
A Continuation Method for Nash Equilibria in Structured Games

Ben Blum
Stanford University

bblum@stanford.edu

Christian R. Shelton
Stanford University

cshelton@cs.stanford.edu

Daphne Koller
Stanford University

koller@cs.stanford.edu

Abstract

We describe algorithms for computing Nash equilibria in
structured game representations, including both graphi-
cal games and multi-agent influence diagrams (MAIDs).
The algorithms are derived from a continuation method
for normal-form and extensive-form games due to Govin-
dan and Wilson; they follow a trajectory through the
space of perturbed games and their equilibria. Our algo-
rithms exploit game structure through fast computation
of the Jacobian of the game’s payoff function. They are
guaranteed to find at least one equilibrium of the game
and may find more. Our approach provides the first exact
algorithm for computing an exact equilibrium in graphi-
cal games with arbitrary topology, and the first algorithm
to exploit fine-grain structural properties of MAIDs. We
present experimental results for our algorithms. The run-
ning time for our graphical game algorithm is similar to,
and often better than, the running time of previous ap-
proximate algorithms. Our algorithm for MAIDs can ef-
fectively solve games that are much larger than those that
could be solved using previous methods.

1 Introduction

Game theory is a mathematical framework that describes in-
teractions between multiple rational agents and allows for
reasoning about their outcomes. However, the complexity
of standard game descriptions grows exponentially with the
number of agents involved. For many multi-agent situations,
this blowup presents a serious problem. Recent work in
artificial intelligence [La Mura, 2000; Kearns et al., 2001;
Koller and Milch, 2001] proposes the use of structured game
representations that utilize a notion of locality of interaction;
these representations allow a wide range of complex games
to be represented compactly.

In this paper we consider the task of computing Nash equi-
libria for structured games. A Nash equilibrium is a strategy
profile such that it is no agent’s interest to deviate unilaterally.
A naive approach to finding Nash equilibria is to convert the
structured game into a standard game representation, and ap-
ply a standard game-theoretic solution algorithm [McKelvey
and McLennan, 1996]. This approach is, in general, infea-
sible for all but the simplest games. We would like an algo-
rithm that exploits the structure in these game representations
for efficient computation.

In this paper, we describe a set of algorithms that use con-
tinuation methods for solving structured games. These algo-
rithms follow a trajectory of equilibria of perturbed games
until an equilibrium of the original game is found. Our algo-
rithms are based on the recent work of Govindan and Wil-
son [2002; 2003a; 2003b] (GW hereafter), which apply to
standard game representations (normal-form and extensive-
form). We show how the structure of the games can be ex-
ploited to perform the key computational step of the algo-
rithms of GW.

Our methods address both graphical games [Kearns et al.,
2001] and multi-agent influence diagrams (MAIDs) [Koller
and Milch, 2001]. We present the first algorithm for finding
exact equilibria in graphical games of arbitrary structure. We
also provide the first algorithm that can take advantage of the
fine-grained structure of MAIDs, and therefore can handle
MAIDs which are significantly outside the scope of previous
methods. We provide experimental results demonstrating the
efficiency of our approach relative to previous methods.

2 Game Representations and Equilibria
2.1 Game Theory
We begin by briefly reviewing concepts from game theory
used in this paper, referring to Owen [1995] for a good intro-
duction. A game defines an interaction between a set

�
of

agents. Each agent ��� � has a set of available strategies���
, where a strategy determines the agent’s behavior in the

game. The precise definition of the set
���

depends on the
game representation, as we discuss below. A strategy pro-
file � defines a strategy � � � ��� for each �	� � . Given a
strategy profile � , the game defines a payoff
 ��� ��
 for each
agent ��� � . We use ��� � to denote the strategy profiles of
the agents ����� ����� ��� . Similarly, we use

� � � to refer to
the set of all strategy profiles of agents in

����� ��� .
A solution to a game is a prescription of a strategy profile

for the agents. The agent’s goal is to maximize its payoff.
Thus, a basic desideratum for a solution profile is stability
— it should not be in any agent’s interests to deviate from
it. More precisely, the fundamental notion of a Nash equilib-
rium [Nash, 1951] is defined to be a strategy profile � such
that, for all ��� � ,
 ��� � ��� ��� �
���
 ��� ���� � ��� �
 , for all
other strategies ���� � ��� . Thus, if an agent knew that the oth-
ers were playing according to an equilibrium profile, it would
have no incentive to deviate.

An � -equilibrium is a strategy profile such that no agent can
improve its expected payoff by more than � by unilaterally
changing its strategy. Unfortunately, finding an � -equilibrium
is not necessarily a step toward finding an exact equilibrium:
the fact that � is an � -equilibrium does not guarantee the ex-
istence of an exact equilibrium in the neighborhood of � .

Normal-Form Games
A general-sum normal-form game defines a simultaneous-
move multiagent scenario in which each agent independently
selects an action and then receives a payoff that depends on
the actions selected by all of the agents. More precisely, let
 be a normal-form game with a set

�
of agents. Each agent� � � has a discrete action set

� �
and a payoff array
 �

with entries for every action profile in � ����� � � .
Equilibrium strategies often require that agents randomize

their choice of action. A mixed strategy � � is a probability
distribution over

� �
. The set

� �
is the set of all mixed strate-

gies. The support of a mixed strategy is the set of actions in� �
that have non-zero probability. A strategy � � for agent �

is said to be a pure strategy if it has only a single action in its
support. The set

�
of mixed strategy profiles is � ����� � � .

