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Abstract— We propose a particle filter-based algorithm for
monocular vision-aided odometry for mobile robot localization.
The algorithm fuses information from odometry with observa-
tions of naturally occurring static point features in the envi-
ronment. A key contribution of this work is a novel approach
for computing the particle weights, which does not require
including the feature positions in the state vector. As a result,
the computational and sample complexities of the algorithm
remain low even in feature-dense environments. We validatethe
effectiveness of the approach extensively with both simulations
as well as real-world data, and compare its performance against
that of the extended Kalman filter (EKF) and FastSLAM.
Results from the simulation tests show that the particle filter
approach is better than these competing approaches in terms
of the RMS error. Moreover, the experiments demonstrate that
the approach is capable of achieving good localization accuracy
in complex environments.

I. I NTRODUCTION

For mobile robots to effectively navigate their surround-
ings, they must have precise estimates of their position and
orientation (pose). To obtain such estimates, in most cases
a robot fuses measurements from multiple onboard sensors.
Typically, a proprioceptivesensor (e.g. odometry) provides
estimates for the robot’s motion, and one or moreextero-
ceptivesensors (e.g. laser rangefinders) are used to provide
additional localization information and improve the accuracy
of the estimates. Recently, the use ofvisual sensingfor
navigation has been at the focus of extensive research efforts.
Cameras are an attractive option for a number of reasons:
They are cheap, small, low powered, and lightweight; they
are becoming increasingly common; and they are versatile
in that they can also be used for other robotic tasks (e.g.
object or place detection and recognition). For navigation
applications, cameras can be used to detect and track features
in the environment, and the localization information in these
observations can be fused with the input from proprioceptive
sensors for ego-motion estimation.

In this paper, we propose a particle filter (PF)-based
algorithm for monocular vision-aided odometry. The algo-
rithm fuses information from odometry with observations of
naturally occurring point features in the environment, taken
by a camera mounted on the robot. Our key contribution
is a novel approach for computing the particle weights,
which does not require including the feature positions in the
state vector. Unlike simultaneous localization and mapping
(SLAM) techniques, our approach explicitly marginalizes out
the features. This helps keep the size of the state vector small,
resulting in low computational cost and a small number of
particles required to represent the posterior distribution.

Existing methods that can be employed for vision-aided
odometry utilize the assumption that the error in the camera
pose estimates, or the error in the feature estimates, or
both, is well-approximated by a Gaussian pdf. Specifically,
EKF-SLAM methods (e.g., [1]) assume a Gaussian pdf
for both the feature and the camera pose errors, sliding-
window methods (e.g. [2]–[4]) do so for the errors of the
marginalized camera poses, and FastSLAM [5] assumes that
each feature’s position pdf is approximately Gaussian, given
the camera trajectory. Moreover, all these methods rely on
the linearization of the camera measurement model, and thus
require that the nonlinearity of this model is not significant.

In this work we remove these assumptions, and present
an algorithm that makes no assumption on the nature of
the pdfs arising in the estimation process. This algorithm
employs the PF for estimation, and at each time step uses
the measurements of all the features currently tracked for
updating the particle weights. A key property of the proposed
method is that its computational cost is linear in the number
of locally visible features, which is crucial for achieving
operation in feature-dense environments with limited com-
putational resources. Our simulation results and real-world
experiments demonstrate the effectiveness of the proposed
approach, and show that it outperforms competing methods
for the problem of real-time motion estimation.

II. RELATED WORK

We here discuss related approaches employing monocular
cameras for aiding navigation. Due to the limited space
we only discuss some representative approaches, grouped
into three broad categories: those that use a known map of
the environment, SLAM approaches, and methods that do
not require a map of the environment and do not perform
mapping (such as our own).
a) Known-map based methods:One family of approaches

for vision-aided navigation assumes the existence of ana
priori feature map of the area where the robot operates.
Examples of such methods include [6]–[8] and references
therein. Observing known features provides absolute position
information, and thus methods based on this paradigm are
capable of drift-free pose estimation. However, the require-
ment for having a feature map limits the applicability of
these algorithms to previously explored environments. In
this work, we instead focus on the more challenging case
where the feature locations arenot known in advance, which
permits operation in new and unknown environments.
b) SLAM methods:In order to avoid the need for ana

