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Abstract—\We propose a particle filter-based algorithm for Existing methods that can be employed for vision-aided
monocular vision-aided odometry for mobile robot localizdion.  gdometry utilize the assumption that the error in the camera
The algorithm fuses information from odometry with observa pose estimates, or the error in the feature estimates, or

tions of naturally occurring static point features in the erwvi- . . . o
ronment. A key contribution of this work is a novel approach both, is well-approximated by a Gaussian pdf. Specifically,

for computing the particle weights, which does not require EKF-SLAM methods (e.g., [1]) assume a Gaussian pdf
including the feature positions in the state vector. As a radt, for both the feature and the camera pose errors, sliding-
the computational and sample complexities of the algorithm window methods (e.g. [2]-[4]) do so for the errors of the
remain low even in feature-dense environments. We validatthe  y414inalized camera poses, and FastSLAM [5] assumes that
effectiveness of the approach extensively with both simulisns , L . . . .
as well as real-world data, and compare its performance agast each feature’s posmon pdf is approximately Gaussiarergiv
that of the extended Kalman filter (EKF) and FastSLAM. the camera trajectory. Moreover, all these methods rely on
Results from the simulation tests show that the particle filer  the linearization of the camera measurement model, and thus
approach is better than these competing approaches in terms require that the nonlinearity of this model is not significan
of the RMS error. Moreover, the experiments demonstrate tha In this work we remove these assumptions, and present
the approach is capable of achieving good localization accacy . .
in complex environments. an algorlthr_n.thalt makes no a§sumptlon on the nature of
the pdfs arising in the estimation process. This algorithm
employs the PF for estimation, and at each time step uses
the measurements of all the features currently tracked for
For mobile robots to effectively navigate their surroundupdating the particle weights. A key property of the progbse
ings, they must have precise estimates of their position amdethod is that its computational cost is linear in the number
orientation (pose). To obtain such estimates, in most casef locally visible features, which is crucial for achieving
a robot fuses measurements from multiple onboard sensosperation in feature-dense environments with limited com-
Typically, a proprioceptivesensor (e.g. odometry) providesputational resources. Our simulation results and realdvor
estimates for the robot’s motion, and one or mestero- experiments demonstrate the effectiveness of the proposed
ceptivesensors (e.g. laser rangefinders) are used to providgeproach, and show that it outperforms competing methods
additional localization information and improve the a@myr  for the problem of real-time motion estimation.
of the estimates. Recently, the use w@éual sensingfor
navigation has been at the focus of extensive researchsffor Il. RELATED WORK
Cameras are an attractive option for a number of reasons:We here discuss related approaches employing monocular
They are cheap, small, low powered, and lightweight; thegameras for aiding navigation. Due to the limited space
are becoming increasingly common; and they are versatifee only discuss some representative approaches, grouped
in that they can also be used for other robotic tasks (e.gnto three broad categories: those that use a known map of
object or place detection and recognition). For navigatiothe environment, SLAM approaches, and methods that do
applications, cameras can be used to detect and trackdsatunot require a map of the environment and do not perform
in the environment, and the localization information ingke mapping (such as our own).
observations can be fused with the input from proprioceptiv a) Known-map based method®ne family of approaches
sensors for ego-motion estimation. for vision-aided navigation assumes the existence ohan
In this paper, we propose a particle filter (PF)-basedriori feature map of the area where the robot operates.
algorithm for monocular vision-aided odometry. The algoExamples of such methods include [6]-[8] and references
rithm fuses information from odometry with observations otherein. Observing known features provides absoluteiposit
naturally occurring point features in the environmentgtak information, and thus methods based on this paradigm are
by a camera mounted on the robot. Our key contributionapable of drift-free pose estimation. However, the resuir
is a novel approach for computing the particle weightsnent for having a feature map limits the applicability of
which does not require including the feature positions i ththese algorithms to previously explored environments. In
state vector. Unlike simultaneous localization and mappinthis work, we instead focus on the more challenging case
(SLAM) techniques, our approach explicitly marginalizes o where the feature locations amet known in advance, which
the features. This helps keep the size of the state vectdl, smaermits operation in new and unknown environments.
resulting in low computational cost and a small number ofb) SLAM methodsin order to avoid the need for aa
particles required to represent the posterior distrilsutio priori map of the environment, one group of methods follows

