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Abstract

The most common form of dataset within the educa-
tional domain is likely the course gradebook. Data min-
ing on the assignment-level scores is unlikely to pro-
vide meaningful results, but a matrix recording scores
for every student and every question may provide hid-
den insight into the workings of a course. Here we will
investigate collaborative filtering techniques applied to
such data in an attempt to discover what the fundamen-
tal topics of a course are and the proficiencies of each
student in those topics.

Nearly every university-level course offering creates a
new education-related dataset in the process of recording
student grades. While the vast majority of gradebooks
record each student’s aggregate score on each assignment,
it is generally the case that each question was independently
graded before those scores were aggregated. With suitable
grading tools, these scores can be recorded at the same level
of detail without significant extra work. Such a dataset con-
tains more information than one that has aggregated out
much of the meaningful information by summing up stu-
dent’s item-level scores.

Given item-level scores for a course, there are a number
of questions that seem obvious to ask. The question “Which
items are testing the same information?” could be viewed as
an application of clustering. The question “How many top-
ics are there in this course?” could be answered with hierar-
chical clustering techniques, or matrix decompositions (such
as singular value decomposition). The question “Which are
the most predictive questions in the course?” could be solved
with any number of regression techniques, given a final nu-
meric course grade. In this paper, we are concerned with the
question “What are the fundamental topics that this course
really tests, and how well did each student do in those top-
ics?” or symmetrically, “What are the topics in this course
and which questions test which topics?” These questions
motivate the use of collaborative filtering techniques on this
educational data.

Manually identifying topic information for each question
can be tedious, and may not match the statistical model sup-
ported by the data itself. An ability to automatically extract
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topic information from student scores would avoid such te-
dium and allow instructors to

• determine which topic a student is struggling most with,

• give targeted study suggestions,

• build a question-bank of questions with known difficulty
levels and known relevancy to each topic in the course,

• automatically generate a test or quiz covering specific top-
ics with a known expected average score, or

• compare the data-supported topics with the instructor’s
view on the topics to gain a better understanding of the
mental model of the students.

A simple approach to this problem would be to apply clus-
tering algorithms to the score information, using the score
for each student as an entry in a large vector and building
clusters of those vectors. But to correctly answer a given
question may require knowledge of multiple topics. Addi-
tionally, the amount of “missing” data due to student ab-
sences makes the use of clustering algorithms difficult. By
contrast, techniques from the areas ofcollaborative filtering
and common-factor analysisare candidates for addressing
such issues.

This paper investigates the use of a number of algorithms
on item-level gradebooks. Section 2 describes our input for-
mat and the terminology. Section 3 introduces the filtering
algorithms to be investigated. Section 4 presents results for
each of the algorithms and Section 5 summarizes our contri-
butions.

It is important to note that the concepts here can be repro-
duced to a degree using well-known techniques from educa-
tional statistics. The most similar technique from that field
is common-factor analysis, which we will compare against
directly. Using Cronbach’s alpha statistic from classical test
theory allows us to measure the extent to which a set of ques-
tions is measuring the same concept. Algorithms based on
this are possible, but will not allow the addition of outside
(non-score) information. For the sake of this extra flexibility,
we focus here primarily on data-mining techniques.

2. Terminology and Notation
Following the terminology of educational statistics, the term
itemwill represent anything for which per-student grades are
recorded: questions, problems, parts of questions, etc. Also,



rather than saying “assignment,” “test,” or “quiz,” we will
use the terminstrument.

The data we will be working with can be represented as
anm × n matrix M wherem is the number of students in
the course andn is the number of items that were assessed in
the course. Some algorithms may make use of an additional
m-vectorS, namely the vector of overall course scores per
student. Additionally we assume we have access to a listing
of which items are given in the same instrument. As a pre-
processing step, the entries of each column ofM are scaled
to be in the interval[0, 1].

It is important to note thatM is unlikely to be complete.
In general, there will be students that do not take one or more
instruments during the course offering. If these algorithms
are applied to a single instrument, there should be no miss-
ing data since the rows for absent students can be ignored en-
tirely. Processing the gradebook as a whole will reduce the
number of algorithms that are applicable, but it will allow
for the discovery of patterns and connections across instru-
ments. Whole-course processing is recommended, and in-
deed the techniques presented here work with missing data.