priori map of the environment, one group of methods follows



the SLAM framework. In this paradigm the robot’s pose
and the landmarks’ positions are estimated jointly, typically
in a recursive-filtering framework (e.g [1], [9]–[11] and
references therein). While generating a feature map may be
useful for certain tasks, when such a map is not necessary,
allocating computing and memory resources to the updating
of an ever-increasing number of features is not desirable.
Thus, in this work we focus on the problem of estimating
the robot trajectorywithout maintaining a feature map.
c) Visual-odometry methods:Methods that only estimate the
camera pose and forgo including the feature positions in the
state vector are often collectively termedvisual odometry
algorithms. In these approaches, visual feature observations
are utilized to derive probabilistic constraints (i.e., measure-
ments) between the camera poses from which the features
where observed. In their most computationally efficient (and
simplest) form, visual odometry methods use the feature ob-
servations to derive relative-pose measurements between two
consecutive time instants [12]–[14]. This approach results in
real-time performance, but is suboptimal in the (common)
case where each feature is seen in more than two images.

This problem can be addressed by employing the feature
measurements to extract relative-pose information for the
entire sliding window of poses from which the feature is
observed. In this way, all the motion information contained
in the feature observations can be used. Existing methods
that follow this paradigm are typically based either on the
EKF estimator [2], or on an iterative least-squares method-
ology [3], [4], [15]. However, all these methods require
the linearization of the measurement models (and thus,
assume only moderate non-linearities in these models), and
all employ the assumption that the pdf of the marginalized
robot poses is Gaussian. When these assumptions are not
valid (e.g., when estimation errors grow large), the use of
linearization-based approaches is not suitable.

For these reasons, in this work we propose a PF-based
estimator for visual odometry. Owing to the PF’s inherent
ability to represent non-Gaussian distributions, this approach
is better suited for scenarios where the estimation errors
are significant, and/or the measurement models are highly
nonlinear. We note that one straightforward approach for
employing the particle filter to the problem at hand would be
to use the FastSLAM algorithm [5], and to drop all features
from the state vector once they disappear from the field of
view. However, FastSLAM still employs an EKF for each
landmark, and thus its performance depends on the quality
of linearization. Contrary to that, our algorithm explicitly
marginalizes out the features, and the particle weight updates
do not rely on precise linearization. In the results presented
in Section IV we show that the proposed method outperforms
FastSLAM, especially when features can only be observed
for a small number of frames.

III. PARTICLE FILTERING APPROACH

A. Overview

The objective of our PF-based estimator is to track the
pose of a wheeled robot using odometry and the observations

of static point features through its camera. We achieve this
goal by using a PF to track the sequence of the lastNp robot
poses. Conditioned on these poses, each feature’s observa-
tions are independent of the observations of other features.
However, we do not keep an explicit posterior distribution
over feature positions conditioned on each particle, as is done
in FastSLAM. Instead, we marginalize out each feature’s
position to obtain the probability of the sequence of that
feature’s observations, conditioned on the particle’s sequence
of poses. This is used to update the weight of the particle,
as normal for a PF.

The mechanism for performing the explicit marginaliza-
tion of the features is the first important contribution of
this paper. Specifically, the marginalization amounts to the
evaluation of an expectation with respect to the feature
position (see Eq. 3), which cannot be computed in closed
form. To address this problem, we employ the unscented
transform [16]. As the unscented transform is designed to
estimate an expectation with respect to a Gaussian distri-
bution (and the true posterior is not normally distributed),
we introduce a “proposal” Gaussian distribution over the
position of the feature. This proposal distribution is estimated
from the feature measurements, making it similar to the
posterior feature position distribution. However, it isnot
assumed to be the true distribution and is only used as a
catalyst for computing the measurement likelihood.

