
Importance Sampling Estimates for Policies with Memory

Christian R. Shelton cshelton@ai.mit.edu

MIT, AI Lab 545 Technology Square, NE43-741, Cambridge, MA 02139 USA

Abstract
Importance sampling has recently become
a popular method for computing off-policy
Monte Carlo estimates of returns. It has
been known that importance sampling ra-
tios can be computed for POMDPs when the
sampled and target policies are both reactive
(memoryless). We extend that result to show
how they can also be efficiently computed for
policies with memory state (finite state con-
trollers) without resorting to the standard
trick of pretending the memory is part of
the environment. This allows for very data-
efficient algorithms. We demonstrate the re-
sults on simulated problems.

1. Introduction

In reinforcement learning, the goal is to maximize the
expected return by changing the policy. An poten-
tially important step in this process is policy evalua-
tion: calculating the expected return given a policy.
If the agent has been executing this policy for a series
of trials, then a reasonable estimate of the expected
return is the average return over the trails conducted.
This is the standard Monte Carlo estimate.

However, if the agent has been executing a different
policy than the one we would like to evaluate (i.e. we
are doing off-policy evaluation) then we must be more
clever in how we estimate the return. In particular,
we would like to use trajectories collected under one
policy (or a set of policies) to evaluate a new (target)
policy. This allows for better reuse of data in POMDP
RL tasks. Importance sampling has recently become
a popular method for dealing this problem (Precup
et al., 2000; Meuleau et al., 2001; Shelton, 2001).

1.1 Importance Sampling

Importance sampling is typically presented as a
method for reducing the variance of the estimate of
an expectation by carefully choosing a sampling dis-
tribution (Rubinstein, 1981). For example, the most

direct method for evaluating
∫
f(x)p(x) dx is to sam-

ple i.i.d. xi ∼ p(x) and use 1
n

∑
i f(xi) as the esti-

mate. However, by choosing a different distribution
q(x) which has higher density in the places where
|f(x)| is larger, we can get a new estimate which is
still unbiased and has lower variance. In particular,

we now draw xi ∼ q(x) and use 1
n

∑
i f(xi)

p(xi)
q(xi)

as our

estimate. This can be viewed as estimating the expec-

tation of f(x) p(x)
q(x) with respect to q(x) which is like

approximating
∫
f(x) p(x)

q(x) q(x) dx with samples drawn

from q(x). If q(x) is chosen properly, our new estimate
has lower variance. There are more complicated meth-
ods, but they are not important for our discussion as
they all rely on the same basic ratio calculations. We
refer the reader to Hesterberg (1995) for some further
discussion of different methods.

For off-policy Monte Carlo evaluation, we will be
forced to “turn importance sampling on its head.” In-
stead of choosing q(x) to reduce variance, we will be
forced to use q(x) because of how our data was col-
lected.

1.2 Importance Sampling for RL

To instantiate importance sampling in the reinforce-
ment learning framework, we set a bit of notation. Let
h represent a trial history1 of four sequences: the se-
quence of world states (s1 through sT), the sequence
of observations (x1 through xT), the sequence of ac-
tions (a1 through aT), and the sequence of rewards (r1

through rT). We have assumed a fixed-length trial of T
time steps. Note that while we have included the state
sequence as part of the history, it is not observable by
the agent; it is included for theoretical purposes only
and any calculation made using the history must not
depend on the state sequence. Note that fixing a pol-
icy fixes a probability distribution over histories. The

1It might be better to refer to this as a trajectory since
we will not limit h to represent only sequences that have
been previously observed; it can also stand for sequences
that might be observed. However, the symbol t is over used
already.

function R(h) (the return, or sum of rewards, of a his-
tory) is the equivalent to f(x) in the previous section
and p(h|π) is the distribution from which samples are
drawn if we are executing policy π.

In particular, the agent has been executing policy
π′ (our sampled trials are drawn from the distribu-
tion p(h|π′)) and we wish to estimate the expectation
of R(h) with respect to p(h|π). Therefore if we let
h1, h2, . . . , hn be the collected histories2 under policy
π′, the standard importance sampling estimate is

E[R|π] ≈ 1

n

n∑

i=1

R(hi)
p(hi|π)

p(hi|π′) .