A mixed strategy profile � � � is thus an � -vector, where�
	�� ������
 � �
 . Every game is guaranteed to have at least
one mixed-strategy equilibrium, and the number of equilibria
may be exponential in the number of agents.

Extensive-Form Games
An extensive-form game is represented by a tree in which
each node represents a choice either of an agent or of nature.
Each of nature’s choice nodes is associated with a probability
distribution over its outgoing branches. Each leaf � ��� of
the tree is associated with a vector of payoffs
 � �
 , where
 � � �
 denotes the payoff to agent � at leaf � . The choices
of the agents and nature dictate which path of the tree is fol-
lowed and therefore the payoffs to the agents.

The decision nodes belonging to each agent are partitioned
into information sets, where each information set is a set of
states among which the agent cannot distinguish. Thus, an
agent’s strategy must take the same action at all nodes in the
same information set. We define an agent history � �����
 for a
node

�
in the tree and an agent � to be a sequence containing

the information sets traversed in the path from the root to
�

,
and the action selected at each one. Thus, two nodes have
the same agent- � history if the paths used to reach them are
indistinguishable to � . (The paths may differ in other ways,
such as nature’s decisions or the decisions of other agents.)
We make the common assumption of perfect recall: an agent
does not forget information known nor the choices made at
previous decisions. More precisely, if two nodes

� ��� � are in
the same information set for agent � , then � �����
�	�� ����� �
 .

We need a representation of a strategy for an extensive-
form game; unlike the case of normal-form games, there are
several quite different choices. For our purposes, the most
appropriate representation is the sequence form [Koller and
Megiddo, 1992; von Stengel, 1996]. Here, the strategy � � for
an agent � is represented as a vector of real values of size � � ,
one for each distinct history � ��� �
 for a leaf � in the tree.
The number � ��� � ��� �

 , abbreviated � ��� �
 , is the product of
the probabilities controlled by agent � along the history � � .

From this representation, we can easily derive the probability
of taking an action at a particular information set.

The set of sequence form strategies for agent � is therefore
a subset of � ����� , where � � is at most the number of leaves
in the tree. The set of legal sequence form strategies

���
for agent � is defined by a set of linear constraints on vec-
tors in � ����� . The set of sequence form strategy profiles is
then defined as

� 	 � ����� � � . The payoff to agent � in an
extensive-form game can be shown to be

 ��� ��
 	"!# �%$

��� �
 &' ��� � '

� �
)((1)

Thus, the payoffs are a sum, over the leaves in the tree, of the
payoff at a leaf times the product of the sequence form param-
eters for that leaf.1 Importantly, this expression has a similar
multi-linear form to the payoff in a normal-form game, but us-
ing sequence form strategies rather than mixed strategies. In
an extensive form game satisfying perfect recall, any mixed
strategy equilibrium can be represented using an essentially
equivalent sequence form strategy profile.

2.2 Structured Representations

Graphical Games
The size of the payoff arrays required to describe a normal-
form game grows exponentially with the number of agents.
Kearns et al. [2001] introduced the framework of graphical
games, which provide a more structured representation based
on probabilistic graphical models. Graphical games capture
local structure in multi-agent interactions, allowing a com-
pact representation for scenarios where each agent’s payoff is
only affected by a small subset of other agents. Examples of
interactions where this structure occurs include agents that in-
teract along organization hierarchies and agents that interact
according to geographic proximity.

A graphical game is described like a normal-form game.
The basic representation (slightly generalized) is a directed
graph with one node for each agent. An edge from agent � �
to agent � in the graph indicates that agent � ’s payoffs depend
on the action of agent ��� . More precisely, we define Fam

�
to

be the set of agents consisting of � itself and its parents in the
graph. The agent’s payoff
 � is an array indexed only by the
actions of the agents in Fam

�
. Thus, the description of the

game is exponential in the in-degree of the graph and not in
the total number of agents. In this case, we use

� � � and
� � �

to refer to strategy profiles of the agent in Fam
� ��� ��� .

Multi-agent Influence Diagrams
The description length of extensive-form games often also
grows exponentially with the number of agents. In many
situations this large tree can be represented more com-
pactly. Multi-agent influence diagrams (MAIDs) [Koller and
Milch, 2001] allow a structured representation of games in-
volving time and information by extending influence dia-
grams [Howard and Matheson, 1984] to the multi-agent case.

A MAID is represented as a directed acyclic graph over
nodes of three types: chance, decision, and utility. (Utility

1For notational simplicity, *,+.-�/10 includes nature’s probabilities.

nodes are assumed to have no children.) Chance nodes repre-
sent nature’s actions, and a conditional probability distribu-
tion (CPD) is associated with each such node, describing the
distribution over outcomes of that variable conditioned on the
values of its parents. Each decision node is associated with
a single agent. The parents of a decision node represent the
variables whose values are known to the agent when mak-
ing that decision. Thus, an agent’s decision rule for a node
can specify a different strategy for each assignment of values
to the node’s parents. In effect, each such assignment corre-
sponds to an information set. A randomizing decision rule for
a decision node is simply a CPD: a distribution over its values
for each instantiation of its parents.

Each utility node is associated with an agent, and repre-
sents a component in that agent’s payoff. The utility node
takes real values as a deterministic function of its parents.
Thus, that component of the agent’s payoff depends only on a
subset of the variables in the MAID. The agent’s overall util-
ity is the sum of the utilities obtained at its different utility
nodes. It is easy to show that a MAID defines an extensive-
form game. If we use CPDs and decision rules that are tree-
structured, then the MAID representation is no larger than
the corresponding extensive-form representation, and is expo-
nentially smaller in many cases. Note that a graphical game is
simply a MAID where each agent has a single decision node
and a single utility node, and where the parents of an agent� ’s utility node are the decision nodes for the agents in Fam

�
.