The second important contribution of this paper is in the
incremental update of the weights of the particles. Normally,
one would use each feature’s measurements only once to
update the particle weights, after the feature is lost from
view. However this is not desirable, since it results in delayed
use of information. In our framework, we update the weight
of the particle based on a feature atevery time step. If
λ
(j)[i]
t is the weight contribution of featurej to particle
i at time t (i.e. the probability of the entire sequence of
observations of featurej given particlei), then we multiply
the weight of particlei by λ

(j)[i]
t /λ

(j)[i]
t−1 to cancel out

previous weight updates and prevent over-counting of earlier
evidence. At first glance, this would appear to accomplish
nothing: the final weight change for a particle due to a
feature is the same. However, if the particles are resampled
in the middle of the track of the feature, this can make a
large difference. Using the evidence as it becomes available,
instead of only after a feature track is complete, results in
a more “focused” posterior distribution, and improves the
performance of resampling.

Taken together, these two non-standard modifications al-
low us to effectively use a PF to model the non-linearities
in the motion and observation models.

B. Notation

We assume that the robot operates on a planar environment
so that the robot pose at timet can be represented by a vector
xt = [xt, yt, θt]

T , where [xt, yt]T are its two-dimensional
Cartesian coordinates andθt is its orientation with respect to
some global reference frameG (which we choose to coincide
with the initial robot frame).



Each particle in our filter maintains an estimate of the
recentNp robot poses at timet. Let theith particle at time

t be x
[i]
t−Np:t

,

(

x
[i]
t−Np+1,x

[i]
t−Np+2, ...,x

[i]
t

)

. Maintaining
this window of poses in the particle estimates is necessary,
as all measurements of each feature are used collectively
in the marginalization process. Feature measurements are
incrementally processed for features that are tracked for at
least two and up to a maximum ofNp consecutive frames.
A feature that is tracked for more thanNp frames will
be considered as a new feature starting at frame number

(Np + 1). Let Xt =
{(

x
[i]
t−Np:t

, w
[i]
t

)}Ns

i=1
be the set of

weighted particles at timet, where w[i]
t are the particle

weights, andNs is the number of particles in the filter.
For feature observations, letfj be a feature, andCk be

the kth camera frame. The position vector of the feature
with respect toCk is denoted by

[

Ckxfj ,
Ckyfj ,

Ckzfj
]T

=
Ckpfj . As explained in Section III-E, in this work we employ
an inverse-depth parameterization of the feature position, so
Ckpfj is parameterized by a 3-vectorfj . We represent camera
frameCk as {GCk

R,GpCk
}, whereA

BR is the 3 × 3 matrix
describing the rotation between framesA andB, andApB

is the 3D position of the origin of frameB with respect to
frameA. We are assuming a calibrated camera, and thus the
observation of featurefj in camera frameCk is described
by the pinhole camera model:

o
(j)
k =

1
Ckzfj

[

Ckxfj
Ckyfj

]

+ n
(j)
k , (1)

wheren(j)
k is the 2 × 1 image noise vector, modelled as a

random variable with known distribution.
Let Sfj ,t be the set of camera frames in which featurefj

is observed, andMfj ,t be the size of this set. Then the set
of all the measurements of featurefj observed through time

t is denoted byO(j)
t ,

{

o
(j)
k : k ∈ Sfj ,t

}

.

C. Motion Model

We do not make any assumptions about the underly-
ing motion model for the robot, other than that we can
sample from it. The particles are propagated by sampling
their current pose given their previous pose and the control
measurementsct, i.e. x[i]

t ∼ p
(

xt

∣

∣

∣x
[i]
t−1, ct

)

, utilizing the
known statistics of the errors.

D. Weight Updates

In the particle filtering framework, the weight of each
particle is proportional to the likelihood of the observations
given the particle estimates. In our approach, all the measure-
ments of a feature through timet are used simultaneously
to update the particle weights. Specifically, processing the
measurements of featurefj will result in updating the weight
of particle i by a factor equal to

λ
(j)[i]
t = p

(

O
(j)
t

∣

∣

∣x
[i]
t−Np:t

)

. (2)

Note that the above cannot be directly computed, since the
observation is not conditioned on the position of the feature

fj . We introduce the feature position as follows:

λ
(j)[i]
t =

∫

p
(

O
(j)
t

∣

∣

∣x
[i]
t−Np:t

, fj

)

p
(

fj

∣

∣

∣x
[i]
t−Np:t

)

dfj . (3)

The first term in the above integrand is the measurement like-
lihood function, which depends on the projection geometry
and the noise model. For a given camera and experimental
setup, this likelihood function can be computed analytically
(more details in Sections III-E and III-F).