|I. INTRODUCTION



the SLAM framework. In this paradigm the robot's poseof static point features through its camera. We achieve this
and the landmarks’ positions are estimated jointly, tylica goal by using a PF to track the sequence of the Mgstobot
in a recursive-filtering framework (e.g [1], [9]-[11] and poses. Conditioned on these poses, each feature’s observa-
references therein). While generating a feature map may biens are independent of the observations of other features
useful for certain tasks, when such a map is not necessarpwever, we do not keep an explicit posterior distribution
allocating computing and memory resources to the updatirayer feature positions conditioned on each particle, asied
of an ever-increasing number of features is not desirablin FastSLAM. Instead, we marginalize out each feature’s
Thus, in this work we focus on the problem of estimatingosition to obtain the probability of the sequence of that
the robot trajectorwithout maintaining a feature map. feature’s observations, conditioned on the particle’sisege
c) Visual-odometry methodsviethods that only estimate the of poses. This is used to update the weight of the particle,
camera pose and forgo including the feature positions in thes normal for a PF.
state vector are often collectively termetsual odometry The mechanism for performing the explicit marginaliza-
algorithms. In these approaches, visual feature obsensti tion of the features is the first important contribution of
are utilized to derive probabilistic constraints (i.e.,asere- this paper. Specifically, the marginalization amounts ® th
ments) between the camera poses from which the featuregluation of an expectation with respect to the feature
where observed. In their most computationally efficientd(anposition (see Eq. 3), which cannot be computed in closed
simplest) form, visual odometry methods use the feature obsrm. To address this problem, we employ the unscented
servations to derive relative-pose measurements between ttransform [16]. As the unscented transform is designed to
consecutive time instants [12]-[14]. This approach resmlt estimate an expectation with respect to a Gaussian distri-
real-time performance, but is suboptimal in the (commorfution (and the true posterior is not normally distributed)
case where each feature is seen in more than two imagesve introduce a “proposal” Gaussian distribution over the
This problem can be addressed by employing the featup®sition of the feature. This proposal distribution is mstied
measurements to extract relative-pose information for tHeom the feature measurements, making it similar to the
entire sliding window of poses from which the feature is posterior feature position distribution. However, it et
observed. In this way, all the motion information containegssumed to be the true distribution and is only used as a
in the feature observations can be used. Existing methodatalyst for computing the measurement likelihood.
that follow this paradigm are typically based either on the The second important contribution of this paper is in the
EKF estimator [2], or on an iterative least-squares methodacremental update of the weights of the particles. Norynall
ology [3], [4], [15]. However, all these methods requireone would use each feature’s measurements only once to
the linearization of the measurement models (and thuspdate the particle weights, after the feature is lost from
assume only moderate non-linearities in these models), anigw. However this is not desirable, since it results in geth
all employ the assumption that the pdf of the marginalizedse of information. In our framework, we update the weight
robot poses is Gaussian. When these assumptions are abtthe particle based on a feature ewery time step. If
valid (e.g., when estimation errors grow large), the use of”l! s the weight contribution of featurg to particle
linearization-based approaches is not suitable. i at time ¢ (i.e. the probability of the entire sequence of
For these reasons, in this work we propose a PF-baseBservations of featurg given particles), then we multiply
estimator for visual odometry. Owing to the PF’s inherenthe weight of particlei by )\gﬁm/)\gﬂﬂ to cancel out
ability to represent non-Gaussian distributions, thisrapph  previous weight updates and prevent over-counting ofezarli
is better suited for scenarios where the estimation erroggidence. At first glance, this would appear to accomplish
are significant, and/or the measurement models are highiything: the final weight change for a particle due to a
nonlinear. We note that one straightforward approach fqeature is the same. However, if the particles are resampled
employing the particle filter to the problem at hand would bén the middle of the track of the feature, this can make a
to use the FastSLAM algorithm [5], and to drop all featuresarge difference. Using the evidence as it becomes avajlabl
from the state vector once they disappear from the field gfistead of only after a feature track is complete, results in
view. However, FastSLAM still employs an EKF for eacha more “focused” posterior distribution, and improves the
landmark, and thus its performance depends on the qualig¢rformance of resampling.
of linearization. Contrary to that, our algorithm expligit ~ Taken together, these two non-standard modifications al-