3 Continuation Methods
We begin with a high-level overview of continuation meth-
ods, referring the reader to [Watson, 2000] for a more detailed
discussion. Continuation methods work by solving a simpler
perturbed problem and then tracing the solution as the mag-
nitude of the perturbation decreases, converging to a solution
to the original problem.

More precisely, let � be a scalar parameterizing a contin-
uum of perturbed problems. When � 	�� , the perturbed prob-
lem is the original one; when � 	�� , the perturbed problem
is one for which the solution is known. Let � represent the
vector of real values of the solution. For any perturbed prob-
lem defined by � , we characterize solutions by the equation� � � � �
 	�� , where

�
is a real-valued vector function (so

that � is a vector of zeros). The function
�

is such that if� � � � �
�		� holds then � is a solution to the problem per-
turbed by � .

The continuation method traces solutions along the mani-
fold of solution pairs

� � � �
 satisfying
� � � � �
 	�� . Specif-

ically, if we have a solution pair
� � � �
 , we would like to

trace that solution to adjacent solutions. Differential changes
to � and � must cancel out so that

�
remains equal to � .

Thus, locally, changes
�� and
�� along the path must obey
���� � � � �
�
��
	 �
��
���� � � � �
 , which is equivalent to
the matrix equation�
����
��������
��
���� 	�� ((2)

If the matrix
�
�����
���� �

has a null-space of rank 1 every-
where, the curve is uniquely defined. If properly constructed,
the curve starting at � 	�� is guaranteed to cross ��	�� , at

which point the corresponding value of � is a solution to the
original problem. A continuation method begins at the known
solution for � 	�� . The null-space of the Jacobian

��
at a

current solution
� � � �
 defines a direction, along which the

solution is moved by a small amount. The process then re-
peats, tracing the curve until � 	 � . The cost of each step in
this computation, given the Jacobian, is cubic in the size of
the Jacobian, due to the required matrix operations.

Continuation methods involve the tracing of a dynamical
system through the continuous variation of the parameter � .
For computational purposes, discrete steps must be taken. As
a result, error inevitably accumulates as the path is traced.
One can use several techniques to reduce the error, which we
do not describe for lack of space. Unfortunately, these tech-
niques can potentially send the algorithm into a cycle, and in
practice they occasionally do. If the algorithm cycles, random
restarts and a decrease in step size can improve convergence.

4 Continuation Methods for Games
We now review the work of Kohlberg and Mertens [1986]
and GW on applying the continuation method to the task of
finding equilibria in games. These algorithms form the ba-
sis for our extension to structured games, described in the
next section. The continuation method perturbs the game by
adding � times a fixed bonus to each agent’s payoffs, such
that an agent’s bonus depends only on its own actions. If the
bonuses are large enough (and unique), the bonuses dominate
the original game structure, and the agents need not consider
their opponents’ plays. Thus, for � 	!� , the perturbed game
has only one equilibrium: each agent plays the action with the
largest bonus. We then use the continuation method to follow
a path in the space of � and equilibrium profiles for the re-
sulting perturbed game, decreasing � until it is zero; at this
point, the corresponding strategy profile is an equilibrium of
the original game. We now make this intuition more precise.

4.1 Normal Form Games
In order to apply Eq. (2), we need to characterize the equi-
libria of perturbed games as the zeros of a function

�
. We

first define an auxiliary function measuring the benefit of de-
viating from a given strategy profile. Specifically, " � ��
 is a
vector payoff function of the payoff to agent � for deviating
from the mixed strategy profile � by playing each action # :"%$ � ��
 	 !& ��'�(�
 � � # �*)
 &' ��� �,+ ��- � &/. (

We now define a retraction operator 021�� ��354 �
to

be an operator that maps arbitrary � -vectors � to the point
in the space

�
of mixed strategies which is nearest to �

in Euclidean distance. As outlined in the structure theo-
rem of Kohlberg and Mertens [1986], an equilibrium � is
recoverable from �76	" � ��
 by the retraction operator 0 :0 � �869" � ��

 	�� . In fact, this condition is a full charac-
terization of equilibria. Thus, we can define an equilibrium
as a solution to the equation � 	:0 � �;6<" � ��

 . Conversely,
if ��	=0 � �
 and � 	 �>69" � ��
 we have the equivalent
condition that � 	90 � �
?6<" � 0 � �

 . Thus, we can search
for a point � ��� � 3 which satisfies this equality, in which
case 0 � �
 is guaranteed to be an equilibrium.

We now define the game perturbation and associated con-
tinuation method. For a target game
 with payoff function" , we create an easily soluble perturbed game by adding an� -vector � of unique bonuses that agents receive for play-
ing certain actions, independently of what all other agents
do. In perturbing the game
 by � , we arrive at a new game
	6�� in which for each #	� � �

, and for any
) � � � � ,�
 6��
 � � # �*)
 	
 � � # �)
�6���$. If we make � sufficiently

large, then
 6�� has a unique equilibrium, in which each
agent plays the pure strategy # for which � $ is maximal.

Now, let " be the payoff function for the target game
 .
The induced payoff function " 6���� is also perturbed from" by ��� . Thus, the form of our continuation equation is:� � � � �
 	 � � 0 � �
 ��� " � 0 � �

?67���
)((3)

We have that "�67��� is the payoff function for the perturbed
game
 6 ��� , so

� � � � �
 is zero if and only if 0 � �
 is an
equilibrium of
 6 ��� . At � 	�� the game is unperturbed, so� � � � �
 	:� iff 0 � ��
 is an equilibrium of
 .