We assume that, when no measurement information is
available, the feature can be anywhere in the 3D space with
equal probability (i.e., an “uninformative” prior). We canthus
write p

(

fj

∣

∣

∣x
[i]
t−Np:t

)

= γ
(

x
[i]
t−Np:t

)

, which leads to:

λ
(j)[i]
t = γ

(

x
[i]
t−Np:t

)

∫

p
(

O
(j)
t

∣

∣

∣x
[i]
t−Np:t

, fj

)

dfj . (4)

The derivation of the termγ
(

x
[i]
t−Np:t

)

is presented in detail
in Section III-H.

In order to compute the integral in Eq. 4, we introduce a
proposal distributionq (fj) over the potential feature position
fj , which leads to

λ
(j)[i]
t = γ

(

x
[i]
t−Np:t

)

∫ p
(

O
(j)
t

∣

∣

∣
x
[i]
t−Np:t

, fj

)

q (fj)
q (fj) dfj

= γ
(

x
[i]
t−Np:t

)

· Eq(fj)





p
(

O
(j)
t

∣

∣

∣x
[i]
t−Np:t

, fj

)

q (fj)



 (5)

While the proposalq (fj) can be any distribution, it is
convenient to chooseq (fj) to be the Gaussian distribution

N
(

f̂j ,C
(j)
)

, where f̂j is an estimated position of feature

fj and C(j) is the associated covariance matrix of the
estimate. Now the integral in Eq. 5 amounts to an expectation
with respect to a Gaussian random variable, which can be
evaluated by application of the unscented transform [16],
[17]. We defer the discussion of how to selectf̂j andC(j)

to Section III-G.
Eq. 5 provides the contribution of featurefj to the weight

of the ith particle at timet. Considering all the features that
have been observed at timet, the weightw[i]

t of the ith
particle can be updated as

w
[i]
t = w

[i]
t−1

∏

j

λ
(j)[i]
t

λ
(j)[i]
t−1

. (6)

Note that in Eq. 6, we dividedλ(j)[i]t by λ(j)[i]t−1 , which is the
contribution of featurefj to the weight of theith particle
at time t − 1. This is done to avoid “double counting” the
contribution of featurefj to the weight of theith particle,
in case the observations of featurefj were processed at the
previous time stept−1 (if the observations of featurefj are
processed for the first time at timet, then we setλ(j)[i]t−1 =
1). With this weighting scheme, feature observations are
processed incrementally at every time step without waiting
for the features to be lost before their measurements are pro-
cessed. Note that whilew[i]

t−1 may have been changed (due



to the resampling step of the particle filter), the past weight
contributions for the features,λ(j)[i]t−1 , were not. Therefore,

Eq. 6 does not directly reduce to
∏

j

λ
(j)[i]
t .

E. Feature Parameterization

The parameterization of featurefj is critical to the suc-
cess of using a Gaussian proposal distributionq (fj). In
previous work [2], [9], it has been demonstrated that an
inverse-depth parameterization has a key advantage over the
traditional Cartesian-coordinate parameterization: themea-
surement model exhibits better linearity in the inverse-
depth parameters, and thus the resulting estimates are better
approximated by a Gaussian. Therefore, in this work we
employ an inverse-depth parameterization, as discussed next.