marginalizes out the features, and the particle weightigsda |ow us to effectively use a PF to model the non-linearities
do not rely on precise linearization. In the results pres@nt jn the motion and observation models.

in Section IV we show that the proposed method outperforms
FastSLAM, especially when features can only be observeBl Notation

for a small number of frames. :
We assume that the robot operates on a planar environment

1. PARTICLE FILTERING APPROACH so that the robot pose at tim&an be represented by a vector
x; = [z, 91,07, where[z;,y,]T are its two-dimensional
Cartesian coordinates a#dgis its orientation with respect to

The objective of our PF-based estimator is to track theome global reference frande (which we choose to coincide
pose of a wheeled robot using odometry and the observatiowgh the initial robot frame).

A. Overview



Each particle in our filter maintains an estimate of thef;. We introduce the feature position as follows:
recentV, robot poses at time. Let theith particle at time " "
K3 K]
Xt~ Nyt fj)p (fj thNp:t) df; . (3)

i i i i S I )
t be xEZ]_Np:t = (xEZ]_NpH,xEZ]_NpH,...7x£1]). Maintaining M = /P (QO
this window of poses in the particle estimates is necessa . . . . .
P P [P/ e first term in the above integrand is the measurement like-

as all measurements of each feature are used collectiv &2 X . L
in the marginalization process. Feature measurements i ood funcfuon, which depend.s on the projection geqmetry
incrementally processed for features that are tracked tfor %nd thehpoigl(e IT\OdSLf For_a given t;:amera an% exp?nmelntal
least two and up to a maximum @¥, consecutive frames. setup, this likelihood function can be computed analytyca

A feature that is tracked for more thaN, frames will (m\;)vr: giallriemtr?aetcuoﬂzr:”i agga:!?a.ment information is
be considered as a new feature starting at frame number . u » W ure ; lon |
(il i L available, the feature can be anywhere in the 3D space with
(Np+1). Let 4 = {(xd) o wf!)}
: =1 .
‘ (d]

be the set of equal probability (i.e., an “uninformative” prior). We cérus
weighted particles at time, where w!” are the particle Write p (f; XEZ],Np;t) =7 (thNp:t), which leads to:
weights, andNs is the number of particles in the filter.

For feature observations, Ig} be a feature, and’;, be ADE — (XEN _t) /p ((957')
the kth camera frame. The position vector of the feature "'
with respect toC}, is denoted by[ckxfj,ckyfj,cszj}T
Ckpfj. As explained in Section IlI-E, in this work we employ
an inverse-depth parameterization of the feature posison
Ckpfj is parameterized by a 3-vectfyr We represent camera
frame C;. as {& R,“pc, }, where 4R is the 3 x 3 matrix
describing the rotation between framdsand B, and“pp

x e ) A - (4)
The derivation of the terny (xz[EZ]—Np:t) is presented in detail
in Section IlI-H.