This may look like a problem because h represents the
entire history including the state sequence (which was
unobserved). Computing p(hi|π) or p(hi|π′) is impos-
sible in most cases without knowledge of the underly-
ing POMDP. However, in the next section we examine
why this isn’t a problem for reactive policies and then
extend that result to policies with memory.

2. Computing Importance Sampling
Ratios

While not all importance sampling estimators take ex-
actly the form of equation 1.2, all require computing
the ratio of the probability of a history under one pol-
icy against the probability of the same history under a
different policy. Each of Precup et al. (2000); Meuleau
et al. (2001); Shelton (2001) present a slightly differ-
ent estimator but all depend on the same importance
sampling ratios. It is these ratios (and not the indi-
vidual probabilities) which are computable.

2.1 Memoryless Ratios

Let π(x, a) be a stochastic policy (the probability of
picking action a upon observing x). For the moment
we will consider only reactive policies of this form but
will extend this in the next section to policies with
memory. The key observation is that we can calculate
one factor in the probability of a history given a policy.

2We have used superscripts to denote trails and sub-
script to denote time within a trial.

� � �

� � �

� �

� �

� �

� � �

� �

a1 a2 a3

m1 m2 m3

x1 x2 x3

s1 s2 s3

�
time

Figure 1. Dependency graph for agent-world interaction
with memory model

In particular, that probability has the form

p(h|π) = p(s1)
T∏

t=1

p(xt|st)π(xt, at)p(st+1|st, at)

=

[
p(s1)

T∏

t=1

p(xt|st)p(st+1|st, at)
][

T∏

t=1

π(xt, at)

]

= W (h)A(h, π) .

A(h, π), the effect of the agent, is computable whereas
W (h), the effect of the world, is not because it depends
on knowledge of the underlying state sequence. How-
ever, W (h) does not depend on π. This implies that
the ratios necessary for importance sampling are ex-
actly the ratios that are computable without knowing
the state sequence. In particular, if a history h were
drawn according to the distribution induced by π and
we would like an unbiased estimate of the return of
π′, then we can use R(h) p(h|π

′)
p(h|π) and although neither

the numerator nor the denominator of the importance
sampling ratio can be computed, the W (h) terms in
each probability cancel leaving the ratio of A(h, π ′) to
A(h, π) which can be calculated. A different statement
of the same fact have been shown before in Meuleau
et al. (2001).

2.2 Memory Ratios

We would now like to move beyond reactive policies.
Consider adding memory in the style of a finite-state
controller. At each time step, the agent reads the value
of the memory along with the observation and makes
a choice about which action to take and the new set-
ting for the memory. The policy now expands to the
form π(x,m, a,m′) = p(a,m′|x,m), the probability of
picking action a and new memory state m′ given ob-
servation x and old memory state m. Now let us factor

this distribution, thereby limiting the class of policies
realizable by a fixed memory size slightly but mak-
ing the model simpler. In particular we consider an
agent model where the agent’s policy has two parts:
πa(x,m, a) and πm(x,m,m′). The former is the proba-
bility of choosing action a given that the observation is
x and the internal memory ism. The latter is the prob-
ability of changing the internal memory tom′ given the
observation is x and the internal memory is m. Thus
p(a,m′|x,m) = πa(x,m, a)πm(x,m,m′). By this fac-
toring of the probability distribution of action-memory
choices, we induce the dependency graph shown in fig-
ure 1.

If we let M be the sequence {m1,m2, . . . ,mT }, p(h|π)
can be written as
∑

M

p(h,M |π)

=
∑

M

p(s1)p(m1)
T∏

t=1

p(xt|st)πa(xt,mt, at)

πm(xt,mt,mt+1)p(st+1|st, at)

=

[
p(s1)

T∏

t=1

p(xt|st)p(st+1|st, at)
]

[∑

M

p(m1)
T∏

t=1

πa(xt,mt, at)πm(xt,mt,mt+1)

]

= W (h)A(h, π) ,

once again splitting the probability into two parts: one
for the world dynamics and one for the agent dynam-
ics. The A(h, π) term now involves a sum over all
possible memory sequences.