The position of featurefj in camera frameCk is given by

Ckpfj =





Ckxfj
Ckyfj
Ckzfj



 = C
RR

G
Rk

RT (Gpfj −
GpRk

) + CpR ,

where

G
Rk

R =





cos (θk) − sin (θk) 0
sin (θk) cos (θk) 0

0 0 1



 , GpRk
=





xk
yk
h



 , (7)

h is the known height of the robot,Gpfj is the three-
dimensional position of featurefj in the global frameG,
and{CRR,

CpR} is the known transform between the camera
frameC and the robot frameR. Since the three-dimensional
position Gpfj of the feature in the global frameG is
unknown, we need to first estimate it using the measurements
o
(j)
k , k ∈ Sfj ,t, and theMfj ,t camera poses where the feature

was observed. However, instead of directly computing an
estimate of the three-dimensional position of the feature in
the global frame, we compute an estimate of the inverse-
depth parameterization of the feature with respect toCn, the
last camera frame in which the feature was observed. The
feature coordinates with respect to thekth camera frame are

Ckpfj = Ck

Cn
RCnpfj +

CkpCn
(8)

= Cnzfj









Ck

Cn
R









Cnxfj
Cnzfj
Cnyfj
Cnzfj

1









+
1

Cnzfj

CkpCn









(9)

= Cnzfj





Ck

Cn
R





αj

βj
1



+ ρj
CkpCn



 (10)

= Cnzfj





ψk1(αj , βj , ρj)
ψk2(αj , βj , ρj)
ψk3(αj , βj , ρj)



 , (11)

whereαj , βj , and ρj are the inverse-depth parameters of
featurefj with respect to the camera frameCn, defined as

αj ,

Cnxfj
Cnzfj

, βj ,
Cnyfj
Cnzfj

, ρj ,
1

Cnzfj
, (12)

andψk1, ψk2, andψk3 are functions ofαj , βj , andρj . The
vector fj = [αj , βj , ρj ]

T defines the parameterization of the

feature. We can now express the observationo
(j)
k at time

stepk as:

o
(j)
k =

1

ψk3(αj , βj , ρj)

[

ψk1(αj , βj , ρj)
ψk2(αj , βj , ρj)

]

+ n
(j)
k

= ψk (fj) + n
(j)
k . (13)

F. Noise model

We now present the form of the likelihood function ap-
pearing in Eqs. 3-5. This function accounts for the presence
of outliers, which is an important concern that needs to be
addressed in any vision system. Outliers can be caused by
several factors (e.g., moving objects, tracking failures), and
if care is not taken, even a small number can cause estimator
failure. To model the existence of outliers, we employ the
total probability theorem to obtain

p
(

O
(j)
t

∣

∣

∣xt−Np:t, fj

)

= p(In)p
(

O
(j)
t

∣

∣

∣xt−Np:t, fj , In
)

+ p(Out)p
(

O
(j)
t

∣

∣

∣xt−Np:t, fj ,Out
)

(14)

wherep(In) is the probability that a feature is an inlier (i.e.,
a correctly tracked static feature), andp(Out) = 1 − p(In)
is the probability that a feature is an outlier. For inlier
features we assume that the measurement noise in each image
is independent, zero mean, and Gaussian, with standard
deviationσim, and therefore

p
(

O
(j)
t

∣

∣

∣xt−Np:t, fj , In
)

=
∏

k∈Sfj,t

N
(

o
(j)
k − ψk (fj) ;0, σ

2
imI2

)

whereN
(

·;0, σ2
imI2

)

denotes the Gaussian pdf with zero
mean and covarianceσ2

imI2 (I2 is the2× 2 identity matrix).
The pdf for outlier features may depend on the feature

tracker implementation and the properties of the environ-
ment. For simplicity, we model the image noise in the case
of outliers by a Gaussian pdf with large standard deviation,
σout
im ≫ σim. In addition to the outlier noise model, the

likelihood function in Eq. 14 requires knowledge of the
percentage of outliers in the data (i.e., ofp(In) andp(Out)).
This can either be learned from data, or estimated based on
the properties of the implementation and the environment.

G. Feature Estimation Using Gauss-Newton Minimization

In order to estimate the inverse-depth parameterization of
featurefj we use a maximum-likelihood estimator (MLE). In
this estimator the robot pose estimatesx

[i]
t−Np:t

are treated as
known constants, and the unknown parameter to be estimated
is fj . For this step, each feature is treated as an inlier, to
simplify the implementation and also because the position
of outlier features is not always well-defined. This leads toa
Gaussian likelihood function, and allows us to re-formulate
the MLE into a nonlinear least squares problem, which
is solved by employing Gauss-Newton iterative minimiza-
tion [18]. The output of this step is the estimated inverse-
depth parameterization̂fj and its associated covariance ma-
trix C(j). In our implementation̂fj is computed for each



particle in the filter, since each particle represents a different
estimate of the camera trajectory.