3. Collaborative Filtering
Collaborative filtering was initially intended as a method
for filtering arbitrary information based on user preferences
(Goldberget al. 1992), for use in systems such as Ama-
zon.com’s recommendation engine. At a high level, a pool
of users assign ratings to a various products (books, movies,
CDs) and the system infers the underlying structure: what
factors govern whether a user will like a product or not, how
much does each factor affect a given user, and how much of
each factor is present in each product. User preferences may
drift over time, but most filtering algorithms ignore this.

The overall concept of collaborative filtering can be
viewed in a number of ways. Collaborative filtering can be
viewed as a system for predicting missing ratings based on
a user’s similarity to other users that rated the missing item.
It can also be viewed as identifying the latent factors that
influence each rating and estimating the influence of those
factors on each user and each product.

This concept generalizes very easily into the educational
domain, although the input matrices are generally denser
(fewer missing values) in educational datasets. Each course
covers a number of “topics,” which are the latent factors in
this context. Each item in a course pertains to one or more
of these topics, and each student has some ability in each
topic. Students may gain or lose ability in each topic over
the course of the quarter, just as user preferences may drift.
Here we assume that drift is a negligible effect since testing
on a topic generally occursafter that topic has been covered
in the course.

Non-Negative Matrix Factorization
A well known approach to collaborative filtering is Non-
Negative Matrix Factorization(Lee & Seung 2001) (NMF).
Under NMF, the matrix of interestM is approximated by the
product of two non-negative matricesWH ≈ M whereW
is m× f andH is f × n. The parameterf is the number of

factors assumed to be present in the data. Additionally, each
entry inM , W , andH is restricted to be non-negative. In
the idealized educational view of the algorithm the factors
are topics, i.e.,Wi,j is the ability of studenti in topic j, and
Hj,k is the relevance of topicj to questionk. The matrix
W is the student ability matrix, andH is the question rele-
vance matrix. In practice the factors that are identified may
correspond to non-topical factors ranging from whether the
student was having a good day to how good the student is at
reading trick questions.

The non-negativity of NMF gives the output of the algo-
rithm a more intuitive interpretation than the factors from
principal-component analysis (PCA) or singular-value de-
composition (SVD) where the matrix is broken down into
possibly negative values. With NMF, any non-zero entry is
an additive weight for the final output. The assumption that
a student’s score on an item is the inner product of their abil-
ity on f topics and the relevancy of the item to thosef topics
is a simplification, but it does capture some of the structure
of the process.

A straightforward technique presented in (Lee & Seung
2001) is a gradient descent approach to discovering theW
andH whose product best approximatesM . At each itera-
tion, every entry inW andH is updated multiplicatively in
a way guaranteed to reduce the component-wise Euclidean
distance betweenM andWH. On most if not all grade-
book datasets, this algorithm converges to within 1% of M
in 250 to 500 iterations, each of which can be calculated
rapidly. Additionally, it is generally very insensitive to ini-
tial conditions. Of the1000 NMF runs we have performed
to date, only once has there been a noticeable effect of the al-
gorithm being trapped in a local minimum. The simplest al-
gorithm presented gives multiplicative update rules that per-
form a gradient descent minimization of the Frobenius norm
of M −WH (that is, the element-wise Euclidean distance
betweenM andWH):

Ha,u ← Ha,u
[WT M ]a,u

[WT WH]a,u

Wi,a ←Wi,a
[MHT ]i,a

[WHHT ]i,a
However, this relies upon full data due to the matrix-

multiplication steps involvingM in the update rules. Since
M is unlikely to be complete, this version of the NMF algo-
rithm is unsuitable.

Filling-in the missing data with a known value like 0 is
certainly incorrect, since in general some of the students that
didn’t attempt an item would have answered it correctly (in
fact, hopefully most of them would). There are, however, a
number of possible solutions to this. In this paper, we con-
sider two: alternative optimization and estimation of missing
data.