In order to compute the integral in Eq. 4, we introduce a
proposal distributior (f;) over the potential feature position
f;, which leads to

is the 3D position of the origin of fram®& with respect to D (Og") x4 f_)
frame A. We are assuming a calibrated camera, and thus the (/)1 — (xgi]_N _t) / (8 df
observation of featurg; in camera frame”}, is described a q(f;) '
by the pinhole camera model: ( . ) . p (09 XL{NP:“fj) o
_ . =Y XNyt ) e
G _ L [Cap] o) 1 t= Nt ) el q(f;)
o; Cizy, [C’“yfj +n;, (1)

G) ] . While the proposalg (f;) can be any distribution, it is
wheren,’ is the 2 x 1 image noise vector, modelled as aconvenient to choose (f;) to be the Gaussian distribution

random variable with known distribution. £ £ i ' iti
Let Sy, ; be the set of camera frames in which featyiye N(fj’c  wheref; is an estimated position of feature

is observed, and/;, ; be the size of this set. Then the setf; and CU) is the associated covariance matrix of the

of all the measurements of featufe observed through time €stimate. Now the integral in Eq. 5 amounts to an expectation
+ is denoted bpgj) 2 {Og) ke Sijt}_ with respect to a Gaussian random variable, which can be

evaluated by application of the unscented transform [16],
C. Motion Model [17]. We defer the discussion of how to selégtand C()
to Section IlI-G.

We do not make any assumptions about the underly- . o .
ing motion model for the robot, other than that we can Eqg. 5 provides the contribution of featufe to the weight

sample from it. The particles are propagated by sampl of theith particle at timet. Considering all the features that

: ) (4] .
their current pose given their previous pose and the contr e been observed at time the weightw;” of the ith
. (i) [i] I particle can be updated as

measurements;, i.e. x;' ~ p (x; xt_l,ct), utilizing the

known statistics of the errors. 2 ; A
D. Weight Updates i Mt-1

In the particle filtering framework, the weight of eachyte that in Eq. 6, we dividedg'j)[i] by /\Ej)y] which is the

particle is proportional to the likelihood of the obserat  contripution of featuref; to the weight of theith particle
given the particle estimates. In our approach, all the neasu 4¢ time ¢ — 1. This is done to avoid “double counting” the

ments of a feature through timeare used simultaneously contripution of featuref; to the weight of theith particle,
to update the particle weights. Specifically, processirg thy case the observations of featufewere processed at the
measu_rements of featuye will result in updating the weight previous time step— 1 (if the observations of featurfnf are
of particle: by a factor equal to processed for the first time at tinig then we set)\gjjf] =
/\E.j)[i] :p(o§-7'> Ei]N-t) _ @) 1). With this weighting scheme, feature observations are
e processed incrementally at every time step without waiting
Note that the above cannot be directly computed, since tffier the features to be lost before their measurements are pro
observation is not conditioned on the position of the featurcessed. Note that whilﬁvﬂ1 may have been changed (due

X




to the resampling step of the particle filter), the past weigtfeature. We can now express the observatiéﬁ at time
contributions for the features\ﬁﬂ’], were not. Therefore, stepk as:

Eq. 6 does not directly reduce HA?)M. ") 1 [wkl(&j B, pi)

()
o) = ——F——— +n
o ’ M (e Byapj) W?(O‘jvﬁjapa‘)} g
E. Feature Parameterization o (£) + ) (13)
= i n,’’ .
The parameterization of featurg is critical to the suc- i b
cess of using a Gaussian proposal distributip(f;). In F. Noise model
previous work [2], [9], '.t h"?‘s been demonstrated that an We now present the form of the likelihood function ap-
inverse-depth parameterization has a key advantage awer Bbaring in Egs. 3-5. This function accounts for the presence
traditional Cartesian-coordinate parameterization: riesa-

of outliers which is an important concern that needs to be

surement model exhibits better linearity in the inverse; yyressed in any vision system. Outliers can be caused by

depth parameters, and thus the resulting estimates aer begt : : : :
X ' X i ) everal factors (e.g., moving objects, tracking failuresid
approximated by a Gaussian. Therefore, in this work w (e.g g ol g ratu