We reiterate that this Gaussian estimate of the position of
a feature is not directly used by the PF as an estimate of the
feature’s position. Rather, it is used as a proposal distribution
for employing the unscented transform to marginalize out
the position of the feature. Thus, even if due to inaccurate
linearization the estimate ofC(j) is imprecise, this will not
adversely affect the performance of the filter. We have found
that the resulting filter is quite robust to different methods
for selectingf̂j andC(j).

H. Derivation of the prior term

We now present the derivation of the termγ
(

x
[i]
t−Np:t

)

,
which expresses the prior on the feature’s position (see
Eq. 4). This derivation is based on the key observation
that, if two particles differ only in scale, then the weights
computed for these two particles should be identical. This
is dictated by the fact that the camera measurements alone
cannot provide scale information. Consider two different
particles,x[i]

t−Np:t
andx[i′]

t−Np:t
, that differ only in the scale of

the trajectory (i.e.,x[i]k = sx
[i′]
k , y[i]k = sy

[i′]
k andθ[i]k = θ

[i′]
k

for k = t−Np+1, . . . t, wheres is a constant scaling factor).

For a given featurefj , and for the particlex[i′]
t−Np:t

, we have

λ
(j)[i′ ]
t = γ

(

x
[i′ ]
t−Np:t

)

∫

p
(

O
(j)
t

∣

∣

∣
x
[i′]
t−Np:t

, fj

)

dfj (15)

Recall that fj = [αj , βj , ρj ]
T . Thus, by employing a

change of variable in the above integral, to usef ′j =

[αj , βj , sρj ]
T , and noting thatp

(

O
(j)
t

∣

∣

∣x
[i′]
t−Np:t

, f ′j

)

=

p
(

O
(j)
t

∣

∣

∣x
[i]
t−Np:t

, fj

)

, we obtain:

λ
(j)[i′ ]
t = s γ

(

x
[i′]
t−Np:t

)

∫

p
(

O
(j)
t

∣

∣

∣x
[i]
t−Np:t

, fj

)

dfj

= s
γ
(

x
[i′ ]
t−Np:t

)

γ
(

x
[i]
t−Np:t

)λ
(j)[i]
t (16)

From the above expression we see that, to ensureλ
(j)[i′]
t =

λ
(j)[i]
t (as needed for scale invariance), the termγ(·) must be

proportional to the scale of the trajectory. To achieve this,
we chooseγ

(

x
[i]
t−Np:t

)

to be equal to the maximum dis-
tance between any two camera poses in the sliding window
represented by theith particle (i.e., equal to the baseline).

I. Summary of Particle Weighting

The following summarizes the steps needed to assign
weights to the particles.

• For each particlex[i]
t−Np:t

, i = 1, 2, ..., Ns

– For each featurefj tracked at timet

∗ UseO
(j)
t , x[i]

t−Np:t
, and the Gauss-Newton min-

imization to obtain an estimatêfj and its asso-
ciated covarianceC(j).

∗ Computeλ(j)[i]t , the contribution of featurefj to
the weight of theith particle, using Eq. 5 with
q (fj) = N

(

f̂j ,C
(j)
)

.

– Compute the overall weightw[i]
t using Eq. 6.

J. Selective Resampling

In order to reduce the risk of particle depletion in the PF,
we resample from the set of weighted particles only if the
number of effective samples

N̂eff =

(

Ns
∑

i=1

w
[i]
t

)2/
Ns
∑

i=1

(

w
[i]
t

)2

(17)

falls below a certain thresholdNτ [19].