The expensive step in the continuation method is the cal-
culation of the Jacobian

 � �
, required for the computation

that maintains the constraint of Eq. (2). Here, we have that
���� 	�� � � �,6
 "

 0 , where � is the ��	,� identity ma-
trix. The hard part is the calculation of

 " . For pure strate-
gies #�
 � � �
� and #�� � � ��� , the value at location

� #�
 � #��

in

 " � ��
 is equal to the expected payoff to agent ��
 when

it plays the pure strategy #�
 , agent ��� plays the pure strategy#�� , and all other agents act according to the strategy profile � :
 " $ ��� $ � � ��
 	 !& ��' (� ��� (� �
 � � � #
 � # � �*)
 &' ��� �,+ � ��� � � -� & . ((4)

Computing Eq. (4) requires a number of multiplications
which is exponential in the game size; the sum is over the
exponentially large space

� � ��� � � ��� 	 � ����� � + � ��� � � - � ' .
4.2 Extensive Form Games
The same method applies to extensive-form games, using the
sequence form parameterization of strategies. We first need
to define the bonus vector, and the retraction operator which
allows us to characterize equilibria.

The bonus vector in the extensive-form adds a bonus for
each sequence of each agent. GW show that a sufficiently
large bonus guarantees a unique equilibrium for the perturbed
game. The retraction operator 0 takes a general vector and
projects it onto the valid region of sequence forms. As all of
the constraints are linear, the projection amounts to a decom-
posable quadratic program (QP) that can be solved quickly.
We employ standard QP methods. The Jacobian of the retrac-
tion is easily computable from the set of active constraints.

The solution for the sequence form is now surprisingly
similar to that of the normal-form. The key property of the
sequence form strategy representation is that the payoff func-
tion is a multi-linear function of the extensive-form parame-
ters, as shown in Eq. (1). The elements of the Jacobian

 "
also have the same general structure. In particular the element
corresponding to sequence #
 for agent �
 and sequence # �
for agent � � is
 " $ � � $ � � ��
 	 !# �%$�� ��� � �

��� � �
 &' ��� � + ��� � ��� - � ' � �
 (5)

σ

λ

1

2

3

P3P2P1

B3B1 B2

C1 C3C2

E1 E2

L3R2L2R1

(a) (b)

Figure 1: (a) An abstract diagram of the path. The horizontal axis
represents � and the vertical axis represents the space of strategy
profiles (actually multidimensional). The algorithm starts on the
right at ���! and follows the dynamical system until �"�$# at
point 1, where it has found an equilibrium of the original game. It
can continue to trace the path and find the equilibria labeled 2 and 3.
(b) Two-stage road building MAID for three agents.

where � $ � � $ � is the set of leaves that are consistent with the
sequences #�
 (for agent �%
) and #�� (for agent ���). We take� $ � � $ � to be the empty set (and hence

 " 	 �) if #�
 and #��
are incompatible. Eq. (5) is precisely analogous to Eq. (4) for
normal-form games. We have a sum, over outcomes, of the
utility of the outcome multiplied by the strategy probabilities
for all other agents. Note that this sum is over the leaves of
the tree, which may be exponential in the number of agents.

Zero-probability actions in extensive-form games give rise
to an additional subtlety. Such actions induce a probability
of zero for entire trajectories in the tree, possibly leading to
equilibria based on unrealizable threats and other undesirable
phenomena. For us, they can also lead to bifurcations in the
continuation path, preventing convergence. Thus, we con-
strain all sequence form parameters to be greater than or equal
to � for some small � . This constraint ensures that the contin-
uation path is a � -manifold. The algorithm thus finds an equi-
librium to a perturbed game, where agents have a small prob-
ability of choosing an unintended action. As � tends to zero,
these equilibria converge to perfect equilibria of the original
game [Owen, 1995], a (nonempty) subset of all equilibria.
For � small enough, continuity implies that there is always
an exact perfect equilibrium in the vicinity of the perturbed
equilibrium, which can easily be found using local search.

4.3 Path Properties
In the case of normal-form games, the structure theorem of
Kohlberg and Mertens [1986] implies that, with probability
one over all choices for � , the path of the algorithm is a one-
manifold without boundary. GW provide an analogous struc-
ture theorem that guarantees the same property for extensive-
form games. Figure 1(a) shows an abstract representation of
the path followed by the continuation method. The equilib-
rium for large positive � is unique, so the one-manifold can-
not double back to the side of � 	'& . Furthermore, the
perturbed games along the path can have only a finite number
of discrete equilibria, so the path cannot travel back and forth
indefinitely. Therefore, it must cross the � 	 � hyperplane
at least once, yielding an equilibrium. In fact, the path may
cross multiple times, yielding many equilibria in a single run.
As the path must eventually continue to the � 	 � & side, it
will find an odd number of equilibria when run to completion.

In both normal-form and extensive-form games, the path
is piece-wise polynomial, with each piece corresponding to a

different support set of the strategy profile. These pieces are
called support cells. The path is not smooth at cell bound-
aries, due to discontinuities in the Jacobian of the retrac-
tion operator, and hence in

����
, when the support changes.

Thus, in following the path, care must be taken to step up to
these boundaries exactly.

