non-empty-event region B, where the number of times a real
event can appear is bounded. Then there exists some N ∈ N such that for all Markov states
Yn(n > N), Yn does not have any real events inside B. We denote this situation as event E
and try to calculate the probability of E.

We have the following situations and calculate the probability P1, P2, P3 for each of them
respectively:
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1. No virtual events are generated inside B for all Yn(n > N)

If there are no virtual events ever generated inside B, then there would be no real
events. For Yn(n > N), there exists a subsequence {Yij}j which only consists of re-
sampling. Every Yij does not generate any virtual event. We calculate the probability
P1 for such sequences,

P1 ≤
∞∏
j=1

exp

(
−
∫
B
µ̃dt

)
= 0,

where µ̃ is the base intensity for virtual point processes inside B, exp
(
−
∫
B µ̃dt

)
is the

upper bound for the probability that no virtual events can be generated inside B.

2. A bounded number of states of Yn(n > N) have virtual events inside B

Similar to P1, the probability P2 of this situation is 0.

3. Virtual events occur infinitely often inside B. However, only a bounded
number of virtual events can be changed to real events for Yn(n > N)

A flip or swap needs to be accepted to change a virtual event to a real event, which
means that rejections for flips or swaps appear infinitely often. For a non-empty-event
region, the probability of rejecting a flip for a virtual event or a swap is less than 1,
and the probability of having infinitely often rejection is 0 (by Lemma 56). Thus, the
probability P3 of this situation is 0.

According to the analysis of the above situations, the probability of having a real event
inside B infinitely often is 1.

Proposition 28 The re-sampling of virtual events and the drift combination for each real
event happen eventually for the Markov chain generated by Algorithm 1.

Proof It is obvious the re-sampling of each virtual point process occurs with a positive prob-
ability an infinite number of times, so the re-sampling of virtual point processes eventually
happens.

For each real event at each step, the probability of accepting a drift combination is posi-
tive or 0. If the probability of accepting a drift combination for a real event is positive, then
the drift combination is accepted eventually, because otherwise rejecting a drift combination
happens with a positive probability an infinite number of times, which is a contradiction by
Lemma 56.

The only situation that the probability of accepting a drift combination for a real event
equals 0 is that the intensity of the real events from a layer below entirely depends on this
real event.

We prove in the following that each real event accepts a drift combination eventually.
Suppose, until eventually (n→∞), the probability of not accepting a drift combination

for t`,i,0 is greater than 0, then there exists a N ∈ N such that the probability of rejection
is 1 for Yn(n > N), which implies there must be events at layer `− 1 fully depend on t`,i,0
for Yn(n > N). We denote the smallest time for the event at layer `− 1 that fully depends
on t`,i,0 as t`−1,k,δ(t`−1,k,δ > t`,i,0).
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Then [t`,i,0, t`−1,k,δ) at layer ` is a non-empty-event region. According to Lemma 58, the
probability of having a newly generated real event infinitely often inside [t`,i,0, t`−1,k,δ) is 1,
which implies that even the event with the smallest time (t`−1,k,δ) does not fully depend
on t`,i,0 infinitely often. This contradicts the above argument that there must be events at
layer ` − 1 fully depend on t`,i,0 for Yn(n > N). Thus, the probability of accepting a drift
combination eventually (n→∞) for each real event is 1.

D.2 Markov Jump Processes and Extensions

Proposition 30 If there exists a continuous set of point configurations U , then the Markov
chain for the MCMC algorithm proposed in Rao and Teh (2013) is convergent.

Proof After every 2 steps of sampling for the virtual jumps and the new MJP path, any
state x can be moved to any other state inside U with positive probability, as the probability
of generating a point configuration inside U is greater than 0. This implies Ψ-irreducibility.

For any x with virtual jumps dropped, we have

Pm(x, {x}) > 0,

where m = 2. Because we can simply generate no events from the Poisson process with
piecewise-constant rate

R(t) = (Ω +AS(t)),

and then the states can stay at the same state with probability greater than 0 after per-
forming the forward-filtering backward-sampling algorithm. This implies aperiodicity.

Virtual jumps are re-sampled every 2 steps and each existing jump accepts a drift
combination with a positive probability when implementing the forward-filtering backward-
sampling algorithm, which implies Harris recurrence and convergence by Theorem 14.

D.3 Hawkes Processes

Proposition 32 The Markov chain generated by the MCMC algorithm proposed in Shelton
et al. (2018) is Ψ-irreducible and aperiodic. The continuous set of point configurations can
be

U = {(({0} × UR0 ), ({0} × UV0 ))}.

Proof Let x = (({r} × {uR1 , uR2 , · · · , uRr }), ({v} × {uV1 , uV2 , · · · , uVv })) ∈ Ω be a point con-
figuration to be moved, nevidence be the number of events in the evidence. Different than
the setting of the real events in Shelton et al. (2018), the root event and evidence events
are not included in the real events. m represents the number of transition steps and we set
m = 2(r + nevidence) + 1.