. T _ ff care is not taken, even a small number can cause estimator
employ an inverse-depth parameterization, as discussdd Nailure. To model the existence of outliers, we employ the
The position of featurg; in camera framé&’, is given by '

total probability theorem to obtain
Ckx
13 ®) ()
Cpy = |y | = GRGRT(Opy, —Opr) +pr. (O o) = p()p (OF [xioni £, In)
+ p(Out)p (O,Ej)

Crzy,

Xt—Np:t» fja Out)

where (14)
cos(0r) —sin(f;) O Tk
gkR = |sin(6x) cos(Bx) O, ®pr. = |w|, (7) wherep(In) is the probability that a feature is an inlier (i.e.,
0 0 1 h a correctly tracked static feature), apfOut) = 1 — p(In)
] ] ] is the probability that a feature is an outlier. For inlier
h is the known height of the robof’py, is the three- feqyres we assume that the measurement noise in each image

dimensional position of featurg; in the global framei, s independent, zero mean, and Gaussian, with standard
and{$R, “pr} is the known transform between the camergjeviationo:,., and therefore

frameC and the robot frame. Since the three-dimensional

position p;, of the feature in the global fram& is p(0OY) xt,Np:t,fj,In) = H N(o,(f)—wk (fj);O,o—?mIQ)
unknown, we need to first estimate it using the measurements kEST, ¢

o,(j), k € Sy, +, and theMy, ; camera poses where the feature

was observed. However, instead of directly computing awhere V' (-;0,07, 1) denotes the Gaussian pdf with zero
estimate of the three-dimensional position of the featare imean and covarianceg, I> (I is the2 x 2 identity matrix).

the global frame, we compute an estimate of the inverse- The pdf for outlier features may depend on the feature
depth parameterization of the feature with respeaffpthe tracker implementation and the properties of the environ-
last camera frame in which the feature was observed. Tt@ent. For simplicity, we model the image noise in the case
feature coordinates with respect to tkt camera frame are of outliers by a Gaussian pdf with large standard deviation,
o2 > oyy. In addition to the outlier noise model, the

“py, =R py, + P pe, (8) likelihood function in Eq. 14 requires knowledge of the
gy percentage of outliers in the data (i.e.,p¢in) andp(Out)).
e C ZZij 1 ¢ This can either be learned from data, or estimated based on
="z e B |+ PC, ©)  the properties of the implementation and the environment.
C"ij ij
1

G. Feature Estimation Using Gauss-Newton Minimization

_Cu,. |Op ? + p:Cpe (10) In order to estimate t.he invg:-rsg—depth pgrameterization of
15 | Cn { J " featuref; we use a maximum-likelihood estimator (MLE). In
- - this estimator the robot pose estimaié% Nyt are treated as
. Vi, By, pj) known constants, and the unknown parameter to be estimated
="rzgy | U0 B pi) | 1D s f;. For this step, each feature is treated as an inlier, to
Lks (e, By, pj) simplify the implementation and also because the position

where a;, 8, and p; are the inverse-depth parameters obf outlier features is not always well-defined. This leada to
feature f; with respect to the camera frang,, defined as Gaussian likelihood function, and allows us to re-formeilat
Cog\ Cuyyp 1 _the MLE into a nor_1|inear least squares prpblem_, _which
aj = C—fﬂ R o I T = (12) is solved by employing Gauss-Newton iterative minimiza-
"2 "Zf; "Zf; tion [18]. The output of this step is the estimated inverse-
andiy1, Y2, andyyg are functions oy, 8;, andp;. The depth parameterizatiofy and its associated covariance ma-

vectorf; = [, 3;, p;]7 defines the parameterization of thetrix C). In our implémentatiorfj is computed for each




particle in the filter, since each particle represents arhfiit * Compute/\gj)[i], the contribution of featurg; to

estimate of the camera trajectory. the weight of theith particle, using Eq. 5 with
We reiterate that this Gaussian estimate of the position of q(f) =N (fb C(a‘))_

a feature is not directly used by the PF as an estimate of the i

feature’s position. Rather, it is used as a proposal digigh — Compute the overall weight;" using Eq. 6.