In the case of two agents, the path is piece-wise linear and,
rather than taking steps, the algorithm can jump from “elbow”
to “elbow” along this path. When this algorithm is applied to
a two-agent game and a particular bonus vector is used, the
steps from support cell to support cell that the algorithm takes
are exactly equal to the pivots of the Lemke-Howson solution
algorithm [Lemke and Howson, 1964] for two-agent games,
and the two algorithms find precisely the same set of solu-
tions. Thus, the continuation method is a strict generalization
of the Lemke-Howson algorithm that allows different pertur-
bation rays and games of more than two agents.

4.4 Iterated Polymatrix Approximation
Because perturbed games may themselves have an exponen-
tial number of equilibria, and the path may wind back and
forth through any number of them, the continuation algorithm
can take a while to trace its way back to a solution to the orig-
inal game. We can speed up the algorithm using an initializa-
tion procedure based on the iterated polymatrix approxima-
tion (IPA) algorithm of GW. A polymatrix game is a normal-
form game where the payoffs to a agent � are equal to the sum
of the payoffs from a set of two-agent games, each involving� and another agent. Polymatrix games can be solved quickly
using the Lemke-Howson algorithm [1964].

Given a normal-form game
 and a strategy profile � , we
can construct a polymatrix game ��� whose Jacobian at � is
the same as the Jacobian of
 ’s payoff function " at � . The
game ��� is a linearized approximation to
 around � , and
can be computed efficiently from the Jacobian of
 . GW pro-
vide an iterative algorithm that, in each step, takes a profile �
and improves it using the solution of the polymatrix approx-
imation � � . This algorithm is not guaranteed to converge,
but in practice, it quickly moves “near” a good solution. We
then construct a perturbed game close to the original game for
which this approximate equilibrium is an exact equilibrium.
The continuation method is then run from this starting point
to find an exact equilibrium of the original game.

5 Exploiting Structure
As mentioned above, the calculation of

 " at each step of the
algorithm consumes most of the time. Both in normal-form
and (in the worst case) in extensive-form games, it requires
time that is exponential in the number of agents. However,
as we show in this section, when using a structured represen-
tation such as a graphical game or a MAID, we can effec-
tively exploit the structure of the game to drastically reduce
the computational time required.

5.1 Graphical Games
Consider the computation of the normal-form Jacobian in
Eq. (4). The key insight is that the choice of strategy for an
agent outside the family of �%
 does not affect
 �
� . This ob-
servation allows us to compute the ��
 entries in the Jacobian

locally, considering only �%
 ’s family. More precisely, we can
consider two cases. If ������ Fam

���
, then
 " $ � � $ � � ��
 	 !& ��' (� �
 ��� � #�
 �*)
 &' �

Fam � � �,+ ���*-� &/. ((6)

Recalling that
� � ��� is a vector of actions only of Fam

��� �� ��� , we see that this computation is exponential only in the
family size of �%
 . Furthermore, this value does not depend on#�� or � � , and can therefore be calculated once and copied for
all agents � ���� Fam

���
and for all choices of their strategies.

If � � � Fam
���

, then we simply have:
 " $ � � $ � � ��
 	 !& ��' (� � � (� �
 ��� � #�
 � #�� �*)
 &' �
Fam � � �,+ � ��� � � -� & . ((7)

Letting � be the maximal family size, and
 the maximal
number of actions per agent, we have that the computation of
the Jacobian requires time 	 �
 �
 �
�
�6
 �
 �
 .
5.2 MAIDs
The Jacobian for MAIDs
To find equilibria in MAIDs, we extend the sequence form
continuation method of Section 4.2. As above, our key task is
computing the Jacobian of Eq. (5). The Jacobian has an entry
for each pair of sequences in the game (one for each agent).
We therefore begin by noting that the sequence form repre-
sentation for MAIDs with perfect recall is no larger than the
agent’s decision rules for that MAID. Due to perfect recall,
the last decision node (in topological order) must have in-
coming edges from all of its previous actions and all parents
of previous actions. Moreover, it must have an information
set for any distinct agent history. Thus, the agent’s decision
rule for that final decision has the same size as the sequence
form. Hence, the dimension � of the � 	 � Jacobian ma-
trix is linear in the size of the MAID (where size, as usual,
includes the size of the parameterization).

We next turn to the computation of the Jacobian entries.
Eq. (5) can be rewritten as
 " $ ��� $ � � ��
 	 !# �%$�� ��� � �

 ��� � �
 � ' ��� � ' � �

� ��� � �
 � � � � �
 ((8)

A leaf node � in the extensive-form game is simply an as-
signment � to all of the variables in the MAID, and
 ��� � �

is �
 ’s utility given � . The sequence probability � ��� �
 is
the product of the probabilities for the decisions of agent� in the assignment � . Thus, Eq. (8) is an expectation of
 ��� � �

� � � �
� � �
 � ��� � �
 � . The expectation is over the distribu-
tion defined by the Bayesian network ��� whose structure is
the same as the MAID, and where the agents’ decision nodes
have CPDs determined by � .

The agent’s utility
 � � � �
 is the sum of its utility nodes.
Due to linearity of expectation, we can perform the computa-
tion separately for each of the agent’s utility nodes, and then
simply add up the separate contributions. Thus, we assume
from here on, without loss of generality, that ��
 has only a
single utility node � .

The value of � � . � �
 (� 		� ���) depends only on the values
of the set of nodes � � . consisting of � ' ’s decision nodes and

their parents. Thus, instead of computing the probabilities for
all assignments to all variables, we need only to compute the
marginal joint distribution over � , � ��� , and � ��� From this
distribution, we can compute the expectation in Eq. (5).