We first propose to resample the parents for the real events to let the parents of the
real events and the evidence events be root events, and the number of moves is r+nevidence
because each of these events needs a resampling. The probability of choosing the Parent
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move at each MCMC step is 1
3 , and the probability of selecting the root event as the parent

for the real events and the evidence events is greater than 0.
Then, we propose to change the real events, which only have virtual children, to virtual

events with r moves of Virtualness, because the events in x currently only have virtual
children after the resampling of the parents. Similarly, the probability of these moves is
greater than 0.

Finally, we propose to resample the virtual children for the root events and evidence
events, with 1 + nevidence moves. The probability of generating an empty set of virtual
events is greater than 0.

Thus, m = r+ nevidence + r+ 1 + nevidence = 2(r+ nevidence) + 1, and the probability of
moving x to {(({0} × UR0 ), ({0} × UV0 ))} is

Pm(x, {(({0} × UR0 ), ({0} × UV0 ))}) > 0,

and if Ψ(F ) > 0, then Pm(x, F ) ≥ Pm(s, {(({0} × UR0 ), ({0} × UV0 ))}) > 0.
We can also find that if x = {(({0} × UR0 ), ({0} × UV0 ))}, then P (x, {x}) > 0, which

demonstrates that the chain is aperiodic.

Proposition 33 The re-sampling of virtual events and the drift combination for each real
event happen eventually for the Markov chain in Shelton et al. (2018).

Proof Similar to Proposition 28, it is obvious at least one re-sampling of virtual events will
be accepted.

A real event can only have virtual children, or have both real and virtual children. When
a real event only has virtual children, we can first propose to move this real event to a virtual
event and then perform a Virtual children move for the parent of this newly moved virtual
event. After accepting the Virtual children move, the real event accepts a drift combination.
The probability of accepting a Virtualness move followed by a Virtual Children move for
this real event is greater than 0 at any Markov chain state. Similarly, when a real event
with both real and virtual children, the probability of accepting a Parent move for each real
child, which removes the real children for this real event, then a Virtualness move followed
by a Virtual Children move is greater than 0 at any Markov chain state. Thus, a drift
combination for each real event will be accepted eventually.

References

Ina Trolle Andersen, Ute Hahn, Eva C Arnspang, Lene Niemann Nejsum, and Eva B Vedel
Jensen. Double Cox cluster processes—with applications to photoactivated localization
microscopy. Spatial statistics, 27:58–73, 2018.

BARD. Bay area regional deformation network. UC Berkeley Seismological Laboratory.
dataset., 2014.

Luc Bauwens and Nikolaus Hautsch. Modelling financial high frequency data using point
processes. In Handbook of financial time series, pages 953–979. Springer, 2009.

63



Hong, Shelton and Zhu

BDSN. Berkeley digital seismic network. UC Berkeley Seismological Laboratory. dataset.,
2014.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic
approximations, volume 22. Springer Science & Business Media, 2012.

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point
processes. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=XQQA6-So14.

COC. City of Chicago, Crimes - 2001 to present. https://data.cityofchicago.org/Pub
lic-Safety/Crimes-2001-to-Present/ijzp-q8t2, 2022. Accessed: 2022-08-14.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction
using graph convolutional networks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedi
ngs.neurips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb
5-Paper.pdf.

Mark Gales, Steve Young, et al. The application of hidden Markov models in speech recog-
nition. Foundations and Trends® in Signal Processing, 1(3):195–304, 2008.

Peter J Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 1995.

Asela Gunawardana, Christopher Meek, and Puyang Xu. A model for temporal dependencies
in event streams. Advances in neural information processing systems, 24, 2011.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90, 1971.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Chengkuan Hong and Christian Shelton. Deep Neyman-Scott processes. In Gustau Camps-
Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th In-
ternational Conference on Artificial Intelligence and Statistics, volume 151 of Proceed-
ings of Machine Learning Research, pages 3627–3646. PMLR, 28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/hong22a.html.

Chengkuan Hong and Christian Shelton. Variational inference for Neyman-Scott processes.
In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, Proceedings of
The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of
Proceedings of Machine Learning Research, pages 2002–2018. PMLR, 25–27 Apr 2023.

Chengkuan Hong and Christian R Shelton. Convolutional deep exponential families. arXiv
preprint arXiv:2110.14800, 2021.

64

https://openreview.net/forum?id=XQQA6-So14
https://openreview.net/forum?id=XQQA6-So14
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://proceedings.neurips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.mlr.press/v151/hong22a.html


Virtual-Event-Based Posterior Sampling and Inference for NSPs

HRSN. High resolution seismic network. UC Berkeley Seismological Laboratory. dataset.,
2014.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.
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