for employing the unscented transform to marginalize oW ggjective Resampling

the position of the feature. Thus, even if due to inaccurate . . -
linearization the estimate af?) is imprecise, this will not In order to reduce the risk of pgrtlcle deplletlon n th(_a PF,
adversely affect the performance of the filter. We have founy resample from the set of weighted particles only if the
that the resulting filter is quite robust to different metlaodnumber of effective samples

for selectingf; and C19). Neo N\N% /N,
Suc (Xol) /3200) an
i=1 i=1

We now present the derivation of the te xﬂNp:t), falls below a certain threshol®/.. [19].

which expresses the prior on the feature’s position (see
Eq. 4). This derivation is based on the key observation )
that, if two particles differ only in scale, then the weights”: Simulation Tests
computed for these two particles should be identical. This The goal of the simulation experiments is to test the
is dictated by the fact that the camera measurements aloperformance of the particle filtering approach under défer
cannot provide scale ‘/information. Consider two differentonditions by varying certain parameters. Fig. 1 shows our
particles,xy] Nost ande’_]N .+» that differ only in the scale of simulation environment, which is 2m x 12m x 5m room
. e " 1l [@'] [4] [/]  with two hundred visual point features randomly placed on
the trajectory (i.e.x;,’ = sz, ', vy, = sy, andf,’ =0, X X ) .
. : the walls. The robot is moving along a circular path of radius
for k =t—Np+1,...¢, wheres is a constant scaling factor). ) . .
) T h 3m with a constant velocity and angular velocity @im/s
For a given featurg/;, and for the particlec, ., we have 54 0333rad/s, respectively. The measured velocity and
o , _ , angular velocity are corrupted by independent zero-mean
)\gm” = (xLZJNp:t) /p ((9?) xgi]Np:t,fj) df; (15) Gaussian noise with standard deviatié¢n@lm/s and1°/s,
respectively. As the robot moves, its camera records images

H. Derivation of the prior term

IV. EXPERIMENTAL RESULTS

Recall thatf, = [aj,ﬁj,pj]T_ Thus, by employing a at 1Hz. We assume that the camera has a field of view
change of variable in the above integral, to u§e = gf 47.5° al‘f\d Oim = |1/400 (this Co”_espopds It? Star?dardl
T : G) |18 A eviation of one pixel, in a camera with a focal length equa
[aj’ﬁj.’Spj] » and noting thatp (Ot Xt‘NP:t’fj) " to 400 pixels). The duration of the simulation was set to
p (Ot('n XENP:“ fj), we obtain: 1000 seconds.
The proposed PF-based algorithm is compared against
ADET sy (x[i’] ) /p (O(a‘) y f,) dfs the MSCKF algorithm [2] and FastSLAM [5]. The MSCKF
K b= Np:t b N ) employs a similar technique of explicit feature marginaliz
~ (XEZ:]N 't) - tion, but uses an EKF estimator for this purpose. On the
- 7 A (16) other hand, FastSLAM makes use of a Rao-Blackwellized
ol (xﬂNp:t) particle filter, with an EKF for each feature. In our tests,
all three filters process the same feature tracks, and use the
From the above expression we see that, to ensff?éi,] _ same inverse-depth parameterization. Moreover, for éagn

of comparison, in our implementation of FastSLAM features

proportional to the scale of the trajectory. To achieve, thi@'€ Only tracked for a maximum o, states, and if a feature

we choos ( [4] ) to be equal to the maximum dis- 'S S€&N again after a full circle, it is treated as a new one
&Y \Xt-Npit q — the same as in our PF and in the MSCKF. To evaluate

tance between any two camera poses in the sliding windqye fiiters' performance, we compute the root mean squared

represented by théh particle (i.e., equal to the baseline). oo, (RMSE) over thd 00 Monte Carlo trials for all three

algorithms. In our current implementation, FastSLAM isrfou

times faster than our PF, for the same number of particles.
The following summarizes the steps needed to assigfherefore, to ensure a fair comparison in which the two

weights to the particles. methods are allocated the same amount of CPU time, we
. For each particleclep:t,z' =1,2,...,Ns use four times fewer particles in our method, compared to

FastSLAM.