Using Bayesian Network Inference
Our analysis above reduces the required computations sig-
nificantly. We need only compute one joint distribution for
every pair of agents �
 � � � . This joint distribution is the one
defined by the Bayesian network � � . Naively, this compu-
tation requires that we execute Bayesian network inference
 �
 � times: once for each ordered pair of agents ��
 � � � . For-
tunately, we can exploit the structure of the MAID to perform
this computation much more efficiently.

The basis for our method is the clique tree algorithm
of Lauritzen and Spiegelhalter [1998]. A clique tree for a
Bayesian network � is a data structure defined over an undi-
rected tree over a set of nodes � . Each node � ' ��� is a subset
of the nodes in � called a clique. The clique tree satisfies cer-
tain important properties. It must be family preserving: for
each node � in � , there exists a clique � ' ��� such that �
and its parents are a subset of � ' . It also satisfies a separation
requirement: if � � blocks the path from �
 to ��� , then, in the
distribution defined by � , we have that the variables in �
 are
conditionally independent of those in � � given those in � � .

Each clique maintains a data structure, called a potential,
which is an unnormalized distribution over the variables in
� ' . The size of the potential for � ' is therefore exponential in
 � '
 . The clique tree inference algorithm proceeds by passing
messages from one clique to another in the tree. The mes-
sages are used to update the potential in the receiving clique.
After a process in which messages have been sent in both
directions over each edge in the tree, the tree is said to be
calibrated; at this point, the potential of every clique � ' con-
tains precisely the joint distribution over the variables in � '
according to � .

We can use the clique tree algorithm to perform inference
over � � . Now, consider the final decision node for agent � ' .
Due to the perfect recall assumption, all of � ' ’s previous de-
cisions and all of their parents are also parents of this decision
node. The family preservation property therefore implies that
� � . is fully contained in some clique. Thus, the expectation
of Eq. (8) requires the computation of the joint distribution
over three cliques in the tree: the one containing � , the one
containing � � � , and the one containing � � � . We need to
compute this joint distribution for every pair of agents �
 � � � .

The first key insight is that we can reduce this problem
to one of computing the joint marginal distribution for all
pairs of cliques in the tree. Assume we have computed
��� � � ' � �
	
 for every pair of cliques � ' � �
	 . Now, consider
any triple of cliques �
 � � � � � � . There are two cases: ei-
ther one of these cliques is on the path between the other
two, or not. In the first case, assume without loss of gen-
erality that � � is on the path from �
 to ��� . In this case, by
the separation requirement, we have that � � � �
 � � � � ���
 	
� � � �
 � � �
 � � � � � � ���
 � � � � � �
 (In the second case, there
exists a unique clique �
� which blocks the paths between any
pair of these cliques. Again, by the separation property, ���
renders these cliques conditionally independent, so we can
use a similar method to compute � � � �
 � � � � ���
 .

Thus, we have reduced the problem to one of computing
the marginals over all pairs of cliques in a calibrated clique-
tree. We can use dynamic programming to execute this pro-
cess efficiently. We construct a table that contains � � � � ' � � 	

for each pair of cliques � ' � � 	 . We construct the table in or-
der of length of the path from � ' to � 	 . The base case is when
� ' and � 	 are adjacent in the tree. In this case, we have that
��� � � ' � �
	
�	 ��� � � '
 ��� � �
	

� ��� � � '�� �
	
 (The probability
expressions in the numerator are simply the clique potentials
in the calibrated tree. The denominator can be obtained by
marginalizing either of the two cliques. For cliques � ' and
� 	 that are not adjacent, we let ��� be the node adjacent to
� 	 on the path from � ' to � 	 . The clique ��� is one step
closer to � ' , so, by construction, we have already computed
� � � ' � ���
 . We can now apply the separation property again:

� � � � ' � � 	
�	 !� . � ��� � � � � ' � ���
 � � � ��� � � 	
��� � � �
 ((9)

Let � be the number of cliques in the tree, and
 be size
of the largest clique (the number of entries in its potential).
The cost of calibrating the clique tree for ��� is 	 � �

 . The
cost of computing Eq. (9) for all pairs of cliques is 	 � � �
 �
 .
Finally, the cost of computing the # ' � #�	 entry of the Jacobian
is 	 �
��
 . In games where interactions between the agents
are highly structured, the size
 of the largest clique can be a
constant even as the number of agents grows. In this case,
the complexity grows only quadratically in the number of
cliques, and hence also in the number of agents.

6 Results
6.1 Graphical Games
We compared two versions of our algorithm: cont, the sim-
ple continuation method, and IPA+cont, the continuation
method with the IPA initialization. We compared our results
to the published results of the the algorithm of Vickrey and
Koller [2002] (VK hereafter). The VK method only returns� -equilibria, but their approach is the only one that applies
to graphical games whose interaction structure is not a (bi-
connected) tree and for which timing results are available.
The VK paper contains several different algorithms. We com-
pared against the algorithm which had the smallest approxi-
mation error for a given problem.

Following VK, our algorithms were run on two classes of
games, of varying size. The Road game, denoting a situa-
tion where agents must build in land plots along a road, is
played on a 2-by- � grid; each agent has three actions, and
its payoffs depend only on the actions of its (grid) neighbors.
Following VK, we constructed a game where the payoff for
an agent is simply the sum of payoffs of games played sepa-
rately with its neighbors, and where each such subgame has
the payoff structure of rock-paper-scissors. This game is, in
fact, a polymatrix game, and hence is very easy to solve us-
ing our methods. We also experimented with a ring graph
with three actions per agent and random payoffs.