Alternate Optimization. An alternative to optimizing the
Euclidean distance metric is presented in (Lee & Seung
1999) where the objective function is

F =
m∑

i=1

n∑
u=1

[Miu log(WHiu)−WHiu]



This objective function is derived by interpreting the NMF
process as a method for constructing a probabilistic model
where valueMi,j is generated by adding Poisson noise to
WHi,j and then finding the maximal likelihoodW andH
for generating the knownM .

The benefit of using this objective function is that its cor-
responding update rules

Wi,a ←Wi,a

∑
u

Mi,u

WHi,u
Ha,u

Ha,u ← Ha,u

∑
i

Mi,u

WHi,u
Wi,a

no longer contain matrix multiplication operations onM . To
avoid degenerate conditions, the additional constraint that
each column ofW is normalized after each update round is
imposed.

In the summations, simply skipping those entries that are
undefined because of missing values inM is equivalent to
assigning 0 to the missing entries. An option that works bet-
ter is to normalize each summation by the number of missing
entries in that summation (thus, multiply by 1.5 if only 2 of 3
values were present). This is equivalent to a pre-processing
step that constructs two versions ofM : one where missing
values are initialized to the average value for the row (a stu-
dent is predicted to do as well on missing items as they did
on average for existing items) and one similarly for columns
(a student is predicted to do as well on a missing item as the
average of those classmates that attempted the item.) The
first version is used for the first update rule (forW ) and the
second version is used for the second update rule (forH).

Estimate Missing Data. Given this view of the solution,
a natural next step is to predict the missing values in pre-
processingM before running an out-of-the-box NMF algo-
rithm. Knowing the domain from which the dataset comes
can be a great help in overcoming the problem of miss-
ing data. Within educational statistics one of the most
powerful statistical frameworks is Item Response Theory
(IRT) (Baker 2001), the framework behind many computer-
adaptive tests such as the new GRE (Wim J. Van der Lin-
den 2000). Although IRT requires larger student populations
than are generally found in a single course, some of the con-
cepts from IRT are useful for developing a simple model for
modeling question difficulties and estimating missing score
data. IRT parameterizes a cumulative distribution of the
probability a student with a given level of ability will get
a given item correct. Usually these “characteristic curves”
are represented with a two-parameter logistic function

P (θ) = 1/(1 + eα(θ−β))

whereβ governs the difficulty of the question andα governs
the discrimination of the question. Here discrimination is
related to how likely it is that a student with ability less than
β can answer correctly and how likely a student with ability
greater thanβ may answer incorrect.

Even without a sufficient population to estimateα andβ
directly in this model, the concepts of item difficulty and

discrimination as a parameterized model are useful ones. A
simple technique for estimatingα andβ is to sort the student
responses to the given itemj by the student’s course grade
(as assigned by the instructor) and find the split pointβ that
maximizes the number of students with wrong answers be-
low the split plus the number of students with right answers
above the split. We letα denote the fraction of students that
β predicts correctly — formally:

α = (
∑

i:Si<β

δ(Mi,j) +
∑

i:Si≥β

δ(Mi,j − 1))/n

In this view, α is the empirical odds that a student with
Si < β will get the item correct or one withSi ≥ β will get
it incorrect.

It is a simple matter then to calculate these empiricalα
and β values for each item based on the students that at-
tempted that item. For every other student, we can provide a
binary estimate of their score on the item by comparing their
“ability” (course score)Si with the difficulty of the ques-
tion1. If Si ≥ β then we fill inMi,j = 1 with probabilityα
andMi,j = 0 with probability1−α. For scores less thanβ,
we do the reverse.

This is an extremely basic parameterization, but one that
takes into account a simplified model of student assessment.
When we evaluated with leave-one-out cross-validation on
three gradebook datasets, this method provides an accuracy
of 63% to 69% when predicting individual responses, de-
pending on the gradebook. Other simple techniques found
in the general literature perform worse by as much as a fac-
tor of 2, as seen in Table 1.

NMF With Known Values
A simple method to extend the NMF algorithm is to query
the instructor for some portion of the question relevance ma-
trix, H. While identifying the entire matrix is time consum-
ing and tedious, providing a fraction of the entries of the rel-
evance matrix can be done quickly. Some intial “seeding” of
the relevance matrix with known values can also save post-
processing time by eliminating the need to later label the
resulting topics with meaningful names.

In our experiments, we label this extension NMF+K along
with the percentage of relevance matrix entries provided by
the instructor.