IV. EXPERIMENTAL RESULTS

A. Simulation Tests

The goal of the simulation experiments is to test the
performance of the particle filtering approach under different
conditions by varying certain parameters. Fig. 1 shows our
simulation environment, which is a12m× 12m× 5m room
with two hundred visual point features randomly placed on
the walls. The robot is moving along a circular path of radius
3m with a constant velocity and angular velocity of0.1m/s
and 0.0333rad/s, respectively. The measured velocity and
angular velocity are corrupted by independent zero-mean
Gaussian noise with standard deviations0.01m/s and1◦/s,
respectively. As the robot moves, its camera records images
at 1Hz. We assume that the camera has a field of view
of 47.5◦ and σim = 1/400 (this corresponds to standard
deviation of one pixel, in a camera with a focal length equal
to 400 pixels). The duration of the simulation was set to
1000 seconds.

The proposed PF-based algorithm is compared against
the MSCKF algorithm [2] and FastSLAM [5]. The MSCKF
employs a similar technique of explicit feature marginaliza-
tion, but uses an EKF estimator for this purpose. On the
other hand, FastSLAM makes use of a Rao-Blackwellized
particle filter, with an EKF for each feature. In our tests,
all three filters process the same feature tracks, and use the
same inverse-depth parameterization. Moreover, for fairness
of comparison, in our implementation of FastSLAM features
are only tracked for a maximum ofNp states, and if a feature
is seen again after a full circle, it is treated as a new one
– the same as in our PF and in the MSCKF. To evaluate
the filters’ performance, we compute the root mean squared
error (RMSE) over the100 Monte Carlo trials for all three
algorithms. In our current implementation, FastSLAM is four
times faster than our PF, for the same number of particles.
Therefore, to ensure a fair comparison in which the two
methods are allocated the same amount of CPU time, we
use four times fewer particles in our method, compared to
FastSLAM.

We experimented with different values forNp and different
number of particlesNs for the particle-filter based methods,
and the results are presented in Table I. These results show
that the PF performs better than the MSCKF for all the cases



TABLE I

RMSEOF THE MSCKF,OUR PF,AND FASTSLAM, OVER 100 MONTE

CARLO TRIALS.

MSCKF Particle Filter FastSLAM
Ns Ns

Np 250 500 1000 1000 2000 4000

2
0.679 0.406 0.361 0.370 0.470 0.466 0.493 x
0.656 0.376 0.342 0.330 0.514 0.522 0.511 y
0.208 0.110 0.098 0.094 0.123 0.115 0.126 θ

3
0.462 0.305 0.303 0.281 0.331 0.338 0.363 x
0.468 0.292 0.286 0.248 0.350 0.369 0.345 y
0.154 0.062 0.067 0.060 0.067 0.066 0.069 θ

5
0.315 0.254 0.246 0.245 0.289 0.290 0.274 x
0.317 0.256 0.244 0.258 0.282 0.264 0.274 y
0.096 0.038 0.039 0.041 0.042 0.040 0.037 θ

10
0.245 0.230 0.232 0.216 0.226 0.238 0.228 x
0.229 0.208 0.237 0.226 0.233 0.230 0.239 y
0.071 0.023 0.027 0.018 0.025 0.022 0.023 θ
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Fig. 1. The simulation environment and the true trajectory of the robot
(circle). Each dot represents a point landmark placed on thewall of the
environment.

considered. AsNp increases, the performance of the EKF and
PF are comparable, since the estimates are more accurate,
and the linearization errors in the EKF are less severe.
However, for small values ofNp the performance of the PF
exhibits a more graceful degradation than that of the MSCKF.
Similarly, the proposed PF algorithm is clearly better than
FastSLAM for small values ofNp, while the two methods
perform equally well for largeNp. To explain this behavior,
we note that when features can only be tracked for a small
number of states, the Gaussianity assumption employed by
the EKFs in FastSLAM is a poor one. Consequently, the
estimates produced by FastSLAM suffer from larger errors.
As Np increases, the feature estimate errors become “more
Gaussian”, and thus FastSLAM’s performance improves.

As a final remark, we note that decreasing the number of
particles in the PF does not significantly affect its perfor-
mance. In the simulation scenario used here, decreasing the
number of particles from 1000 to 250 results in an increase
of the error by less than 15%. If using even fewer particles
is desired, one could implement more advanced resampling
schemes, e.g. the auxiliary particle filter [20].