Computing this sum explicitly would take too long.
However, A(h, π) is exactly the probability of an input-
output hidden Markov model (IOHMM), a slight vari-
ation of the general HMM. In particular, this new
problem has the same structure as figure 1 except that
the state sequence and all associated links are removed.
Linear time algorithms are well known for computing
the probability and its derivative for these models us-
ing dynamic programming. A good discussion of such
algorithms for the HMM case can be found in Rabiner
(1989). Bengio (1999) discusses extensions of HMMs
including IOHMMs. For completeness, we will give a
quick overview of the results needed for the importance
sampling.

For a sequence z1, z2, . . . , zn, let zi,j represent the se-
quence zi, zi+1, . . . , zj for simplicity of notation. We
will define recurrence relations on two quantities. The

first is αi(m) = p(a1,i,mi = m|x1,T , πm, πa). Its re-
currence is

αi+1(m) = πa(xi+1,m, ai+1)
∑

m′

αi(m
′)πm(xi,m

′,m)

which says that the probability of having memory m
after i + 1 time steps is equal to probability of pro-
ducing the generated action with that memory bit
multiplied by the sum of all the different ways the
agent could have transitioned from the previous mem-
ory state (m′) to the current memory state multiplied
by the probability the agent was previous in memory
state m′. We are counting up the number of ways of
getting to memory m at time i+1 while still producing
the observed action sequence. To do this we rely on
the same set of probabilities for the previous time i.

The second recurrence relation is for βi(m) =
p(ai+1,T ,mi = m|x1,T , πm, πa):

βi(m) =
∑

m′
πm(xi,m,m

′)πa(xi+1,m
′, ai+1)βi+1(m′) .

This has a similar interpretation, but working back-
wards through the data. The recurrence base cases
are α1(m) = p(m)πa(x1,m, a1) and βT (m) = 1. Be-
cause of the Markov property,

p(a1,T ,mi = m|x1,T , πa, πm) = αi(m)βi(m) .

Thus the probability of the entire sequence can be
found by computing

∑
m αi(m)βi(m) for any value i

(i = T is nice because then we don’t have to compute
the β sequence).

In some cases, we might also need the derivative of the
probability with respect to the parameters. Without
repeating the derivation, the result is

∂A(h, π)

πa(x,m, a)
=

∑

i|ai=a,xi=x

αi(m)βi(m)

πa(x,m, a)

∂A(h, π)

πm(x,m,m′)
=
∑

i|xi=x
αi(m)βi+1(m′)πa(xi+1,m

′, ai+1) .

We can now use the same estimators and allow for
policies with memory. In particular, the estimator
has explicit knowledge of the working of the mem-
ory. This is in direct contrast to the method of adding
the memory to the action and observation spaces and
running a standard reinforcement learning algorithm
(see Peshkin et al. (1999) as an example of this ap-
proach) where the agent must learn the dynamics of its

own memory. With this explicit memory model, the
learning algorithm understands that the goal is to pro-
duce the correct action sequence and uses the memory
state to do so by coordinating the actions in different
time steps.

3. Experiments

� � �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2. Diagram of the “load-unload” world. This world
has nine states. The horizontal axis corresponds to the
positioning of a cart. The vertical axis indicates whether
the cart is loaded. The agent only observes the position of
the cart (five observations denoted by boxes). The cart is
loaded when it reaches the left-most state and if it reaches
the right-most position while loaded, it is unloaded and the
agent receives a single unit of reward. The agent has two
actions at each point: move left or move right. Moving left
or right off the end leaves the cart unmoved. Each trial
begins in the left-most state and lasts 100 time steps.

�

�

�

��

�

�

�

�

�

Figure 3. Diagram of the “blind load-unload” world. This
world has five states. The horizontal axis corresponds to
the positioning of the cart. The vertical axis indicates
whether the cart is loaded. The agent is completely blind:
no matter what the state of the world, it observes the same
thing. Other than these differences, the problem is the
same as the one in figure 2. Each trial begins in the left-
most state and lasts 100 time steps.