Sigmoidal Factorization
The implicit model given by NMF is that student ability af-
fects their score outcomes linearly. A more common model
would be a sigmoid, as is commonly used in item-response
theory. Applying techniques from (Gordon 2002) allows us
to assume a modelM = f(WH) whereM is the score
matrix, W andH are the student ability and question rele-
vance matrices, respectively, andf applies the sigmoid op-
eration to each component of its input matrix and outputs the

1The majority of items in our datasets come from multiple
choice questions and thus have no partial credit. For datasets with
a large population of non-binary items, this technique may not be
suitable.



(same-dimensionality) result matrix. This may match more
accurately the mental model governing answering items cor-
rectly. This algorithm is also solved using a stochastic gra-
dient descent. We present results for this algorithm abbrevi-
ated as “GGLLM.”

Principal and Independent Component Analysis
In our results section, we also compare to Principal Com-
ponent Analysis (PCA) and Independent Component Anal-
ysis (ICA) (Hyvärinen 1999). Both factor the matrixM into
two components,W andH, just as NMF. However, neither
require the components to be non-negative. PCA finds the
factorization that minimized the squared error in reconstruc-
tion. This is also the factorization that renders each factor
statistically uncorrelated. ICA finds the factorization that
renders each factor statistically independent.

Common-Factor Analysis
In psychometrics,2 the textbook method for performing
topic filtering/clustering is “factor analysis” (Spearman
1904). Originally developed in 1904 by Charles Spearman
to support his theories on intelligence, factor analysis com-
bines a number of techniques based on singular-value de-
composition of the correlation matrix of the values in ques-
tion. Unlike the collaborative filtering algorithms discussed
previously, factor analysis does not yield a matrix of student
ability in each “topic” (without performing a separate fac-
tor analysis on the correlation of student scores.) Instead, it
produces the matrix of questions’ factors without producing
the corresponding students’ factors matrix.

During its century-long evolution, factor analysis has ac-
quired a large number of standard options and related algo-
rithms. So, we chose to use an off-the-shelf implementa-
tion(SAS 2005).

One minor complexity in using factor analysis on edu-
cational data is that the correct method of calculating the
correlation matrix would be to drop any row ofM (student)
that has any missing values. Depending on how many in-
struments are given out during a course offering, this could
easily leave no data with which to calculate correlation. The
accepted method for dealing with this is to leave out any
rows that have missing data in the two columns whose cor-
relation is being measured at any given point. So long as
the missing values are randomly distributed (i.e., whether a
score is missing is not related to the ability of the student on
that question) this will not bias the correlation matrix signif-
icantly, but the possibility should be noted.

Probabilistic Relational Models
NMF and CFA look for linear decompositions of the score
matrix. We have also used Bayesian networks to learn non-
linear probablistic decompositions. We hypothesize a hid-
den discrete variable for each question (qi for questioni)
and for each student (sj for studentj). The former repre-
sents the type of the question and the later the type of the

2The branch of psychology and education concerning test va-
lidity and educational statistics.

student. These two types of hidden attributes need not align
or carry the same symantic meaning as each other.

Our probabilistic model now has three distributions:p(qi)
(the prior probability of the question type),p(sj) (the prior
probability of the student type), andp(mij | qi, sj) (the
probability that a student of typesj will receive a score
of mij on a question of typeqi). Together this forms a
Bayesian network with one node (variable) for each stu-
dent, question, and score. The student and question nodes
have no parents. Each score node has one question and
one student as parents. This forms a probabilistic relational
model (PRM): a Bayesian network built from a template (or
schema) of shared probability distributions. (Poole 1993;
Ngo & Haddawy 1996; Koller & Pfeffer 1998; Friedmanet
al. 1999)

Our data is partially observed: we know the value of the
mij variables but do not observe theqi or sj variables. We
employ expectation-maximization (EM) (Dempster, Laird,
& Rubin 1977) to learn the three distributions above. At
each iteration of the EM algorithm, we must calculate the
marginal distributions over the variables, given a particular
model. Exact marginal computations in this network are in-
tractable. Instead, we use the standard approximate infer-
ence method of loopy belief propagation (the application of
the polytree inference algorithm of (Pearl 1988) to graphs
with loops). Although such a method is approximate and
stochastic in its results, our tests with these datasets have
shown that the results are consistent and provide stable con-
vergent results.