G ] _ We experimented with different values faf, and different

* Use O, x;_ 4, and the GalAJss—Newton MIN- humber of particlesVs for the particle-filter based methods,
imization to obtain an estimat§ and its asso- and the results are presented in Table I. These results show
ciated covarianc€ ). that the PF performs better than the MSCKF for all the cases

AU (as needed for scale invariance), the terfr) must be

I. Summary of Particle Weighting

— For each featurd; tracked at timet



TABLE |
RMSEOF THEMSCKF,0UR PF,AND FASTSLAM, OVER 100 MONTE
CARLO TRIALS.

MSCKF Particle Filter FastSLAM
Ns Ns
Np 250 500 1000 1000 | 2000 [ 4000

0.679 0.406 | 0.361 | 0.370 | 0.470 | 0.466 | 0.493
2 0.656 0.376 | 0.342 | 0.330 | 0.514 | 0.522 | 0.511
0.208 0.110 | 0.098 | 0.094 | 0.123 | 0.115 | 0.126
0.462 0.305 | 0.303 | 0.281 | 0.331 | 0.338 | 0.363
3 0.468 0.292 | 0.286 | 0.248 | 0.350 | 0.369 | 0.345
0.154 0.062 | 0.067 | 0.060 | 0.067 | 0.066 | 0.069
0.315 0.254 | 0.246 | 0.245 | 0.289 | 0.290 | 0.274
5 0.317 0.256 | 0.244 | 0.258 | 0.282 | 0.264 | 0.274
0.096 0.038 | 0.039 | 0.041 | 0.042 | 0.040 | 0.037
0.245 0.230 | 0.232 | 0.216 | 0.226 | 0.238 | 0.228
10 0.229 0.208 | 0.237 | 0.226 | 0.233 | 0.230 | 0.239
0.071 0.023 | 0.027 | 0.018 | 0.025 | 0.022 | 0.023

TR B OR RO 8| &

Fig. 2. Sample images from the real-world experiment.

on a real image sequence collected with our mobile robot.

U In our experiment, we used an ActivMedia Robotics P3-DX

et equipped with wheel encoders for odometry and a front-

looking Canon VC-C50i camera that provides images of
resolution320 x 240 pixels.

The experiment was conducted inside the Bourns Engi-
neering Building Il, and involved an approximately 200-m
long trajectory. Some sample images are shown in Fig. 2. We
process a new image whenever the robot’s encoders indicate
that the robot translated by at le@stm or rotated by at least
1°. In this dataset approximately 2200 images are processed.

y (m) - - x(m) We pre-calibrated the camera using a Matlab camera cali-

bration toolbox [21], and we used the Kanade-Lucas-Tomasi
Fig. 1. The simulation environment and the true trajectothe robot (KLT) tracker [22], [23] for extracting and tracking corner
(circle). Each dot represents a point landmark placed onwtié of the features. The t f outli h b det ined at
environment. percentage of outliers has been determined a
10% (i.e.,p(Out) = 0.1), the standard deviation of the inlier