B. Real-World Experiment

To demonstrate the effectiveness and applicability of the
PF approach in a real-world setting, we apply the algorithm

Fig. 2. Sample images from the real-world experiment.

on a real image sequence collected with our mobile robot.
In our experiment, we used an ActivMedia Robotics P3-DX
equipped with wheel encoders for odometry and a front-
looking Canon VC-C50i camera that provides images of
resolution320× 240 pixels.

The experiment was conducted inside the Bourns Engi-
neering Building II, and involved an approximately 200-m
long trajectory. Some sample images are shown in Fig. 2. We
process a new image whenever the robot’s encoders indicate
that the robot translated by at least0.1m or rotated by at least
1◦. In this dataset approximately 2200 images are processed.
We pre-calibrated the camera using a Matlab camera cali-
bration toolbox [21], and we used the Kanade-Lucas-Tomasi
(KLT) tracker [22], [23] for extracting and tracking corner
features. The percentage of outliers has been determined at
10% (i.e.,p(Out) = 0.1), the standard deviation of the inlier
feature measurements is 1 pixel, andσout

im = 10σim. For the
results shown here, we used 1000 particles for our PF, and
4000 for FastSLAM.

Fig. 3 shows the trajectory estimates of the three filters
considered (PF, MSCKF, FastSLAM), as well as the desired
robot path. The robot was manually commanded along its
path, starting at position(0, 0). Similarly to the simulation
results of the preceding section, in the real-world experiment
the proposed PF algorithm outperforms both the MSCKF
and FastSLAM in terms of accuracy. In addition, because
both the PF and FastSLAM are not deterministic algorithms
and their results vary by run, the standard deviation of the
trajectory endpoint was computed over 100 trials. For the PF,
the standard deviation is 0.8826m in thex axis and 1.3942m
in the y axis, while for FastSLAM we obtain 1.5458m and
1.4366m, respectively. We thus see that in addition to being
more accurate, the PF result is also more stable, with smaller
standard deviation for its estimates. It should be noted that
a large window size is chosen in this experiment (Np =
30) to ensure that the motion information from features that
are tracked over long periods is properly used. Overall, the
attained estimation accuracy is satisfactory, given the fact that
no loop closure or prior map information is used, and that
the robot motion is mostly parallel to the camera’s optical
axis, which is a difficult scenario for vision-based motion
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Fig. 3. The desired path for the robot (thin solid line – green), PF (thick
solid line – blue), the MSCKF (thick broken line – magenta), and FastSLAM
(dashdot line – red). The robot started at position(0, 0).

estimation.
The processing of the experimental results presented above

was carried out off-line. However, the proposed algorithm is
capable of real-time operation. Our current implementation
has been demonstrated to run at 7fps using 1000 particles
on a low-end, 5-year old laptop (this includes both image
processing for feature extraction and pose estimation). Using
newer hardware and further code optimization will signifi-
cantly increase the performance of the method.

V. CONCLUSIONS

Our proposed particle filter performs better than Fast-
SLAM and the EKF for vision-aided odometry. We attribute
this to the flexibility of the method to represent non-Gaussian
distributions and non-linear functions. In particular we rep-
resent the distribution of the robot’s position with a set
of particles instead of as a Gaussian (like FastSLAM, but
unlike the EKF). Additionally, we do not approximate the
distribution over the features’ position as a Gaussian (like the
MSCKF [2], but unlike FastSLAM). Therefore, our method
is more robust to non-linearities, which are common in visual
odometry, especially when features are only tracked for a few
frames.

We note that our method can be extended to other ap-
plications that combine ego-motion estimates with feature
measurements, such as inertial measurements and images,
or odometry and laser range data. We expect that modeling
additional variables (such as an inertial sensor’s biases and
velocity) would require Rao-Blackwellized particle filters or
other similar methods. However, the foundation of this paper
in providing immediate weight updates (instead of waiting
until a feature has been lost) and marginalizing out the
feature positions still applies.
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