Once learned, the model can be used to calculate the pos-
terior distributions over the question types given the scores.
This is another marginal computation and again we use
loopy belief propagation. We assign each question to the
type (or topic) with the highest a posterori probability.

4. Preliminary Results
To ensure that our method for filling missing data performed
at least as well as any simpler concept we’ve found in the
literature, we tested against the obvious solutions: missing
item scores are assumed to be wrong (0), assumed to be right
(1), or assumed to be correct with probability equal to the
average of the non-missing scores for that student. In each
case, our prediction is better, which is unsurprising consid-
ering the added expressiveness of the model. The numbers
presented in Table 1 are calculated by performing leave-one-
out cross validation on the known data in the dataset.

There are two prime methods for evaluating the abil-
ity of these algorithms to extract valid topic information.
First, we can compare the topic groupings (as determined by
the largest-absolute-weight factor for each item) algorithmi-
cally generated with groupings created by human instructors
given the question text. Secondly, when a full question rele-
vance matrix is provided we can directly compare with that.
In this case, we can evaluate the element-wise Euclidean dis-
tance between the provided matrix and the generated one.

For topic-grouping evaluation, we had 3 datasets readily
available to us. To determine the topics that should be dis-
covered, we asked three instructors for each dataset to make
groups of the items by topic. Just as with our algorithms,



Method Avg. Squared Error
Diff+Disc 30.9%

Wrong 63.2%
Right 32.1%

Student Avg 41.6%

Table 1: Comparison of data-filling methods. “Diff+Disc” is
our method based on IRT. “Wrong” corresponds to predict-
ing a student will score 0 on every missing value. “Right”
corresponds to predicting a student will score the maximum
on every missing value. “Student Avg” corresponds to using
a student’s average score (taken across present values) to fill
in missing values for that student.

not all questions needed to be grouped, and some questions
could be in multiple groups. Our only request was that they
be grouped into topical clusters.

The first was from a recent offering of our undergradu-
ate Operating Systems course (CS153). This dataset has 34
questions on 4 instruments, and 64 students. 28 of the ques-
tions are binary. For evaluating theNMF + K extension,
22% of the possible relevance entries were provided by the
instructor.

The second dataset comes from an upper-division Algo-
rithms course (CS141). This dataset has 2 instruments, 15
questions, 19 students, and a full relevance matrix provided
by the instructor. None of the questions are binary.

The third and final dataset we evaluated comes from an
introduction to computing course (CS008). This dataset has
80 binary questions and 269 students. No relevance infor-
mation was provided by the instructor.

To determine how many factors to extract from our
CS153, we applied both the Kaiser criterion (Kaiser 1960)
and Cattell’s scree test (Cattell 1966), techniques from psy-
chometrics developed to help determine the number of fac-
tors to look for. The Kaiser criterion keeps a number of fac-
tors equal to the number of eigenvalues of the correlation
matrix which are greater than 1. In our case this indicated
dozens of factors, which would make the results extremely
difficult to evaluate, and was questionable since few of the
eigenvalues were significantly above 1. Instead we utilized
Cattell’s scree test. This test looks for an “elbow” in the
graph of sorted eigenvalues of the correlation matrix vs. their
rank. It indicated that 5 would be a good number of factors.

For CS141, the relevance matrix was provided for us, dic-
tating the number of factors ahead of time. For CS008, we
chose 7 factors based on the number of non-singleton groups
identified by our volunteer examiners.

Each algorithm gives a weight relating the strength of the
connection between each question and each topic (e.g., the
values of the question-factor matrixH for NMF and the
probability that the posterior distribution of the type of the
question given the data for PRM approach). Each algorithm
was run to find factors and output the relevance of each item
to those factors. Each factor’s four highest-weight items
constituted itsselective group. But, from each selective
group, we omitted every item whose weight was less than
33% of the maximum output — that threshold was chosen

because empirically it removed very few items but prevented
any item from belonging to more than one group. Addition-
ally we identify thefull group for each factor as the set of
items that have more relevance for that factor than for any
other factor. Thus, every item is placed into exactly one full
group.