The load-unload problem of figure 2 is a traditional
POMDP problem. A cart sits on a line with five dis-
crete positions. When the cart makes it to the left-
most state, the cart is filled. When the cart arrives in
the right-most state with a full cart, the cart is emp-
tied and the agent receives one unit of reward. The
agent can observe the position of the cart, but not the
contents (i.e. it does not know whether the cart is full
or empty). To achieve reasonable performance, the ac-
tions must depend on the history. We give the agent
one memory bit (two memory states); this results in
twenty independent policy parameters. We use the

importance sampling greedy-search algorithm of Shel-
ton (2001). Figure 4 compares using the importance
sampling estimate in two different ways. On the left
is the result when the memory is made to be part of
the environment (i.e. the action space is now all pos-
sible combinations of moving and setting the memory
bit and the observation space is all possible combina-
tions of position and memory state). This means that
there are 10 observations and 4 actions. On the right
is the result when the memory is internal to the algo-
rithm and incorporated as shown in the previous sec-
tion (same number of observations and actions). We
can clearly see that the number of trials required to
converge to the optimal solution is far fewer in the
case of internal memory.

To consider a more drastic example, we constructed a
blind load-unload problem, as shown in figure 3. In
this case, we give the agent two memory bits (four
memory states). Figure 5 compares the result of in-
ternal and external memory for this example. Again,
we see a clear gain by explicitly modeling the memory
dynamics.

4. Conclusion

Although these results are with one particular impor-
tance sampling algorithm, they should work equally
well for any method that depends on the importance
sampling ratios. With this method, it is possible to
effectively learn finite-state controllers. Furthermore,
the technique is not limited to modeling memory bits.
It can be extended to any part of the agent or envi-
ronment for which the dynamics are known and the
action selection is factorable.

References

Bengio, Y. (1999). Markovian models for sequential
data. Neural Computing Surveys, 2, 129–162.

Hesterberg, T. (1995). Weighted average importance
sampling and defensive mixture distributions. Tech-
nometrics, 37, 185–194.

Meuleau, N., Peshkin, L., & Kim, K.-E. (2001). Ex-
ploration in gradient-based reinforcement learning
(Technical Report AI-MEMO 2001-003). MIT, AI
Lab.

Peshkin, L., Meuleau, N., & Kaelbling, L. P. (1999).
Learning policies with external memory. Proceed-
ings of the Sixteenth International Conference on
Machine Learning.

Precup, D., Sutton, R. S., & Singh, S. (2000). Eligi-

50 100 150 200 250
0

2

4

6

8

10

12

trial number
re

tu
rn

50 100 150 200 250
0

2

4

6

8

10

12

trial number

re
tu

rn

external memory internal memory

Figure 4. A comparison of placing the memory bits externally as part of the environment to modeling them explicitly as
an internal part of the agent for the problem in figure 2. Both graphs were generated from 10 runs of the algorithm. The
plotted lines are the (from top to bottom), maximum, third quartile, median, first quartile, and minimum return for each
time step across the 10 runs.

50 100 150 200 250 300
0

5

10

15

20

25

trial number

re
tu

rn

50 100 150 200 250 300
0

5

10

15

20

25

trial number

re
tu

rn

external memory internal memory

Figure 5. A comparison of placing the memory bits externally as part of the environment to modeling them explicitly as
an internal part of the agent for the problem in figure 3. Both graphs were generated from 10 runs of the algorithm. The
plotted lines are the (from top to bottom), maximum, third quartile, median, first quartile, and minimum return for each
time step across the 10 runs.

bility traces for off-polcy policy evaluation. Proceed-
ings of the Seventeenth International Conference on
Machine Learning.

Rabiner, L. R. (1989). A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77, 257–286.

Rubinstein, R. Y. (1981). Simulation and the monte
carlo method. John Wiley & Sons.

Shelton, C. R. (2001). Policy improvement for
POMDPs using normalized importance sampling.
Proceedings of the Seventeenth International Con-
ference on Uncertainty in Artificial Intelligence. to
appear.