considered. AV, increases, the performance of the EKF andeature measurements is 1 pixel, arfft* = 100;,. For the
PF are comparable, since the estimates are more accurs@sults shown here, we used 1000 particles for our PF, and
and the linearization errors in the EKF are less severd000 for FastSLAM.
However, for small values alV, the performance of the PF  Fig. 3 shows the trajectory estimates of the three filters
exhibits a more graceful degradation than that of the MSCKIEonsidered (PF, MSCKF, FastSLAM), as well as the desired
Similarly, the proposed PF algorithm is clearly better thamobot path. The robot was manually commanded along its
FastSLAM for small values ofV,, while the two methods path, starting at positioii0,0). Similarly to the simulation
perform equally well for largeV,. To explain this behavior, results of the preceding section, in the real-world expentn
we note that when features can only be tracked for a smdhe proposed PF algorithm outperforms both the MSCKF
number of states, the Gaussianity assumption employed bpd FastSLAM in terms of accuracy. In addition, because
the EKFs in FastSLAM is a poor one. Consequently, thboth the PF and FastSLAM are not deterministic algorithms
estimates produced by FastSLAM suffer from larger errorgnd their results vary by run, the standard deviation of the
As N, increases, the feature estimate errors become “mot@jectory endpoint was computed over 100 trials. For the PF
Gaussian”, and thus FastSLAM'’s performance improves. the standard deviation is 0.8826m in thexis and 1.3942m

As a final remark, we note that decreasing the number @i the y axis, while for FastSLAM we obtain 1.5458m and
particles in the PF does not significantly affect its perforl.4366m, respectively. We thus see that in addition to being
mance. In the simulation scenario used here, decreasing there accurate, the PF result is also more stable, with smalle
number of particles from 1000 to 250 results in an increasstandard deviation for its estimates. It should be noted tha
of the error by less than 15%. If using even fewer particlea large window size is chosen in this experiment, (=
is desired, one could implement more advanced resamplifif)) to ensure that the motion information from features that
schemes, e.g. the auxiliary particle filter [20]. are tracked over long periods is properly used. Overall, the
attained estimation accuracy is satisfactory, given thetfeat
no loop closure or prior map information is used, and that

To demonstrate the effectiveness and applicability of théhe robot motion is mostly parallel to the camera’s optical
PF approach in a real-world setting, we apply the algorithraxis, which is a difficult scenario for vision-based motion

B. Real-World Experiment
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Fig. 3. The desired path for the robot (thin solid line — gjedF (thick
solid line — blue), the MSCKEF (thick broken line — magenta)d &astSLAM
(dashdot line — red). The robot started at posit{on0).

estimation.
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(1]

(2]

(31

(4

(5]

(6]

(7]
(8]

The processing of the experimental results presented abo

was carried out off-line. However, the proposed algoritlbm i
capable of real-time operation. Our current implementatio

has been demonstrated to run at 7fps using 1000 particl%g]
on a low-end, 5-year old laptop (this includes both image
processing for feature extraction and pose estimatioringJs (111

newer hardware and further code optimization will signifi-
[12]

cantly increase the performance of the method.

V. CONCLUSIONS

Our proposed particle filter performs better than Fast:
SLAM and the EKF for vision-aided odometry. We attribute

[13]

H
B

this to the flexibility of the method to represent non-Gaassi [15]

distributions and non-linear functions. In particular vep+

resent the distribution of the robot's position with a sefig)
of particles instead of as a Gaussian (like FastSLAM, but

unlike the EKF). Additionally, we do not approximate the

distribution over the features’ position as a Gaussiare (liie

MSCKF [2], but unlike FastSLAM). Therefore, our method

[17]

is more robust to non-linearities, which are common in visud!®!

odometry, especially when features are only tracked fona fe
[19]

frames.

We note that our method can be extended to other ap-
plications that combine ego-motion estimates with feature

measurements, such as inertial measurements and imad&4,

or odometry and laser range data. We expect that modeling
additional variables (such as an inertial sensor’'s biagés a[21]

velocity) would require Rao-Blackwellized particle filteor

other similar methods. However, the foundation of this pap

422

in providing immediate weight updates (instead of waiting
until a feature has been lost) and marginalizing out th&3l

feature positions still applies.
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