Our results are presented in Tables 2-4. We looked at four
statistics for quantifying how well these algorithms discov-
ered factors corresponding to the human notion of topic:

• Selective Precision- For the selective groups described
above, how many of the intra-group pairings can be found
in the groups identified by a human? For example, if q2
and q7 are placed in the same selective group, are q2 and
q7 found in the same group in any of the human-created
groupings? If an algorithm returns the trivial “no groups”
result, precision will be 100%.

• Selective Recall- For each intra-group pairing in the
human-generated groups, can that pairing be found in the
selective groups identified by the algorithm? This is in
some sense the inverse of the above. If an algorithm re-
turns the trivial “everything in one group” result, recall
will be 100%.

• Full Precision- Precision as described above, but on the
full group.

• Full Recall- The recall of the full group.

Selective groups vs. full groups can be viewed as two
points along a continuum. In addition to providing these two
extremes, Figure - show the entire precision-recall curves for
NMF, SVD, CFA, and PRM on all three datasets. We only
present results on these four for clarity, and selected these
because they are the most diverse of the set of evaluated al-
gorithms.

Since not all selective groups have four members and
since full groups have varying sizes, the number of possible
pairs that match varies from grouping to grouping. Thus,
rather than the raw number of matches, the more mean-
ingful percentage agreement is provided. Since the NMF,
GGLLM, and PRM algorithms are stochastic, we average
these figures over ten runs and provide standard deviations.

As a baseline comparison, we also show results for the av-
erage of evaluating ten randomly generated groupings. All
statistics are presented in Tables 2-4. Note that since the
CS008 dataset comes from a single exam, there are no miss-
ing entries, and thus no need for data completion.

Our second method of comparing the effectiveness of the
various algorithms is to examine how well they can repro-
duce a relevance matrix from the data. For our CS141
dataset, we were kindly provided a full relevance matrix, en-
coding at a more precise level the instructor’s domain knowl-
edge in terms of identifying similar questions. Figure shows
the decreasing error for the NMF+K algorithm as the sup-
plied percentage of the relevance matrix increases. Table
5 shows average reconstruction error of the provided rele-
vance matrix for various algorithms. Again, for stochastic
algorithms results are averaged over ten runs and presented
with one standard deviation.



Algorithm Data Completion Selective Precision% Selective Recall% Full Precision% Full Recall%
NMF N 29± 6 5± 1 29± 2 25± 5
NMF Y 32± 9 6± 1 29± 2 27± 4
NMF+K(22%) N 29± 8 5± 1 30± 2 28± 6
NMF+K(22%) Y 35± 6 6± 1 30± 3 29± 5
FastICA Y 29.6 5.3 29.1 22.0
SVD Y 46.7 11.0 29.7 24.4
GGLLM Y 30± 7 5± 1 27± 4 23± 5
PRM N 23± 5 3.6± 0.7 26.8± 0.3 26± 2
CFA N 30.0 5.7 27.5 18.7
Rand - 30± 10 4.5± 2 30± 3 20± 3

Table 2: Comparison of filtering algorithms, CS153 Dataset

Algorithm Data Completion Selective Precision% Selective Recall% Full Precision% Full Recall%
NMF N 50± 10 17± 5 36± 5 27± 9
NMF Y 46± 7 13± 1 36± 3 27± 4
NMF+K(33%) Y 40± 10 16± 5 37± 5 32± 20
NMF+K(66%) Y 44± 9 15± 3 41± 6 30± 8
NMF+K(100%) Y 100 28 57 59
FastICA Y 38 20 40 22
SVD Y 48 22 46 33
GGLLM Y 34± 9 12± 4 40± 5 40± 10
PRM N 25± 0 6.5± 0 44.2± 0 41.3± 0
CFA N 42 22 32 15
Rand - 40± 10 10± 4 37± 6 24± 6

Table 3: Comparison of filtering algorithms, CS141 dataset

Algorithm Selective Precision Selective Recall% Full Precision% Full Recall%
NMF 27± 5 1.2± 0.5 35± 2 27± 4
FastICA 28.6 0.8 32.8 25.2
SVD 38 2 35 30
GGLLM 30± 20 0.3± 0.6 28± 1 50± 10
PRM 50± 4 1.9± 0.5 28.6± 0.9 27± 3
CFA 29.7 1.4 25.4 12.2
Rand 26± 7 1.3± 0.7 28± 2 14± 1