For each class of games, we chose a set of game sizes to run
on. For each, we selected, randomly in cases where the pay-
offs were random, a set of at least ten (and up to one hundred
for MAIDs) test games to solve. We then solved each game

20 40 60 80 100
0

500

1000

1500

2000

of agents

se
co

nd
s

cont
IPA
VK

10 20 30 40 50
0

50

100

150

200

250

of agents

se
co

nd
s

cont
IPA+cont
VK

10 20 30 40
0

1000

2000

3000

4000

of agents

of

 it
er

at
io

ns

10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

of agents

se
co

nd
s/

ite
ra

tio
ns

cont
cubic fit

(a) (b) (c) (d)

Figure 2: Results for graphical games: (a) Running time for road game with rock-paper-scissors payoffs. Results for ring game with random
payoffs: (b) running time; (c) number of iterations of cont; (d) average time per iteration of cont.

with a different random perturbation vector, � , and recorded
the time and number of iterations necessary to reach the first
equilibrium. We then averaged over test cases. The error
bars show the variance due to the choice of perturbation vec-
tor and, for random games, the choice of game. For smaller
games, the algorithms always converged to an equilibrium. In
about 40% of the larger games (more than 20 agents), the al-
gorithms did not converge on the first trial; in these cases, we
restarted the same game with a different random perturbation
vector. On average, about 2 restarts were sufficient for these
difficult games. In a few large graphical games (e.g. 9% of
games with 45 agents), IPA did not converge after 10 restarts;
in these cases we did not record results for IPA+cont. In the
other restarted cases, we recorded the time for the converging
run. Our results are shown in Figures 2(a,b).

In all cases, our algorithm found an equilibrium with error
at most � � �
 � , essentially machine precision. In the Road
games, we compared against the times for VK using their hill
climbing method which found � -equilibria with error of � � � � .
In these games, the cont method is more efficient for smaller
games, but then becomes more costly. Due to the polymatrix
nature of this game, the IPA+cont solves it immediately with
the Lemke-Howson algorithm, and is therefore significantly
less expensive than VK.

In the random-payoff ring games, VK had an equilibrium
error of about �.(� � using their cost minimization method with
a grid discretization of � ��� . Here, our algorithms are more ef-
ficient than VK for smaller games (up to 20–30 agents), with
IPA+cont performing considerably better than cont. How-
ever, the running time of our algorithms grows more rapidly
than that of VK, so that for larger games, they become imprac-
tical. Nevertheless, our algorithms performed well in games
with up to � � agents and � actions per agent, games which
were previously intractable for exact algorithms.

Here, we also plotted the number of iterations and time
per iteration for cont in Figures 2(c,d). The number of itera-
tions varies based both on the game and perturbation ray cho-
sen. However, the time per iteration is almost exactly cubic as
predicted. We note that, when IPA is used, the continuation
method converges almost immediately (within a second).

6.2 MAIDs
Koller and Milch [2001] define a relevance graph over the
decision nodes in a MAID, where there is an edge from �
 to
� � if the decision rule at �
 impacts the choice of decision
rule at � � . They show that the task of finding equilibria for a
MAID can be decomposed, in that only decision nodes in the

same strongly connected component in the relevance graph
must be considered together. However, their approach is un-
able to deal with structure within a strongly connected com-
ponent, and they resorted to converting the game to extensive
form, and using a standard equilibrium solver. Our approach
addresses the complementary problem, dealing specifically
with this finer-grained structure. Thus, we focused our exper-
iments on MAIDs with cyclic relevance graphs.

We ran our algorithms on two classes of games, with vary-
ing sizes. The first, a simple chain, alternates between deci-
sion and chance nodes with each decision node belonging to
a different agent. Each agent has two utility nodes, each con-
nected to its decision node and to a neighbor’s (except for the
end agents who have one utility node for their single neigh-
bor). All probability tables and payoff matrices are random.
Our second example is shown in Figure 1(b). It is an exten-
sion of the graphical road game from above. Each agent must
submit plans simultaneously (�
 – � �) for the type of building
(home or store) that they will build along a road. However,
building (�
 – � �) proceeds from left to right and so before
committing to a build, an agent can see a noisy estimate of
the plans of the agent to its left (�
 - � �). Agents would pre-
fer to be the first one to start a new type of building (i.e., be
different than their left neighbors, but the same as their right
neighbors). They also take a penalty if their building and plan
decisions differ. Carefully chosen payoffs ensure non-trivial
mixed strategies.

Figures 3(a,b) show the running times for computing an
equilibrium as the number of agents is increased for both
types of games. We compared our results to those achieved
by converting the game to extensive-form and running Gam-
bit, a standard equilibrium computation package. Our timing
results for Gambit do not include the time for the conversion
to extensive-form.

Figures 3(c,d) show the number of iterations and running
time per iteration for the case of the two-stage road game.
The running time per iteration is once again well fit by a cu-
bic. The variance is mainly due to the execution of the retrac-
tion operator whose running time depends on the number of
strategies in the support.

7 Discussion and Conclusions

In the last few years, several papers have addressed the is-
sue of finding equilibria in structured games. For graphical
games, the exact algorithms proposed so far apply only to the
very restricted class of games where the interaction structure

5 10 15 20
0

200

400

600

800

1000

of agents

se
co

nd
s

cont
gambit

2 4 6 8
0

500

1000

1500

2000

2500

3000

3500

of agents

se
co

nd
s

cont
gambit

2 4 6 8
0

1000

2000

3000

4000

of agents

of

 it
er

at
io

ns

2 4 6 8
0

0.2

0.4

0.6

0.8

1

of agents

se
co

nd
s/

ite
ra

tio
n

cont
cubic fit

(a) (b) (c) (d)

Figure 3: Results for MAIDs: (a) Running times for the chain MAID. Results for two-stage Road MAID: (b) running time; (c) number of
iterations; (d) time per iteration.

is an undirected tree, and where each has only two possible
actions [Kearns et al., 2001; Littman et al., 2002].