Table 4: Comparison of filtering algorithms, CS008 Dataset

Algorithm Data Completion Percent Error
NMF N 0.15± 0.02
NMF+K(33%) N 0.12± 0.02
NMF+K(66%) N 0.09± 0.01
NMF Y 0.13± 0.02
NMF+K(33%) Y 0.14± 0.02
NMF+K(66%) Y 0.12± 0.02
SVD Y 0.17
ICA Y 0.13
CFA N 0.17

Table 5: Average relevance matrix reconstruction error



Figure 1: Precision-Recall of Selected Algorithms, CS153
Dataset

Figure 2: Precision-Recall of Selected Algorithms, CS141
Dataset

Figure 3: Precision-Recall of Selected Algorithms, CS008
Dataset

Figure 4: NMF+K Error vs. Percent Relevance Provided

Discussion
On these datasets, using the topic-grouping evaluation, only
SVD consistently outperforms a random grouping. The var-
ious implementations of NMF perform better on the non-
binary CS141 dataset, but there is insufficient evidence to
draw strong conclusions from this.

One algorithm whose performance needs to be specifi-
cally examined is that of CFA. While CFA is the textbook
method for performing precisely this task, its performance
is mixed at best. For both selective precision and selective
recall, CFA generally ranks above average. On the opposite
end of the precision-recall curve, CFA performs worse than
random on every dataset presented.

It is also notable that the data-estimation technique pro-
vides improvement in the precision when evaluated under
topic-grouping, but the opposite appears to be true when
directly evaluating the reconstruction of the relevance ma-
trix. This suggests that other data mining forays into edu-
cation should be mindful of educational models of learning
and cognition when building specialized models for a given
problem.

When evaluating the algorithms under the reconstruction
test SVD, previously our hands-down winner, performs as
bad as CFA: to a statistically significant level, these algo-
rithms perform worse numerically. The reason for the dis-
connect between performance on these two tests is as-yet un-
known. Given that we currently only have one full relevance
matrix, it is too early to generalize these results. Certainly
the numeric performance of NMF here merits continued in-
vestigation with this family of algorithms, unlike ICA and
CFA which we feel can be safely ignored in future evalua-
tion.

5. Conclusions
The practice of data mining on item-level data is confounded
by a number of factors. Most notable amongst them is the
level of randomness in seemingly stable scores. A concept
that is well-known in educational statistics istest reliability,



the level to which re-administering the test would result in
the same scores.3 In our experience, instruments given at the
University level are often thrown together haphazardly, but
scores are treated as if they were precise values rather than
a single high-uncertainty measurement. Thus, the level of
“noise” in the average gradebook dataset is at times stagger-
ing. Techniques that do not take into account the underlying
mental models are unlikely to succeed at extracting any in-
formation from this data.

However, there are data-analysis techniques from the
fields of educational statistics, data mining, and psychomet-
rics that can wring useful information from these datasets of
per-item scores. At this point, the level of precision of the
results still remains too low to build usable tools using this
technique, but the results are promising. A number of im-
provements have been proposed, but the question becomes,
“What is the minimum amount of information necessary to
extract topic clusters from item-level scores?” We feel that
the results presented here demonstrate feasibility, but educa-
tional aids based on this technology are not yet forthcoming.

6. Future Work
Significant work remains in this area. Our goal is to be able
to correctly extract topic information with as little input from
the instructor as possible. If item-level scores and course
grades are insufficient to get accurate results, as our investi-
gations to date have shown, we plan to investigate how much
prior knowledge of question and topic information is neces-
sary to get accurate clusters.

Alternatively, investigation into whether the statistical
models that are being generated are in agreement with psy-
chological models of cognition and learning could resolve
the discrepancy: it may simply be that the topic clusters that
are being provided by our volunteers do not match (from
a constructivist perspective) the models assembled by stu-
dents. This seems likely, as the various algorithms for ex-
tracting latent variables seem to have only weak correlation
with instructor-identified notion of topic.
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