There have been several algorithms proposed for the com-
putation of � -equilibria in general graphical games, most of
which (implicitly or explicitly) define an equilibrium as a
set of constraints over a discretized space of mixed strate-
gies, and then use some constraint solving method: Kearns
et al. [2001] use a tree-propagation algorithm; Vickrey and
Koller [2002] use variable elimination methods (VK1); and
Ortiz and Kearns [2003] use arc-consistency constraint prop-
agation followed by search. Vickrey and Koller [2002] also
propose a gradient ascent algorithm (VK2). The running
times of KLS and VK1 both depend on the tree-width of the
graph, whereas the running times of our algorithm, VK2, and
OK depend on the degree of the graph. However, these latter
three algorithms all require multiple iterations and no bounds
are currently known on the number of iterations required.

For MAIDs, Koller and Milch [2001] (KM) define a no-
tion of independence between agents’ decision, and provide
an algorithm that can decompose the problem based on fairly
coarse independence structure. Our algorithm is able to ex-
ploit a much finer-grained structure, resolving an open prob-
lem left by KM. La Mura [2000] (LM) proposes a continu-
ation method for finding one or all equilibria in a G net, a
representation which is very similar to MAIDs. This pro-
posal only exploits a very limited set of structural proper-
ties (a strict subset of KM and of our algorithm). The pro-
posal was also never implemented, and several issues regard-
ing non-converging paths seem unresolved.

We have presented an algorithm for computing exact equi-
libria in structured games. Our algorithm is based on the
methods of GW, but shows how the key computational steps
in their approach can be performed much more efficiently by
exploiting the game structure. Our method allows us to pro-
vide the first exact algorithm for general graphical games, and
the first algorithm that takes full advantage of the indepen-
dence structure of a MAID. Our methods can find exact equi-
libria in games with large numbers of agents, games which
were previously intractable for exact methods.
Acknowledgments. This work was supported by ONR
MURI Grant N00014-00-1-0637, and by Air Force contract
F30602-00-2-0598 under DARPA’s TASK program.

References
[Govindan and Wilson, 2002] S. Govindan and R. Wilson. Struc-

ture theorems for game trees. Proc. Natl Academy of Sciences,
99(13):9077–9080, 2002.

[Govindan and Wilson, 2003a] S. Govindan and R. Wilson. Com-
puting Nash equilibria by iterated polymatrix approximation.
J. Economic Dynamics and Control, 2003. to appear.

[Govindan and Wilson, 2003b] S. Govindan and R. Wilson. A
global Newton method to compute Nash equilibria. J. Economic
Theory, 2003. to appear.

[Howard and Matheson, 1984] R. A. Howard and J. E. Matheson.
Influence diagrams. In Readings on the Principles and Applica-
tions of Decision Analysis, volume 2, pages 719–762. Strategic
Decision Group, 1984. article dated 1981.

[Kearns et al., 2001] M. Kearns, M. L. Littman, and S. Singh.
Graphical models for game theory. In Proc. UAI, 2001.

[Kohlberg and Mertens, 1986] E. Kohlberg and J.-F. Mertens. On
the strategic stability of equilibria. Econometrica, 54(5):1003–
1038, September 1986.

[Koller and Megiddo, 1992] D. Koller and N. Megiddo. The com-
plexity of two-person zero-sum games in extensive form. Games
and Economic Bahavior, 4:528–552, 1992.

[Koller and Milch, 2001] D. Koller and B. Milch. Multi-agent in-
fluence diagrams for representing and solving games. In Proc.
IJCAI, pages 1027–1034, 2001.

[La Mura, 2000] P. La Mura. Game networks. In Proc. UAI, pages
335–342, 2000.

[Lauritzen and Spiegelhalter, 1998] S. L. Lauritzen and D. J.
Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. J. Royal
Statistical Society, B 50(2):157–224, 1998.

[Lemke and Howson, 1964] C. E. Lemke and J. T. Howson, Jr.
Equilibrium points in bimatrix games. J. Society of Applied
Mathematics, 12(2):413–423, June 1964.

[Littman et al., 2002] M. L. Littman, M. Kearns, and S. Singh. An
efficient exact algorithm for singly connected graphical games.
In NIPS-14, volume 2, pages 817–823, 2002.

[McKelvey and McLennan, 1996] R. D. McKelvey and A. McLen-
nan. Computation of equilibria in finite games. In Handbook of
Computational Economics, vol. 1, pages 87–142. Elsevier, 1996.

[Nash, 1951] J. Nash. Non-cooperative games. The Annals of
Mathematics, 52(2):286–295, September 1951.

[Ortiz and Kearns, 2003] L. E. Ortiz and M. Kearns. Nash propa-
gation for loopy graphical games. In NIPS-15, 2003. to appear.

[Owen, 1995] G. Owen. Game Theory. Academic Press, UK, 1995.
[Vickrey and Koller, 2002] D. Vickrey and D. Koller. Multi-agent

algorithms for solving graphical games. In Proc. AAAI, 2002.
[von Stengel, 1996] B. von Stengel. Efficient computation of be-

havior strategies. Games and Economic Behavior, 14, 1996.
[Watson, 2000] L. T. Watson. Theory of globally convergent

probability-one homotopies for nonlinear programming. SIAM
J. on Optimization, 11(3):761–780, 2000.

